[2032] | 1 | MODULE optcv_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[716] | 7 | SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV, & |
---|
| 8 | QXVAER,QSVAER,GVAER,WBARV,COSBV, & |
---|
| 9 | TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR,MUVAR) |
---|
[253] | 10 | |
---|
[2032] | 11 | use radinc_h, only: L_NLAYRAD, L_NLEVRAD, L_LEVELS, L_NSPECTV, L_NGAUSS, L_REFVAR, NAERKIND |
---|
[2133] | 12 | use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep,indv,glat_ig |
---|
[2875] | 13 | use gases_h, only: gfrac, ngasmx, igas_H2, igas_H2O, igas_He, igas_N2, & |
---|
| 14 | igas_CH4, igas_CO2 |
---|
[1384] | 15 | use comcstfi_mod, only: g, r, mugaz |
---|
[2520] | 16 | use callkeys_mod, only: kastprof,continuum,graybody,callgasvis |
---|
[2543] | 17 | use recombin_corrk_mod, only: corrk_recombin, gasv_recomb |
---|
[2582] | 18 | use tpindex_mod, only: tpindex |
---|
[253] | 19 | |
---|
[716] | 20 | implicit none |
---|
[253] | 21 | |
---|
[716] | 22 | !================================================================== |
---|
| 23 | ! |
---|
| 24 | ! Purpose |
---|
| 25 | ! ------- |
---|
| 26 | ! Calculates shortwave optical constants at each level. |
---|
| 27 | ! |
---|
| 28 | ! Authors |
---|
| 29 | ! ------- |
---|
| 30 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
| 31 | ! |
---|
| 32 | !================================================================== |
---|
| 33 | ! |
---|
| 34 | ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL |
---|
[1715] | 35 | ! IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL |
---|
[716] | 36 | ! LAYER: WBAR, DTAU, COSBAR |
---|
| 37 | ! LEVEL: TAU |
---|
| 38 | ! |
---|
| 39 | ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code |
---|
| 40 | ! layer L. NW is spectral wavelength interval, ng the Gauss point index. |
---|
| 41 | ! |
---|
| 42 | ! TLEV(L) - Temperature at the layer boundary |
---|
| 43 | ! PLEV(L) - Pressure at the layer boundary (i.e. level) |
---|
| 44 | ! GASV(NT,NPS,NW,NG) - Visible k-coefficients |
---|
| 45 | ! |
---|
| 46 | !------------------------------------------------------------------- |
---|
[253] | 47 | |
---|
| 48 | |
---|
[716] | 49 | real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
[1715] | 50 | real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
[716] | 51 | real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 52 | real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 53 | real*8 PLEV(L_LEVELS) |
---|
| 54 | real*8 TMID(L_LEVELS), PMID(L_LEVELS) |
---|
| 55 | real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 56 | real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
[253] | 57 | |
---|
[716] | 58 | ! for aerosols |
---|
[1715] | 59 | real*8 QXVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 60 | real*8 QSVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 61 | real*8 GVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 62 | real*8 TAUAERO(L_LEVELS,NAERKIND) |
---|
| 63 | real*8 TAUAEROLK(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
[873] | 64 | real*8 TAEROS(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
[253] | 65 | |
---|
[873] | 66 | integer L, NW, NG, K, LK, IAER |
---|
[716] | 67 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 68 | real*8 ANS, TAUGAS |
---|
[873] | 69 | real*8 TAURAY(L_NSPECTV) |
---|
[716] | 70 | real*8 TRAY(L_LEVELS,L_NSPECTV) |
---|
| 71 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 72 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
[253] | 73 | |
---|
[873] | 74 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
[918] | 75 | real*8 DCONT,DAERO |
---|
[1715] | 76 | real*8 DRAYAER |
---|
[873] | 77 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
---|
| 78 | double precision p_cross |
---|
[253] | 79 | |
