source: trunk/LMDZ.GENERIC/libf/phystd/optci.F90 @ 2732

Last change on this file since 2732 was 2655, checked in by gmilcareck, 3 years ago

Major changes to CIA interpolation:
1) Add contribution from CH4 (H2-CH4,He-CH4,CH4-CH4) ;
2) Add some tests before interpolation for H2, He and CH4 ;
3) Add the possibility to choose between a normal or equilibrium ortho:para
fraction for CIA H2;
4) Change "strictboundH2H2cia" to the generic "strictboundcia" for H2,He,CH4.
It can be added for others CIA (N2,H,CO2...) if you want.

File size: 16.1 KB
Line 
1MODULE optci_mod
2
3IMPLICIT NONE
4
5CONTAINS
6
7subroutine optci(PLEV,TLEV,DTAUI,TAUCUMI,      &
8     QXIAER,QSIAER,GIAER,COSBI,WBARI,TAUAERO,  &
9     TMID,PMID,TAUGSURF,QVAR,MUVAR)
10
11  use radinc_h, only: L_LEVELS, L_NLAYRAD, L_NSPECTI, L_NGAUSS, &
12                      L_NLEVRAD, L_REFVAR, naerkind
13  use radcommon_h, only: gasi,tlimit,wrefVAR,Cmk,tgasref,pfgasref,wnoi,scalep,indi,glat_ig
14  use gases_h, only: gfrac, ngasmx, igas_N2, igas_He, igas_H2O, igas_H2, igas_CH4
15  use comcstfi_mod, only: g, r, mugaz
16  use callkeys_mod, only: kastprof,continuum,graybody
17  use recombin_corrk_mod, only: corrk_recombin, gasi_recomb
18  use tpindex_mod, only: tpindex
19
20  implicit none
21
22  !==================================================================
23  !     
24  !     Purpose
25  !     -------
26  !     Calculates longwave optical constants at each level. For each
27  !     layer and spectral interval in the IR it calculates WBAR, DTAU
28  !     and COSBAR. For each level it calculates TAU.
29  !     
30  !     TAUCUMI(L,LW) is the cumulative optical depth at level L (or alternatively
31  !     at the *bottom* of layer L), LW is the spectral wavelength interval.
32  !     
33  !     TLEV(L) - Temperature at the layer boundary (i.e., level)
34  !     PLEV(L) - Pressure at the layer boundary (i.e., level)
35  !
36  !     Authors
37  !     -------
38  !     Adapted from the NASA Ames code by R. Wordsworth (2009)
39  !     
40  !==================================================================
41
42
43  real*8 DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
44  real*8 DTAUKI(L_LEVELS,L_NSPECTI,L_NGAUSS)
45  real*8 TAUI(L_NLEVRAD,L_NSPECTI,L_NGAUSS)
46  real*8 TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS)
47  real*8 PLEV(L_LEVELS)
48  real*8 TLEV(L_LEVELS)
49  real*8 TMID(L_LEVELS), PMID(L_LEVELS)
50  real*8 COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
51  real*8 WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
52
53  ! for aerosols
54  real*8  QXIAER(L_LEVELS,L_NSPECTI,NAERKIND)
55  real*8  QSIAER(L_LEVELS,L_NSPECTI,NAERKIND)
56  real*8  GIAER(L_LEVELS,L_NSPECTI,NAERKIND)
57  real*8  TAUAERO(L_LEVELS,NAERKIND)
58  real*8  TAUAEROLK(L_LEVELS,L_NSPECTI,NAERKIND)
59  real*8  TAEROS(L_LEVELS,L_NSPECTI,NAERKIND)
60
61  integer L, NW, NG, K, LK, IAER
62  integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS)
63  real*8  ANS, TAUGAS
64  real*8  DPR(L_LEVELS), U(L_LEVELS)
65  real*8  LCOEF(4), LKCOEF(L_LEVELS,4)
66
67  real*8 taugsurf(L_NSPECTI,L_NGAUSS-1)
68  real*8 DCONT,DAERO
69  double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc
70  double precision p_cross
71
72  ! variable species mixing ratio variables
73  real*8  QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS)
74  real*8  KCOEF(4)
75  integer NVAR(L_LEVELS)
76 
77  ! temporary variables to reduce memory access time to gasi
78  real*8 tmpk(2,2)
79  real*8 tmpkvar(2,2,2)
80
81  ! temporary variables for multiple aerosol calculation
82  real*8 atemp
83  real*8 btemp(L_NLAYRAD,L_NSPECTI)
84
85  ! variables for k in units m^-1
86  real*8 dz(L_LEVELS)
87  !real*8 rho !! see test below
88
89  integer igas, jgas
