source: trunk/LMDZ.GENERIC/libf/phystd/optcv.F90 @ 2113

Last change on this file since 2113 was 2032, checked in by emillour, 6 years ago

Generic GCM:

  • correct a bug introduced in revision 2026; now that L_NGAUSS is a parameter read in via sugas_corrk (called at first call by callcorrk), automatic arrays of size L_NGAUSS cannot be declared in callcorrk and must be allocated once the value of L_NGAUSS has been set.
  • turned optci, optcv and callcorrk into modules in the process.

EM

  • Property svn:executable set to *
File size: 13.0 KB
RevLine 
[2032]1MODULE optcv_mod
2
3IMPLICIT NONE
4
5CONTAINS
6
[716]7SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV,  &
8     QXVAER,QSVAER,GVAER,WBARV,COSBV,       &
9     TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR,MUVAR)
[253]10
[2032]11  use radinc_h, only: L_NLAYRAD, L_NLEVRAD, L_LEVELS, L_NSPECTV, L_NGAUSS, L_REFVAR, NAERKIND
[1194]12  use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep,indv,glat_ig
[2032]13  use gases_h, only: gfrac, ngasmx, igas_H2, igas_H2O, igas_He, igas_N2
[1384]14  use comcstfi_mod, only: g, r, mugaz
[1397]15  use callkeys_mod, only: kastprof,continuum,graybody,H2Ocont_simple,callgasvis
[253]16
[716]17  implicit none
[253]18
[716]19  !==================================================================
20  !     
21  !     Purpose
22  !     -------
23  !     Calculates shortwave optical constants at each level.
24  !     
25  !     Authors
26  !     -------
27  !     Adapted from the NASA Ames code by R. Wordsworth (2009)
28  !     
29  !==================================================================
30  !     
31  !     THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL 
[1715]32  !     IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL
[716]33  !     LAYER: WBAR, DTAU, COSBAR
34  !     LEVEL: TAU
35  !     
36  !     TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code
37  !     layer L. NW is spectral wavelength interval, ng the Gauss point index.
38  !     
39  !     TLEV(L) - Temperature at the layer boundary
40  !     PLEV(L) - Pressure at the layer boundary (i.e. level)
41  !     GASV(NT,NPS,NW,NG) - Visible k-coefficients
42  !     
43  !-------------------------------------------------------------------
[253]44
45
[716]46  real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
[1715]47  real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS)
[716]48  real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS)
49  real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS)
50  real*8 PLEV(L_LEVELS)
51  real*8 TMID(L_LEVELS), PMID(L_LEVELS)
52  real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
53  real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
[253]54
[716]55  ! for aerosols
[1715]56  real*8  QXVAER(L_LEVELS,L_NSPECTV,NAERKIND)
57  real*8  QSVAER(L_LEVELS,L_NSPECTV,NAERKIND)
58  real*8  GVAER(L_LEVELS,L_NSPECTV,NAERKIND)
59  real*8  TAUAERO(L_LEVELS,NAERKIND)
60  real*8  TAUAEROLK(L_LEVELS,L_NSPECTV,NAERKIND)
[873]61  real*8  TAEROS(L_LEVELS,L_NSPECTV,NAERKIND)
[253]62
[873]63  integer L, NW, NG, K, LK, IAER
[716]64  integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS)
65  real*8  ANS, TAUGAS
[873]66  real*8  TAURAY(L_NSPECTV)
[716]67  real*8  TRAY(L_LEVELS,L_NSPECTV)
68  real*8  DPR(L_LEVELS), U(L_LEVELS)
69  real*8  LCOEF(4), LKCOEF(L_LEVELS,4)
[253]70
[873]71  real*8 taugsurf(L_NSPECTV,L_NGAUSS-1)
[918]72  real*8 DCONT,DAERO
[1715]73  real*8 DRAYAER
[873]74  double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc
75  double precision p_cross
[253]76
[716]77  ! variable species mixing ratio variables
[873]78  real*8  QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS)
79  real*8  KCOEF(4)
[716]80  integer NVAR(L_LEVELS)
[1725]81 
82  ! temporary variables to reduce memory access time to gasv
83  real*8 tmpk(2,2)
84  real*8 tmpkvar(2,2,2)
[253]85
[716]86  ! temporary variables for multiple aerosol calculation
[918]87  real*8 atemp(L_NLAYRAD,L_NSPECTV)
88  real*8 btemp(L_NLAYRAD,L_NSPECTV)
89  real*8 ctemp(L_NLAYRAD,L_NSPECTV)
[253]90
[716]91  ! variables for k in units m^-1
[873]92  real*8 dz(L_LEVELS)
[253]93
[716]94  integer igas, jgas
[253]95
[873]96  integer interm
97
98  !! AS: to save time in computing continuum (see bilinearbig)
99  IF (.not.ALLOCATED(indv)) THEN
[878]100      ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx))
[873]101      indv = -9999 ! this initial value means "to be calculated"
102  ENDIF
103
[716]104  !=======================================================================
105  !     Determine the total gas opacity throughout the column, for each
106  !     spectral interval, NW, and each Gauss point, NG.
107  !     Calculate the continuum opacities, i.e., those that do not depend on
108  !     NG, the Gauss index.
[253]109
[716]110  taugsurf(:,:) = 0.0
111  dpr(:)        = 0.0
112  lkcoef(:,:)   = 0.0
[253]113
[716]114  do K=2,L_LEVELS
115     DPR(k) = PLEV(K)-PLEV(K-1)
[253]116
[716]117     ! if we have continuum opacities, we need dz
118     if(kastprof)then
[1016]119        dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K))
120        U(k)  = Cmk*DPR(k)*mugaz/muvar(k)
[716]121     else
[1194]122        dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k)
[1016]123        U(k)  = Cmk*DPR(k)*mugaz/muvar(k)     ! only Cmk line in optci.F 