---|
[716] | 80 | ! variable species mixing ratio variables |
---|
[873] | 81 | real*8 QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS) |
---|
| 82 | real*8 KCOEF(4) |
---|
[716] | 83 | integer NVAR(L_LEVELS) |
---|
[1725] | 84 | |
---|
| 85 | ! temporary variables to reduce memory access time to gasv |
---|
| 86 | real*8 tmpk(2,2) |
---|
| 87 | real*8 tmpkvar(2,2,2) |
---|
[253] | 88 | |
---|
[716] | 89 | ! temporary variables for multiple aerosol calculation |
---|
[918] | 90 | real*8 atemp(L_NLAYRAD,L_NSPECTV) |
---|
| 91 | real*8 btemp(L_NLAYRAD,L_NSPECTV) |
---|
| 92 | real*8 ctemp(L_NLAYRAD,L_NSPECTV) |
---|
[253] | 93 | |
---|
[716] | 94 | ! variables for k in units m^-1 |
---|
[873] | 95 | real*8 dz(L_LEVELS) |
---|
[253] | 96 | |
---|
[2131] | 97 | |
---|
[716] | 98 | integer igas, jgas |
---|
[253] | 99 | |
---|
[873] | 100 | integer interm |
---|
| 101 | |
---|
| 102 | !! AS: to save time in computing continuum (see bilinearbig) |
---|
| 103 | IF (.not.ALLOCATED(indv)) THEN |
---|
[878] | 104 | ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx)) |
---|
[873] | 105 | indv = -9999 ! this initial value means "to be calculated" |
---|
| 106 | ENDIF |
---|
| 107 | |
---|
[716] | 108 | !======================================================================= |
---|
| 109 | ! Determine the total gas opacity throughout the column, for each |
---|
| 110 | ! spectral interval, NW, and each Gauss point, NG. |
---|
| 111 | ! Calculate the continuum opacities, i.e., those that do not depend on |
---|
| 112 | ! NG, the Gauss index. |
---|
[253] | 113 | |
---|
[716] | 114 | taugsurf(:,:) = 0.0 |
---|
| 115 | dpr(:) = 0.0 |
---|
| 116 | lkcoef(:,:) = 0.0 |
---|
[253] | 117 | |
---|
[716] | 118 | do K=2,L_LEVELS |
---|
| 119 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
[253] | 120 | |
---|
[716] | 121 | ! if we have continuum opacities, we need dz |
---|
| 122 | if(kastprof)then |
---|
[1016] | 123 | dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K)) |
---|
| 124 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) |
---|
[716] | 125 | else |
---|
[1194] | 126 | dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k) |
---|
[1016] | 127 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) ! only Cmk line in optci.F |
---|
| 128 | !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present |
---|
[716] | 129 | endif |
---|
[253] | 130 | |
---|
[716] | 131 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & |
---|
| 132 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
---|
[253] | 133 | |
---|
[716] | 134 | do LK=1,4 |
---|
| 135 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 136 | end do |
---|
[918] | 137 | end do ! levels |
---|
[253] | 138 | |
---|
[1715] | 139 | ! Spectral dependance of aerosol absorption |
---|
[1987] | 140 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
---|
| 141 | ! but visible does not handle very well diffusion in first layer. |
---|
| 142 | ! The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise) |
---|
| 143 | ! in the 4 first semilayers in optcv, but not optci. |
---|
| 144 | ! This solves random variations of the sw heating at the model top. |
---|
[918] | 145 | do iaer=1,naerkind |
---|
| 146 | do NW=1,L_NSPECTV |
---|
[1987] | 147 | TAEROS(1:4,NW,IAER)=0.d0 |
---|
| 148 | do K=5,L_LEVELS |
---|
[873] | 149 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER) |
---|
[918] | 150 | end do ! levels |
---|
| 151 | end do |
---|
| 152 | end do |
---|
[1715] | 153 | |
---|
| 154 | ! Rayleigh scattering |
---|
[918] | 155 | do NW=1,L_NSPECTV |
---|
[1987] | 156 | TRAY(1:4,NW) = 1d-30 |
---|
| 157 | do K=5,L_LEVELS |
---|
[873] | 158 | TRAY(K,NW) = TAURAY(NW) * DPR(K) |
---|
[918] | 159 | end do ! levels |
---|
| 160 | end do |
---|
| 161 | |
---|
