[716] | 1 | SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV, & |
---|
| 2 | QXVAER,QSVAER,GVAER,WBARV,COSBV, & |
---|
| 3 | TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR,MUVAR) |
---|
[253] | 4 | |
---|
[716] | 5 | use radinc_h |
---|
[1194] | 6 | use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep,indv,glat_ig |
---|
[716] | 7 | use gases_h |
---|
[1384] | 8 | use comcstfi_mod, only: g, r, mugaz |
---|
[1397] | 9 | use callkeys_mod, only: kastprof,continuum,graybody,H2Ocont_simple,callgasvis |
---|
[253] | 10 | |
---|
[716] | 11 | implicit none |
---|
[253] | 12 | |
---|
[716] | 13 | !================================================================== |
---|
| 14 | ! |
---|
| 15 | ! Purpose |
---|
| 16 | ! ------- |
---|
| 17 | ! Calculates shortwave optical constants at each level. |
---|
| 18 | ! |
---|
| 19 | ! Authors |
---|
| 20 | ! ------- |
---|
| 21 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
| 22 | ! |
---|
| 23 | !================================================================== |
---|
| 24 | ! |
---|
| 25 | ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL |
---|
| 26 | ! IT CALCUALTES FOR EACH LAYER, FOR EACH SPECRAL INTERVAL IN THE VISUAL |
---|
| 27 | ! LAYER: WBAR, DTAU, COSBAR |
---|
| 28 | ! LEVEL: TAU |
---|
| 29 | ! |
---|
| 30 | ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code |
---|
| 31 | ! layer L. NW is spectral wavelength interval, ng the Gauss point index. |
---|
| 32 | ! |
---|
| 33 | ! TLEV(L) - Temperature at the layer boundary |
---|
| 34 | ! PLEV(L) - Pressure at the layer boundary (i.e. level) |
---|
| 35 | ! GASV(NT,NPS,NW,NG) - Visible k-coefficients |
---|
| 36 | ! |
---|
| 37 | !------------------------------------------------------------------- |
---|
[253] | 38 | |
---|
| 39 | |
---|
[716] | 40 | real*8 DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 41 | real*8 DTAUKV(L_LEVELS+1,L_NSPECTV,L_NGAUSS) |
---|
| 42 | real*8 TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 43 | real*8 TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 44 | real*8 PLEV(L_LEVELS) |
---|
| 45 | real*8 TMID(L_LEVELS), PMID(L_LEVELS) |
---|
| 46 | real*8 COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 47 | real*8 WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
[253] | 48 | |
---|
[716] | 49 | ! for aerosols |
---|
[873] | 50 | real*8 QXVAER(L_LEVELS+1,L_NSPECTV,NAERKIND) |
---|
| 51 | real*8 QSVAER(L_LEVELS+1,L_NSPECTV,NAERKIND) |
---|
| 52 | real*8 GVAER(L_LEVELS+1,L_NSPECTV,NAERKIND) |
---|
| 53 | real*8 TAUAERO(L_LEVELS+1,NAERKIND) |
---|
| 54 | real*8 TAUAEROLK(L_LEVELS+1,L_NSPECTV,NAERKIND) |
---|
| 55 | real*8 TAEROS(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
[253] | 56 | |
---|
[873] | 57 | integer L, NW, NG, K, LK, IAER |
---|
[716] | 58 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 59 | real*8 ANS, TAUGAS |
---|
[873] | 60 | real*8 TAURAY(L_NSPECTV) |
---|
[716] | 61 | real*8 TRAY(L_LEVELS,L_NSPECTV) |
---|
[873] | 62 | real*8 TRAYAER |
---|
[716] | 63 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 64 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
[253] | 65 | |
---|
[873] | 66 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
[918] | 67 | real*8 DCONT,DAERO |
---|
[873] | 68 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
---|
| 69 | double precision p_cross |
---|
[253] | 70 | |
---|
[716] | 71 | ! variable species mixing ratio variables |
---|
[873] | 72 | real*8 QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS) |
---|
| 73 | real*8 KCOEF(4) |
---|
[716] | 74 | integer NVAR(L_LEVELS) |
---|
[253] | 75 | |
---|
[716] | 76 | ! temporary variables for multiple aerosol calculation |
---|
[918] | 77 | real*8 atemp(L_NLAYRAD,L_NSPECTV) |
---|
| 78 | real*8 btemp(L_NLAYRAD,L_NSPECTV) |
---|
| 79 | real*8 ctemp(L_NLAYRAD,L_NSPECTV) |
---|
[253] | 80 | |
---|
