source: trunk/LMDZ.GENERIC/libf/phystd/optcv.F90 @ 2921

Last change on this file since 2921 was 2875, checked in by emillour, 2 years ago

Generic PCM:
Some minor fixes:

  • missing igas_CO2 in "use gases_h" in optci.F90, optcv.F90, sugas_corrk.F90
  • handle case when moist adjustement is not called in physiq: some of its outputs still need be set to zero as they are used later on.

EM

  • Property svn:executable set to *
File size: 15.1 KB
RevLine 
[2032]1MODULE optcv_mod
2
3IMPLICIT NONE
4
5CONTAINS
6
[716]7SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV,  &
8     QXVAER,QSVAER,GVAER,WBARV,COSBV,       &
9     TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR,MUVAR)
[253]10
[2032]11  use radinc_h, only: L_NLAYRAD, L_NLEVRAD, L_LEVELS, L_NSPECTV, L_NGAUSS, L_REFVAR, NAERKIND
[2133]12  use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep,indv,glat_ig
[2875]13  use gases_h, only: gfrac, ngasmx, igas_H2, igas_H2O, igas_He, igas_N2, &
14                     igas_CH4, igas_CO2
[1384]15  use comcstfi_mod, only: g, r, mugaz
[2520]16  use callkeys_mod, only: kastprof,continuum,graybody,callgasvis
[2543]17  use recombin_corrk_mod, only: corrk_recombin, gasv_recomb
[2582]18  use tpindex_mod, only: tpindex
[253]19
[716]20  implicit none
[253]21
[716]22  !==================================================================
23  !     
24  !     Purpose
25  !     -------
26  !     Calculates shortwave optical constants at each level.
27  !     
28  !     Authors
29  !     -------
30  !     Adapted from the NASA Ames code by R. Wordsworth (2009)
31  !     
32  !==================================================================
33  !     
34  !     THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL 
[1715]35  !     IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL
[716]36  !     LAYER: WBAR, DTAU, COSBAR
37  !     LEVEL: TAU
38  !     
39  !     TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code
40  !     layer L. NW is spectral wavelength interval, ng the Gauss point index.
41  !     
42  !     TLEV(L) - Temperature at the layer boundary
43  !     PLEV(L) - Pressure at the layer boundary (i.e. level)
44  !     GASV(NT,NPS,NW,NG) - Visible k-coefficients
45  !     
46  !-------------------------------------------------------------------
[253]47
48
[716]49  real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
[1715]50  real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS)
[716]51  real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS)
52  real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS)
53  real*8 PLEV(L_LEVELS)
54  real*8 TMID(L_LEVELS), PMID(L_LEVELS)
55  real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
56  real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
[253]57
[716]58  ! for aerosols
[1715]59  real*8  QXVAER(L_LEVELS,L_NSPECTV,NAERKIND)
60  real*8  QSVAER(L_LEVELS,L_NSPECTV,NAERKIND)
61  real*8  GVAER(L_LEVELS,L_NSPECTV,NAERKIND)
62  real*8  TAUAERO(L_LEVELS,NAERKIND)
63  real*8  TAUAEROLK(L_LEVELS,L_NSPECTV,NAERKIND)
[873]64  real*8  TAEROS(L_LEVELS,L_NSPECTV,NAERKIND)
[253]65
[873]66  integer L, NW, NG, K, LK, IAER
[716]67  integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS)
68  real*8  ANS, TAUGAS
[873]69  real*8  TAURAY(L_NSPECTV)
[716]70  real*8  TRAY(L_LEVELS,L_NSPECTV)
71  real*8  DPR(L_LEVELS), U(L_LEVELS)
72  real*8  LCOEF(4), LKCOEF(L_LEVELS,4)
[253]73
[873]74  real*8 taugsurf(L_NSPECTV,L_NGAUSS-1)
[918]75  real*8 DCONT,DAERO
[1715]76  real*8 DRAYAER
[873]77  double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc
78  double precision p_cross
[253]79
[716]80  ! variable species mixing ratio variables
[873]81  real*8  QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS)
82  real*8  KCOEF(4)
[716]83  integer NVAR(L_LEVELS)
[1725]84 
85  ! temporary variables to reduce memory access time to gasv
86  real*8 tmpk(2,2)
87  real*8 tmpkvar(2,2,2)
[253]88
[716]89  ! temporary variables for multiple aerosol calculation
[918]90  real*8 atemp(L_NLAYRAD,L_NSPECTV)
91  real*8 btemp(L_NLAYRAD,L_NSPECTV)
92  real*8 ctemp(L_NLAYRAD,L_NSPECTV)
[253]93
[716]94  ! variables for k in units m^-1
[873]95  real*8 dz(L_LEVELS)
[253]96
[2131]97
[716]98  integer igas, jgas
[253]99
[873]100  integer interm
101
102  !! AS: to save time in computing continuum (see bilinearbig)
103  IF (.not.ALLOCATED(indv)) THEN
[878]104      ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx))
[873]105      indv = -9999 ! this initial value means "to be calculated"
106  ENDIF
107
[716]108  !=======================================================================
109  !     Determine the total gas opacity throughout the column, for each
110  !     spectral interval, NW, and each Gauss point, NG.