[716] | 162 | ! we ignore K=1... |
---|
| 163 | do K=2,L_LEVELS |
---|
[873] | 164 | |
---|
[716] | 165 | do NW=1,L_NSPECTV |
---|
[253] | 166 | |
---|
[1715] | 167 | DRAYAER = TRAY(K,NW) |
---|
| 168 | ! DRAYAER is Tau RAYleigh scattering, plus AERosol opacity |
---|
[716] | 169 | do iaer=1,naerkind |
---|
[1715] | 170 | DRAYAER = DRAYAER + TAEROS(K,NW,IAER) |
---|
[716] | 171 | end do |
---|
[253] | 172 | |
---|
[716] | 173 | DCONT = 0.0 ! continuum absorption |
---|
[253] | 174 | |
---|
[873] | 175 | if(continuum.and.(.not.graybody).and.callgasvis)then |
---|
[716] | 176 | ! include continua if necessary |
---|
| 177 | wn_cont = dble(wnov(nw)) |
---|
| 178 | T_cont = dble(TMID(k)) |
---|
| 179 | do igas=1,ngasmx |
---|
[305] | 180 | |
---|
[716] | 181 | if(gfrac(igas).eq.-1)then ! variable |
---|
| 182 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
---|
| 183 | else |
---|
| 184 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
| 185 | endif |
---|
[305] | 186 | |
---|
[716] | 187 | dtemp=0.0 |
---|
| 188 | if(igas.eq.igas_N2)then |
---|
[253] | 189 | |
---|
[878] | 190 | interm = indv(nw,igas,igas) |
---|
| 191 | ! call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 192 | indv(nw,igas,igas) = interm |
---|
[716] | 193 | ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible |
---|
[253] | 194 | |
---|
[716] | 195 | elseif(igas.eq.igas_H2)then |
---|
[253] | 196 | |
---|
[716] | 197 | ! first do self-induced absorption |
---|
[878] | 198 | interm = indv(nw,igas,igas) |
---|
[873] | 199 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
[878] | 200 | indv(nw,igas,igas) = interm |
---|
[253] | 201 | |
---|
[716] | 202 | ! then cross-interactions with other gases |
---|
| 203 | do jgas=1,ngasmx |
---|
| 204 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
[873] | 205 | dtempc = 0.0 |
---|
| 206 | if(jgas.eq.igas_N2)then |
---|
[878] | 207 | interm = indv(nw,igas,jgas) |
---|
| 208 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 209 | indv(nw,igas,jgas) = interm |
---|
[716] | 210 | ! should be irrelevant in the visible |
---|
[2860] | 211 | elseif(jgas.eq.igas_CO2)then |
---|
| 212 | interm = indv(nw,igas,jgas) |
---|
| 213 | call interpolateCO2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 214 | indv(nw,igas,jgas) = interm |
---|
| 215 | ! might not be relevant in the visible |
---|
[716] | 216 | elseif(jgas.eq.igas_He)then |
---|
[878] | 217 | interm = indv(nw,igas,jgas) |
---|
[873] | 218 | call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
[878] | 219 | indv(nw,igas,jgas) = interm |
---|
[716] | 220 | endif |
---|
[873] | 221 | dtemp = dtemp + dtempc |
---|
[716] | 222 | enddo |
---|
[2655] | 223 | |
---|
| 224 | elseif(igas.eq.igas_CH4)then |
---|
[253] | 225 | |
---|
[2655] | 226 | ! first do self-induced absorption |
---|
| 227 | interm = indv(nw,igas,igas) |
---|
| 228 | call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 229 | indv(nw,igas,igas) = interm |
---|
| 230 | |
---|
| 231 | ! then cross-interactions with other gases |
---|
| 232 | do jgas=1,ngasmx |
---|
| 233 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
| 234 | dtempc = 0.0d0 |
---|
| 235 | if(jgas.eq.igas_H2)then |
---|
| 236 | interm = indv(nw,igas,jgas) |
---|
| 237 | call interpolateH2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 238 | indv(nw,igas,jgas) = interm |
---|
[2861] | 239 | elseif(jgas.eq.igas_CO2)then |
---|
| 240 | interm = indv(nw,igas,jgas) |
---|
| 241 | call interpolateCO2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 242 | indv(nw,igas,jgas) = interm |
---|
| 243 | ! might not be relevant in the visible |
---|
[2655] | 244 | elseif(jgas.eq.igas_He)then |
---|
| 245 | interm = indv(nw,igas,jgas) |
---|
| 246 | call interpolateHeCH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 247 | indv(nw,igas,jgas) = interm |