124            !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present
[716]125     endif
[253]126
[716]127     call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, &
128          LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K))
[253]129
[716]130     do LK=1,4
131        LKCOEF(K,LK) = LCOEF(LK)
132     end do
[918]133  end do                    ! levels
[253]134
[1715]135  ! Spectral dependance of aerosol absorption
[1987]136            !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR
137            !   but visible does not handle very well diffusion in first layer.
138            !   The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise)
139            !   in the 4 first semilayers in optcv, but not optci.
140            !   This solves random variations of the sw heating at the model top.
[918]141  do iaer=1,naerkind
142     do NW=1,L_NSPECTV
[1987]143        TAEROS(1:4,NW,IAER)=0.d0
144        do K=5,L_LEVELS
[873]145           TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER)
[918]146        end do                    ! levels
147     end do
148  end do
[1715]149 
150  ! Rayleigh scattering
[918]151  do NW=1,L_NSPECTV
[1987]152     TRAY(1:4,NW)   = 1d-30
153     do K=5,L_LEVELS
[873]154        TRAY(K,NW)   = TAURAY(NW) * DPR(K)
[918]155     end do                    ! levels
156  end do
157 
[716]158  !     we ignore K=1...
159  do K=2,L_LEVELS
[873]160
[716]161     do NW=1,L_NSPECTV
[253]162
[1715]163        DRAYAER = TRAY(K,NW)
164        !     DRAYAER is Tau RAYleigh scattering, plus AERosol opacity
[716]165        do iaer=1,naerkind
[1715]166           DRAYAER = DRAYAER + TAEROS(K,NW,IAER)
[716]167        end do
[253]168
[716]169        DCONT = 0.0 ! continuum absorption
[253]170
[873]171        if(continuum.and.(.not.graybody).and.callgasvis)then
[716]172           ! include continua if necessary
173           wn_cont = dble(wnov(nw))
174           T_cont  = dble(TMID(k))
175           do igas=1,ngasmx
[305]176
[716]177              if(gfrac(igas).eq.-1)then ! variable
178                 p_cont  = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol
179              else
180                 p_cont  = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k)))
181              endif
[305]182
[716]183              dtemp=0.0
184              if(igas.eq.igas_N2)then
[253]185
[878]186                 interm = indv(nw,igas,igas)
187!                 call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
188                 indv(nw,igas,igas) = interm
[716]189                 ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible
[253]190
[716]191              elseif(igas.eq.igas_H2)then
[253]192
[716]193                 ! first do self-induced absorption
[878]194                 interm = indv(nw,igas,igas)
[873]195                 call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
[878]196                 indv(nw,igas,igas) = interm
[253]197
[716]198                 ! then cross-interactions with other gases
199                 do jgas=1,ngasmx
200                    p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k)))
[873]201                    dtempc  = 0.0
202                    if(jgas.eq.igas_N2)then
[878]203                       interm = indv(nw,igas,jgas)
204                       call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
205                       indv(nw,igas,jgas) = interm
[716]206                       ! should be irrelevant in the visible
207                    elseif(jgas.eq.igas_He)then
[878]208                       interm = indv(nw,igas,jgas)
[873]209                       call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
[878]210                       indv(nw,igas,jgas) = interm
[716]211                    endif
[873]212                    dtemp = dtemp + dtempc
[716]213                 enddo
[253]214
[716]215              elseif(igas.eq.igas_H2O.and.T_cont.gt.200.0)then
[253]216
[716]217                 p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air!
218                 if(H2Ocont_simple)then
219                    call interpolateH2Ocont_PPC(wn_cont,T_cont,p_cont,p_air,dtemp,.false.)
220                 else
[878]221                    interm = indv(nw,igas,igas)
222                    call interpolateH2Ocont_CKD(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm)
223                    indv(nw,igas,igas) = interm
[716]224                 endif
[253]225
[716]226              endif
[253]227
[716]228              DCONT = DCONT + dtemp
[253]229
[716]230           enddo
[253]231
[873]232           DCONT = DCONT*dz(k)
233
[716]234        endif
[253]235
[873]236        do ng=1,L_NGAUSS-1
[305]237
[873]238           ! Now compute TAUGAS
[253]239
[873]240           ! Interpolate between water mixing ratios
241           ! WRATIO = 0.0 if the requested water amount is equal to, or outside the
242           ! the water data range
243
244           if(L_REFVAR.eq.1)then ! added by RW for special no variable case
[1725]245           
246              ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically
247              ! the execution time of optci/v -> ~ factor 2 on the whole radiative
248              ! transfer on the tested simulations !
249
250              tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG)
251             