111  !     Calculate the continuum opacities, i.e., those that do not depend on
112  !     NG, the Gauss index.
[253]113
[716]114  taugsurf(:,:) = 0.0
115  dpr(:)        = 0.0
116  lkcoef(:,:)   = 0.0
[253]117
[716]118  do K=2,L_LEVELS
119     DPR(k) = PLEV(K)-PLEV(K-1)
[253]120
[716]121     ! if we have continuum opacities, we need dz
122     if(kastprof)then
[1016]123        dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K))
124        U(k)  = Cmk*DPR(k)*mugaz/muvar(k)
[716]125     else
[1194]126        dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k)
[1016]127        U(k)  = Cmk*DPR(k)*mugaz/muvar(k)     ! only Cmk line in optci.F 
128            !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present
[716]129     endif
[253]130
[716]131     call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, &
132          LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K))
[253]133
[716]134     do LK=1,4
135        LKCOEF(K,LK) = LCOEF(LK)
136     end do
[918]137  end do                    ! levels
[253]138
[1715]139  ! Spectral dependance of aerosol absorption
[1987]140            !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR
141            !   but visible does not handle very well diffusion in first layer.
142            !   The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise)
143            !   in the 4 first semilayers in optcv, but not optci.
144            !   This solves random variations of the sw heating at the model top.
[918]145  do iaer=1,naerkind
146     do NW=1,L_NSPECTV
[1987]147        TAEROS(1:4,NW,IAER)=0.d0
148        do K=5,L_LEVELS
[873]149           TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER)
[918]150        end do                    ! levels
151     end do
152  end do
[1715]153 
154  ! Rayleigh scattering
[918]155  do NW=1,L_NSPECTV
[1987]156     TRAY(1:4,NW)   = 1d-30
157     do K=5,L_LEVELS
[873]158        TRAY(K,NW)   = TAURAY(NW) * DPR(K)
[918]159     end do                    ! levels
160  end do
161 
[716]162  !     we ignore K=1...