---|
| 248 | endif |
---|
| 249 | dtemp = dtemp + dtempc |
---|
| 250 | enddo |
---|
| 251 | |
---|
[2520] | 252 | elseif(igas.eq.igas_H2O.and.T_cont.gt.100.0)then |
---|
| 253 | ! Compute self and foreign (with air) continuum of H2O |
---|
[716] | 254 | p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! |
---|
[2520] | 255 | interm = indv(nw,igas,igas) |
---|
| 256 | call interpolateH2O_self_foreign(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) ! MTCKD v3.3 |
---|
| 257 | indv(nw,igas,igas) = interm |
---|
[253] | 258 | |
---|
[716] | 259 | endif |
---|
[253] | 260 | |
---|
[716] | 261 | DCONT = DCONT + dtemp |
---|
[253] | 262 | |
---|
[716] | 263 | enddo |
---|
[253] | 264 | |
---|
[873] | 265 | DCONT = DCONT*dz(k) |
---|
| 266 | |
---|
[716] | 267 | endif |
---|
[253] | 268 | |
---|
[873] | 269 | do ng=1,L_NGAUSS-1 |
---|
[305] | 270 | |
---|
[873] | 271 | ! Now compute TAUGAS |
---|
[253] | 272 | |
---|
[873] | 273 | ! Interpolate between water mixing ratios |
---|
| 274 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
---|
| 275 | ! the water data range |
---|
| 276 | |
---|
| 277 | if(L_REFVAR.eq.1)then ! added by RW for special no variable case |
---|
[1725] | 278 | |
---|
| 279 | ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically |
---|
| 280 | ! the execution time of optci/v -> ~ factor 2 on the whole radiative |
---|
| 281 | ! transfer on the tested simulations ! |
---|
| 282 | |
---|
[2543] | 283 | IF (corrk_recombin) THEN ! Added by JVO |
---|
| 284 | tmpk = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) ! contains the mix of recombined species |
---|
| 285 | ELSE |
---|
| 286 | tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) |
---|
| 287 | ENDIF |
---|
[1725] | 288 | |
---|
| 289 | KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) |
---|
| 290 | KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) |
---|
| 291 | KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 292 | KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) |
---|
| 293 | |
---|
[716] | 294 | else |
---|
[873] | 295 | |
---|
[2543] | 296 | IF (corrk_recombin) THEN |
---|
| 297 | tmpkvar = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
| 298 | ELSE |
---|
| 299 | tmpkvar = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
| 300 | ENDIF |
---|
[253] | 301 | |
---|
[1725] | 302 | KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) * & |
---|
| 303 | ( tmpkvar(1,1,2)-tmpkvar(1,1,1) ) |
---|
[253] | 304 | |
---|
[1725] | 305 | KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) * & |
---|
| 306 | ( tmpkvar(1,2,2)-tmpkvar(1,2,1) ) |
---|
[253] | 307 | |
---|
[1725] | 308 | KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) * & |
---|
| 309 | ( tmpkvar(2,2,2)-tmpkvar(2,2,1) ) |
---|
| 310 | |
---|
| 311 | KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) * & |
---|
| 312 | ( tmpkvar(2,1,2)-tmpkvar(2,1,1) ) |
---|
[873] | 313 | |
---|
[1725] | 314 | |
---|
[716] | 315 | endif |
---|
[253] | 316 | |
---|
[873] | 317 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
[253] | 318 | |
---|
[873] | 319 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
[716] | 320 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
[253] | 321 | |
---|
[873] | 322 | TAUGAS = U(k)*ANS |
---|
[253] | 323 | |
---|
[716] | 324 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
[873] | 325 | DTAUKV(K,nw,ng) = TAUGAS & |
---|
[1715] | 326 | + DRAYAER & ! DRAYAER includes all scattering contributions |
---|
[873] | 327 | + DCONT ! For parameterized continuum aborption |
---|
[253] | 328 | |
---|
[716] | 329 | end do |
---|
[253] | 330 | |
---|
[873] | 331 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 332 | ! which holds continuum opacity only |
---|