[716] | 81 | ! variables for k in units m^-1 |
---|
[873] | 82 | real*8 dz(L_LEVELS) |
---|
[253] | 83 | |
---|
[716] | 84 | integer igas, jgas |
---|
[253] | 85 | |
---|
[873] | 86 | integer interm |
---|
| 87 | |
---|
| 88 | !! AS: to save time in computing continuum (see bilinearbig) |
---|
| 89 | IF (.not.ALLOCATED(indv)) THEN |
---|
[878] | 90 | ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx)) |
---|
[873] | 91 | indv = -9999 ! this initial value means "to be calculated" |
---|
| 92 | ENDIF |
---|
| 93 | |
---|
[716] | 94 | !======================================================================= |
---|
| 95 | ! Determine the total gas opacity throughout the column, for each |
---|
| 96 | ! spectral interval, NW, and each Gauss point, NG. |
---|
| 97 | ! Calculate the continuum opacities, i.e., those that do not depend on |
---|
| 98 | ! NG, the Gauss index. |
---|
[253] | 99 | |
---|
[716] | 100 | taugsurf(:,:) = 0.0 |
---|
| 101 | dpr(:) = 0.0 |
---|
| 102 | lkcoef(:,:) = 0.0 |
---|
[253] | 103 | |
---|
[716] | 104 | do K=2,L_LEVELS |
---|
| 105 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
[253] | 106 | |
---|
[716] | 107 | ! if we have continuum opacities, we need dz |
---|
| 108 | if(kastprof)then |
---|
[1016] | 109 | dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K)) |
---|
| 110 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) |
---|
[716] | 111 | else |
---|
[1194] | 112 | dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k) |
---|
[1016] | 113 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) ! only Cmk line in optci.F |
---|
| 114 | !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present |
---|
[716] | 115 | endif |
---|
[253] | 116 | |
---|
[716] | 117 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & |
---|
| 118 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
---|
[253] | 119 | |
---|
[716] | 120 | do LK=1,4 |
---|
| 121 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 122 | end do |
---|
[918] | 123 | end do ! levels |
---|
[253] | 124 | |
---|
[873] | 125 | |
---|
[918] | 126 | do iaer=1,naerkind |
---|
| 127 | do NW=1,L_NSPECTV |
---|
| 128 | do K=2,L_LEVELS |
---|
[873] | 129 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER) |
---|
[918] | 130 | end do ! levels |
---|
| 131 | end do |
---|
| 132 | end do |
---|
| 133 | do NW=1,L_NSPECTV |
---|
| 134 | do K=2,L_LEVELS |
---|
[873] | 135 | TRAY(K,NW) = TAURAY(NW) * DPR(K) |
---|
[918] | 136 | end do ! levels |
---|
| 137 | end do |
---|
| 138 | |
---|
[716] | 139 | ! we ignore K=1... |
---|
| 140 | do K=2,L_LEVELS |
---|
[873] | 141 | |
---|
[716] | 142 | do NW=1,L_NSPECTV |
---|
[253] | 143 | |
---|
[716] | 144 | TRAYAER = TRAY(K,NW) |
---|
[873] | 145 | ! TRAYAER is Tau RAYleigh scattering, plus AERosol opacity |
---|
[716] | 146 | do iaer=1,naerkind |
---|
| 147 | TRAYAER = TRAYAER + TAEROS(K,NW,IAER) |
---|
| 148 | end do |
---|
[253] | 149 | |
---|
[716] | 150 | DCONT = 0.0 ! continuum absorption |
---|
[253] | 151 | |
---|
[873] | 152 | if(continuum.and.(.not.graybody).and.callgasvis)then |
---|
[716] | 153 | ! include continua if necessary |
---|
| 154 | wn_cont = dble(wnov(nw)) |
---|
| 155 | T_cont = dble(TMID(k)) |
---|
| 156 | do igas=1,ngasmx |
---|
[305] | 157 | |
---|
[716] | 158 | if(gfrac(igas).eq.-1)then ! variable |
---|
| 159 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
---|
| 160 | else |
---|
| 161 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
| 162 | endif |
---|
[305] | 163 | |
---|
[716] | 164 | dtemp=0.0 |
---|
| 165 | if(igas.eq.igas_N2)then |
---|
[253] | 166 | |
---|
[878] | 167 | interm = indv(nw,igas,igas) |
---|
| 168 | ! call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 169 | indv(nw,igas,igas) = interm |
---|
[716] | 170 | ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible |
---|
[253] | 171 | |
---|
[716] | 172 | elseif(igas.eq.igas_H2)then |