163  do K=2,L_LEVELS
[873]164
[716]165     do NW=1,L_NSPECTV
[253]166
[1715]167        DRAYAER = TRAY(K,NW)
168        !     DRAYAER is Tau RAYleigh scattering, plus AERosol opacity
[716]169        do iaer=1,naerkind
[1715]170           DRAYAER = DRAYAER + TAEROS(K,NW,IAER)
[716]171        end do
[253]172
[716]173        DCONT = 0.0 ! continuum absorption
[253]174
[873]175        if(continuum.and.(.not.graybody).and.callgasvis)then
[716]176           ! include continua if necessary
177           wn_cont = dble(wnov(nw))
178           T_cont  = dble(TMID(k))
179           do igas=1,ngasmx
[305]180
[716]181              if(gfrac(igas).eq.-1)then ! variable
182                 p_cont  = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol
183              else
184                 p_cont  = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k)))
185              endif
[305]186
[716]187              dtemp=0.0
188              if(igas.eq.igas_N2)then
[253]189
[878]190                 interm = indv(nw,igas,igas)
191!                 call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
192                 indv(nw,igas,igas) = interm
[716]193                 ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible
[253]194
[716]195              elseif(igas.eq.igas_H2)then
[253]196
[716]197                 ! first do self-induced absorption
[878]198                 interm = indv(nw,igas,igas)
[873]199                 call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
[878]200                 indv(nw,igas,igas) = interm
[253]201
[716]202                 ! then cross-interactions with other gases
203                 do jgas=1,ngasmx
204                    p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k)))
[873]205                    dtempc  = 0.0
206                    if(jgas.eq.igas_N2)then
[878]207                       interm = indv(nw,igas,jgas)
208                       call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
209                       indv(nw,igas,jgas) = interm
[716]210                       ! should be irrelevant in the visible
[2860]211                    elseif(jgas.eq.igas_CO2)then
212                       interm = indv(nw,igas,jgas)
213                       call interpolateCO2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
214                       indv(nw,igas,jgas) = interm
215                       ! might not be relevant in the visible
[716]216                    elseif(jgas.eq.igas_He)then
[878]217                       interm = indv(nw,igas,jgas)
[873]218                       call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
[878]219                       indv(nw,igas,jgas) = interm
[716]220                    endif
[873]221                    dtemp = dtemp + dtempc
[716]222                 enddo
[2655]223                 
224              elseif(igas.eq.igas_CH4)then
[253]225
[2655]226                 ! first do self-induced absorption
227                 interm = indv(nw,igas,igas)
228                 call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
229                 indv(nw,igas,igas) = interm
230
231                 ! then cross-interactions with other gases
232                 do jgas=1,ngasmx
233                    p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k)))
234                    dtempc  = 0.0d0
235                    if(jgas.eq.igas_H2)then
236                       interm = indv(nw,igas,jgas)
237                       call interpolateH2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
238                       indv(nw,igas,jgas) = interm
[2861]239                    elseif(jgas.eq.igas_CO2)then
240                       interm = indv(nw,igas,jgas)
241                       call interpolateCO2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
242                       indv(nw,igas,jgas) = interm
243                       ! might not be relevant in the visible
[2655]244                    elseif(jgas.eq.igas_He)then
245                       interm = indv(nw,igas,jgas)
246                       call interpolateHeCH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
247                       indv(nw,igas,jgas) = interm
248                    endif
249                    dtemp = dtemp + dtempc
250                 enddo
251
[2520]252              elseif(igas.eq.igas_H2O.and.T_cont.gt.100.0)then
253                 ! Compute self and foreign (with air) continuum of H2O
[716]254                 p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air!
[2520]255                 interm = indv(nw,igas,igas)
256                 call interpolateH2O_self_foreign(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) ! MTCKD v3.3
257                 indv(nw,igas,igas) = interm
[253]258
[716]259              endif
[253]260
[716]261              DCONT = DCONT + dtemp
[253]262
[716]263           enddo
[253]264
[873]265           DCONT = DCONT*dz(k)
266
[716]267        endif
[253]268
[873]269        do ng=1,L_NGAUSS-1
[305]270
[873]271           ! Now compute TAUGAS
[253]272
[873]273           ! Interpolate between water mixing ratios
274           ! WRATIO = 0.0 if the requested water amount is equal to, or outside the
275           ! the water data range
276
277           if(L_REFVAR.eq.1)then ! added by RW for special no variable case
[1725]278           
279              ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically
280              ! the execution time of optci/v -> ~ factor 2 on the whole radiative
281              ! transfer on the tested simulations !