[253] | 333 | |
---|
[873] | 334 | NG = L_NGAUSS |
---|
[1715] | 335 | DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption |
---|
[253] | 336 | |
---|
[716] | 337 | end do |
---|
| 338 | end do |
---|
[253] | 339 | |
---|
| 340 | |
---|
[716] | 341 | !======================================================================= |
---|
| 342 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 343 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
[253] | 344 | |
---|
[1987] | 345 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
---|
| 346 | ! but not in the visible |
---|
| 347 | ! The tauaero is thus set to 0 in the 4 first semilayers in optcv, but not optci. |
---|
| 348 | ! This solves random variations of the sw heating at the model top. |
---|
[873] | 349 | do iaer=1,naerkind |
---|
[918] | 350 | DO NW=1,L_NSPECTV |
---|
[1987] | 351 | TAUAEROLK(1:4,NW,IAER)=0.d0 |
---|
| 352 | DO K=5,L_LEVELS |
---|
[1715] | 353 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) ! effect of scattering albedo |
---|
[918] | 354 | ENDDO |
---|
| 355 | ENDDO |
---|
[873] | 356 | end do |
---|
[253] | 357 | |
---|
[716] | 358 | DO NW=1,L_NSPECTV |
---|
[919] | 359 | DO L=1,L_NLAYRAD-1 |
---|
[918] | 360 | K = 2*L+1 |
---|
| 361 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind)) |
---|
| 362 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) |
---|
[1715] | 363 | ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ? |
---|
[918] | 364 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW) |
---|
| 365 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
| 366 | END DO ! L vertical loop |
---|
[919] | 367 | |
---|
[1715] | 368 | ! Last level |
---|
| 369 | L = L_NLAYRAD |
---|
| 370 | K = 2*L+1 |
---|
| 371 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind)) |
---|
[919] | 372 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) |
---|
[1715] | 373 | ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ? |
---|
[919] | 374 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) |
---|
| 375 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
| 376 | |
---|
| 377 | |
---|
[918] | 378 | END DO ! NW spectral loop |
---|
| 379 | |
---|
| 380 | DO NG=1,L_NGAUSS |
---|
| 381 | DO NW=1,L_NSPECTV |
---|
[873] | 382 | DO L=1,L_NLAYRAD-1 |
---|
[253] | 383 | |
---|
[873] | 384 | K = 2*L+1 |
---|
| 385 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG) |
---|
[918] | 386 | WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng) |
---|
[253] | 387 | |
---|
[873] | 388 | END DO ! L vertical loop |
---|
[253] | 389 | |
---|
[1715] | 390 | ! Last level |
---|
[253] | 391 | |
---|
[716] | 392 | L = L_NLAYRAD |
---|
| 393 | K = 2*L+1 |
---|
[919] | 394 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) |
---|
| 395 | |
---|
| 396 | WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG) |
---|
[1722] | 397 | |
---|
[918] | 398 | END DO ! NW spectral loop |
---|
| 399 | END DO ! NG Gauss loop |
---|
[716] | 400 | |
---|
| 401 | ! Total extinction optical depths |
---|
| 402 | |
---|
[918] | 403 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 404 | DO NW=1,L_NSPECTV |
---|
[716] | 405 | TAUCUMV(1,NW,NG)=0.0D0 |
---|
| 406 | DO K=2,L_LEVELS |
---|
| 407 | TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) |
---|
| 408 | END DO |
---|
[1987] | 409 | |
---|
[2004] | 410 | DO L=1,L_NLAYRAD |
---|
[1987] | 411 | TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG) |
---|
| 412 | END DO |
---|
[2004] | 413 | TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG) |
---|
[918] | 414 | END DO |
---|
| 415 | END DO ! end full gauss loop |
---|
[716] | 416 | |
---|
| 417 | |
---|
[2131] | 418 | |
---|
| 419 | |
---|
[2032] | 420 | end subroutine optcv |
---|
[873] | 421 | |
---|
[2032] | 422 | END MODULE optcv_mod |
---|