---|
[253] | 173 | |
---|
[716] | 174 | ! first do self-induced absorption |
---|
[878] | 175 | interm = indv(nw,igas,igas) |
---|
[873] | 176 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
[878] | 177 | indv(nw,igas,igas) = interm |
---|
[253] | 178 | |
---|
[716] | 179 | ! then cross-interactions with other gases |
---|
| 180 | do jgas=1,ngasmx |
---|
| 181 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
[873] | 182 | dtempc = 0.0 |
---|
| 183 | if(jgas.eq.igas_N2)then |
---|
[878] | 184 | interm = indv(nw,igas,jgas) |
---|
| 185 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 186 | indv(nw,igas,jgas) = interm |
---|
[716] | 187 | ! should be irrelevant in the visible |
---|
| 188 | elseif(jgas.eq.igas_He)then |
---|
[878] | 189 | interm = indv(nw,igas,jgas) |
---|
[873] | 190 | call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
[878] | 191 | indv(nw,igas,jgas) = interm |
---|
[716] | 192 | endif |
---|
[873] | 193 | dtemp = dtemp + dtempc |
---|
[716] | 194 | enddo |
---|
[253] | 195 | |
---|
[716] | 196 | elseif(igas.eq.igas_H2O.and.T_cont.gt.200.0)then |
---|
[253] | 197 | |
---|
[716] | 198 | p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! |
---|
| 199 | if(H2Ocont_simple)then |
---|
| 200 | call interpolateH2Ocont_PPC(wn_cont,T_cont,p_cont,p_air,dtemp,.false.) |
---|
| 201 | else |
---|
[878] | 202 | interm = indv(nw,igas,igas) |
---|
| 203 | call interpolateH2Ocont_CKD(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) |
---|
| 204 | indv(nw,igas,igas) = interm |
---|
[716] | 205 | endif |
---|
[253] | 206 | |
---|
[716] | 207 | endif |
---|
[253] | 208 | |
---|
[716] | 209 | DCONT = DCONT + dtemp |
---|
[253] | 210 | |
---|
[716] | 211 | enddo |
---|
[253] | 212 | |
---|
[873] | 213 | DCONT = DCONT*dz(k) |
---|
| 214 | |
---|
[716] | 215 | endif |
---|
[253] | 216 | |
---|
[873] | 217 | do ng=1,L_NGAUSS-1 |
---|
[305] | 218 | |
---|
[873] | 219 | ! Now compute TAUGAS |
---|
[253] | 220 | |
---|
[873] | 221 | ! Interpolate between water mixing ratios |
---|
| 222 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
---|
| 223 | ! the water data range |
---|
| 224 | |
---|
| 225 | if(L_REFVAR.eq.1)then ! added by RW for special no variable case |
---|
[716] | 226 | KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) |
---|
| 227 | KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) |
---|
| 228 | KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 229 | KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) |
---|
| 230 | else |
---|
[873] | 231 | |
---|
[716] | 232 | KCOEF(1) = GASV(MT(K),MP(K),NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 233 | (GASV(MT(K),MP(K),NVAR(K)+1,NW,NG) - & |
---|
| 234 | GASV(MT(K),MP(K),NVAR(K),NW,NG)) |
---|
[253] | 235 | |
---|
[716] | 236 | KCOEF(2) = GASV(MT(K),MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 237 | (GASV(MT(K),MP(K)+1,NVAR(K)+1,NW,NG) - & |
---|
| 238 | GASV(MT(K),MP(K)+1,NVAR(K),NW,NG)) |
---|
[253] | 239 | |
---|
[716] | 240 | KCOEF(3) = GASV(MT(K)+1,MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)*& |
---|
| 241 | (GASV(MT(K)+1,MP(K)+1,NVAR(K)+1,NW,NG) - & |
---|
| 242 | GASV(MT(K)+1,MP(K)+1,NVAR(K),NW,NG)) |
---|
[253] | 243 | |
---|
[716] | 244 | KCOEF(4) = GASV(MT(K)+1,MP(K),NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 245 | (GASV(MT(K)+1,MP(K),NVAR(K)+1,NW,NG) - & |
---|
| 246 | GASV(MT(K)+1,MP(K),NVAR(K),NW,NG)) |
---|
[873] | 247 | |
---|
[716] | 248 | endif |
---|
[253] | 249 | |
---|
[873] | 250 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
[253] | 251 | |
---|
[873] | 252 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
[716] | 253 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
[253] | 254 | |
---|
[873] | 255 | TAUGAS = U(k)*ANS |
---|
[253] | 256 | |
---|
[716] | 257 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