252              KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG)
253              KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG)
254              KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG)
255              KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG)
256
[716]257           else
[873]258
[1725]259              tmpkvar = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG)
[253]260
[1725]261              KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) *  &
262                        ( tmpkvar(1,1,2)-tmpkvar(1,1,1) )
[253]263
[1725]264              KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) *  &
265                        ( tmpkvar(1,2,2)-tmpkvar(1,2,1) )
[253]266
[1725]267              KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) *  &
268                        ( tmpkvar(2,2,2)-tmpkvar(2,2,1) )
269             
270              KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) *  &
271                        ( tmpkvar(2,1,2)-tmpkvar(2,1,1) )
[873]272
[1725]273
[716]274           endif
[253]275
[873]276           ! Interpolate the gaseous k-coefficients to the requested T,P values
[253]277
[873]278           ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) +            &
[716]279                LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4)
[253]280
[873]281           TAUGAS  = U(k)*ANS
[253]282
[716]283           TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT
[873]284           DTAUKV(K,nw,ng) = TAUGAS &
[1715]285                             + DRAYAER & ! DRAYAER includes all scattering contributions
[873]286                             + DCONT ! For parameterized continuum aborption
[253]287
[716]288        end do
[253]289
[873]290        ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS),
291        ! which holds continuum opacity only
[253]292
[873]293        NG              = L_NGAUSS
[1715]294        DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption
[253]295
[716]296     end do
297  end do
[253]298
299
[716]300  !=======================================================================
301  !     Now the full treatment for the layers, where besides the opacity
302  !     we need to calculate the scattering albedo and asymmetry factors
[253]303
[1987]304            !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR
305            !   but not in the visible
306            !   The tauaero is thus set to 0 in the 4 first semilayers in optcv, but not optci.
307            !   This solves random variations of the sw heating at the model top.
[873]308  do iaer=1,naerkind
[918]309    DO NW=1,L_NSPECTV
[1987]310      TAUAEROLK(1:4,NW,IAER)=0.d0
311      DO K=5,L_LEVELS
[1715]312           TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) ! effect of scattering albedo
[918]313      ENDDO
314    ENDDO
[873]315  end do
[253]316
[716]317  DO NW=1,L_NSPECTV
[919]318     DO L=1,L_NLAYRAD-1
[918]319        K              = 2*L+1
320        atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind))
321        btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind))
[1715]322        ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW))  ! JVO 2017 : does this 0.999 is really meaningful ?
[918]323        btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW)
324        COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
325     END DO ! L vertical loop
[919]326     
[1715]327     ! Last level
328     L           = L_NLAYRAD
329     K           = 2*L+1
330     atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))
[919]331     btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind))
[1715]332     ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ?
[919]333     btemp(L,NW) = btemp(L,NW) + TRAY(K,NW)
334     COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
335     
336     
[918]337  END DO                    ! NW spectral loop
338
339  DO NG=1,L_NGAUSS
340    DO NW=1,L_NSPECTV
[873]341     DO L=1,L_NLAYRAD-1
[253]342
[873]343        K              = 2*L+1
344        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG)
[918]345        WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng)
[253]346
[873]347      END DO ! L vertical loop
[253]348
[1715]349        ! Last level
[253]350
[716]351        L              = L_NLAYRAD
352        K              = 2*L+1
[919]353        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG)
354
355        WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG)
[1722]356
[918]357     END DO                 ! NW spectral loop
358  END DO                    ! NG Gauss loop
[716]359
360  ! Total extinction optical depths
361
[918]362  DO NG=1,L_NGAUSS       ! full gauss loop
363     DO NW=1,L_NSPECTV       
[716]364        TAUCUMV(1,NW,NG)=0.0D0
365        DO K=2,L_LEVELS
366           TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG)
367        END DO
[1987]368
[2004]369        DO L=1,L_NLAYRAD
[1987]370           TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG)
371        END DO
[2004]372        TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG)
[918]373     END DO           
374  END DO                 ! end full gauss loop
[716]375
376
[2032]377end subroutine optcv
[873]378
[2032]379END MODULE optcv_mod
Note: See TracBrowser for help on using the repository browser.