282
[2543]283              IF (corrk_recombin) THEN ! Added by JVO
284                tmpk = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) ! contains the mix of recombined species
285              ELSE
286                tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG)
287              ENDIF
[1725]288             
289              KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG)
290              KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG)
291              KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG)
292              KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG)
293
[716]294           else
[873]295
[2543]296              IF (corrk_recombin) THEN
297                tmpkvar = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG)
298              ELSE
299                tmpkvar = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG)
300              ENDIF
[253]301
[1725]302              KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) *  &
303                        ( tmpkvar(1,1,2)-tmpkvar(1,1,1) )
[253]304
[1725]305              KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) *  &
306                        ( tmpkvar(1,2,2)-tmpkvar(1,2,1) )
[253]307
[1725]308              KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) *  &
309                        ( tmpkvar(2,2,2)-tmpkvar(2,2,1) )
310             
311              KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) *  &
312                        ( tmpkvar(2,1,2)-tmpkvar(2,1,1) )
[873]313
[1725]314
[716]315           endif
[253]316
[873]317           ! Interpolate the gaseous k-coefficients to the requested T,P values
[253]318
[873]319           ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) +            &
[716]320                LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4)
[253]321
[873]322           TAUGAS  = U(k)*ANS
[253]323
[716]324           TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT
[873]325           DTAUKV(K,nw,ng) = TAUGAS &
[1715]326                             + DRAYAER & ! DRAYAER includes all scattering contributions
[873]327                             + DCONT ! For parameterized continuum aborption
[253]328
[716]329        end do
[253]330
[873]331        ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS),
332        ! which holds continuum opacity only
[253]333
[873]334        NG              = L_NGAUSS
[1715]335        DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption
[253]336
[716]337     end do
338  end do
[253]339
340
[716]341  !=======================================================================
342  !     Now the full treatment for the layers, where besides the opacity
343  !     we need to calculate the scattering albedo and asymmetry factors
[253]344
[1987]345            !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR
346            !   but not in the visible
347            !   The tauaero is thus set to 0 in the 4 first semilayers in optcv, but not optci.
348            !   This solves random variations of the sw heating at the model top.
[873]349  do iaer=1,naerkind
[918]350    DO NW=1,L_NSPECTV
[1987]351      TAUAEROLK(1:4,NW,IAER)=0.d0
352      DO K=5,L_LEVELS
[1715]353           TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) ! effect of scattering albedo
[918]354      ENDDO
355    ENDDO
[873]356  end do
[253]357
[716]358  DO NW=1,L_NSPECTV
[919]359     DO L=1,L_NLAYRAD-1
[918]360        K              = 2*L+1
361        atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind))
362        btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind))
[1715]363        ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW))  ! JVO 2017 : does this 0.999 is really meaningful ?
[918]364        btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW)
365        COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
366     END DO ! L vertical loop
[919]367     
[1715]368     ! Last level
369     L           = L_NLAYRAD
370     K           = 2*L+1
371     atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))
[919]372     btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind))
[1715]373     ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ?
[919]374     btemp(L,NW) = btemp(L,NW) + TRAY(K,NW)
375     COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
376     
377     
[918]378  END DO                    ! NW spectral loop
379
380  DO NG=1,L_NGAUSS
381    DO NW=1,L_NSPECTV
[873]382     DO L=1,L_NLAYRAD-1
[253]383
[873]384        K              = 2*L+1
385        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG)
[918]386        WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng)
[253]387
[873]388      END DO ! L vertical loop
[253]389
[1715]390        ! Last level
[253]391
[716]392        L              = L_NLAYRAD
393        K              = 2*L+1
[919]394        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG)
395
396        WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG)
[1722]397
[918]398     END DO                 ! NW spectral loop
399  END DO                    ! NG Gauss loop
[716]400
401  ! Total extinction optical depths
402
[918]403  DO NG=1,L_NGAUSS       ! full gauss loop
404     DO NW=1,L_NSPECTV       
[716]405        TAUCUMV(1,NW,NG)=0.0D0
406        DO K=2,L_LEVELS
407           TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG)
408        END DO
[1987]409
[2004]410        DO L=1,L_NLAYRAD
[1987]411           TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG)
412        END DO
[2004]413        TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG)
[918]414     END DO           
415  END DO                 ! end full gauss loop
[716]416
417
[2131]418
419
[2032]420end subroutine optcv
[873]421
[2032]422END MODULE optcv_mod
Note: See TracBrowser for help on using the repository browser.