[873] | 258 | DTAUKV(K,nw,ng) = TAUGAS & |
---|
| 259 | + TRAYAER & ! TRAYAER includes all scattering contributions |
---|
| 260 | + DCONT ! For parameterized continuum aborption |
---|
[253] | 261 | |
---|
[716] | 262 | end do |
---|
[253] | 263 | |
---|
[873] | 264 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 265 | ! which holds continuum opacity only |
---|
[253] | 266 | |
---|
[873] | 267 | NG = L_NGAUSS |
---|
| 268 | DTAUKV(K,nw,ng) = TRAY(K,NW) + DCONT ! For parameterized continuum absorption |
---|
[253] | 269 | |
---|
[716] | 270 | do iaer=1,naerkind |
---|
[873] | 271 | DTAUKV(K,nw,ng) = DTAUKV(K,nw,ng) + TAEROS(K,NW,IAER) |
---|
[716] | 272 | end do ! a bug was here! |
---|
[253] | 273 | |
---|
[716] | 274 | end do |
---|
| 275 | end do |
---|
[253] | 276 | |
---|
| 277 | |
---|
[716] | 278 | !======================================================================= |
---|
| 279 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 280 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
[253] | 281 | |
---|
[873] | 282 | do iaer=1,naerkind |
---|
[918] | 283 | DO NW=1,L_NSPECTV |
---|
| 284 | DO K=2,L_LEVELS ! AS: shouldn't this be L_LEVELS+1 ? (see optci) |
---|
[716] | 285 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) |
---|
[918] | 286 | ENDDO |
---|
| 287 | ENDDO |
---|
[873] | 288 | end do |
---|
[253] | 289 | |
---|
[716] | 290 | DO NW=1,L_NSPECTV |
---|
[919] | 291 | DO L=1,L_NLAYRAD-1 |
---|
[918] | 292 | K = 2*L+1 |
---|
| 293 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind)) |
---|
| 294 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) |
---|
| 295 | ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) |
---|
| 296 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW) |
---|
| 297 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
| 298 | END DO ! L vertical loop |
---|
[919] | 299 | |
---|
| 300 | !last level |
---|
| 301 | L = L_NLAYRAD |
---|
| 302 | K = 2*L+1 |
---|
| 303 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind)) |
---|
| 304 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) |
---|
| 305 | ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) |
---|
| 306 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) |
---|
| 307 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
| 308 | |
---|
| 309 | |
---|
[918] | 310 | END DO ! NW spectral loop |
---|
| 311 | |
---|
| 312 | DO NG=1,L_NGAUSS |
---|
| 313 | DO NW=1,L_NSPECTV |
---|
[873] | 314 | DO L=1,L_NLAYRAD-1 |
---|
[253] | 315 | |
---|
[873] | 316 | K = 2*L+1 |
---|
| 317 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG) |
---|
[918] | 318 | WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng) |
---|
[253] | 319 | |
---|
[873] | 320 | END DO ! L vertical loop |
---|
[253] | 321 | |
---|
[716] | 322 | ! No vertical averaging on bottom layer |
---|
[253] | 323 | |
---|
[716] | 324 | L = L_NLAYRAD |
---|
| 325 | K = 2*L+1 |
---|
[919] | 326 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) |
---|
| 327 | |
---|
| 328 | WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG) |
---|
[918] | 329 | END DO ! NW spectral loop |
---|
| 330 | END DO ! NG Gauss loop |
---|
[716] | 331 | |
---|
| 332 | ! Total extinction optical depths |
---|
| 333 | |
---|
[918] | 334 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 335 | DO NW=1,L_NSPECTV |
---|
[716] | 336 | TAUV(1,NW,NG)=0.0D0 |
---|
| 337 | DO L=1,L_NLAYRAD |
---|
| 338 | TAUV(L+1,NW,NG)=TAUV(L,NW,NG)+DTAUV(L,NW,NG) |
---|
| 339 | END DO |
---|
| 340 | |
---|
| 341 | TAUCUMV(1,NW,NG)=0.0D0 |
---|
| 342 | DO K=2,L_LEVELS |
---|
| 343 | TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) |
---|
| 344 | END DO |
---|
[918] | 345 | END DO |
---|
| 346 | END DO ! end full gauss loop |
---|
[716] | 347 | |
---|
| 348 | |
---|
[873] | 349 | return |
---|
| 350 | |
---|
| 351 | |
---|
| 352 | end subroutine optcv |
---|