90
91  integer interm
92
93  !--- Kasting's CIA ----------------------------------------
94  !real*8, parameter :: Ci(L_NSPECTI)=[                         &
95  !     3.8E-5, 1.2E-5, 2.8E-6, 7.6E-7, 4.5E-7, 2.3E-7,    &
96  !     5.4E-7, 1.6E-6, 0.0,                               &
97  !     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,            &
98  !     0.0, 4.0E-7, 4.0E-6, 1.4E-5,    &
99  !     1.0E-5, 1.2E-6, 2.0E-7, 5.0E-8, 3.0E-8, 0.0 ]
100  !real*8, parameter :: Ti(L_NSPECTI)=[ -2.2, -1.9,             &
101  !     -1.7, -1.7, -1.7, -1.7, -1.7, -1.7,                &
102  !     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, &
103  !     -1.7,-1.7,-1.7,-1.7,-1.7,-1.7,-1.7, -1.7,0.0 ]
104  !----------------------------------------------------------
105
106  !! AS: to save time in computing continuum (see bilinearbig)
107  IF (.not.ALLOCATED(indi)) THEN
108      ALLOCATE(indi(L_NSPECTI,ngasmx,ngasmx))
109      indi = -9999  ! this initial value means "to be calculated"
110  ENDIF
111
112  !=======================================================================
113  !     Determine the total gas opacity throughout the column, for each
114  !     spectral interval, NW, and each Gauss point, NG.
115
116  taugsurf(:,:) = 0.0
117  dpr(:)        = 0.0
118  lkcoef(:,:)   = 0.0
119
120  do K=2,L_LEVELS
121     DPR(k) = PLEV(K)-PLEV(K-1)
122
123     !--- Kasting's CIA ----------------------------------------
124     !dz(k)=dpr(k)*189.02*TMID(K)/(0.03720*PMID(K))
125     ! this is CO2 path length (in cm) as written by Francois
126     ! delta_z = delta_p * R_specific * T / (g * P)
127     ! But Kasting states that W is in units of _atmosphere_ cm
128     ! So we do
129     !dz(k)=dz(k)*(PMID(K)/1013.25)
130     !dz(k)=dz(k)/100.0 ! in m for SI calc
131     !----------------------------------------------------------
132
133     ! if we have continuum opacities, we need dz
134     if(kastprof)then
135        dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K))
136        U(k)  = Cmk*DPR(k)*mugaz/muvar(k)
137     else
138        dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k)
139        U(k)  = Cmk*DPR(k)*mugaz/muvar(k)     ! only Cmk line in optci.F 
140            !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present
141     endif
142
143     call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, &
144          LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K))
145
146     do LK=1,4
147        LKCOEF(K,LK) = LCOEF(LK)
148     end do
149  end do                    ! levels
150
151  ! Spectral dependance of aerosol absorption
152  do iaer=1,naerkind
153     DO NW=1,L_NSPECTI
154        do K=2,L_LEVELS
155           TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXIAER(K,NW,IAER)
156        end do                    ! levels
157     END DO
158  end do
159
160  do NW=1,L_NSPECTI
161
162     do K=2,L_LEVELS
163     
164        DAERO=SUM(TAEROS(K,NW,1:naerkind)) ! aerosol absorption
165
166        DCONT = 0.0d0 ! continuum absorption
167
168        if(continuum.and.(.not.graybody))then
169           ! include continua if necessary
170           wn_cont = dble(wnoi(nw))
171           T_cont  = dble(TMID(k))
172           do igas=1,ngasmx
173
174              if(gfrac(igas).eq.-1)then ! variable
175                 p_cont  = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol
176              else
177                 p_cont  = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k)))
178              endif
179
180              dtemp=0.0d0
181              if(igas.eq.igas_N2)then
182
183                 interm = indi(nw,igas,igas)
184                 call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
185                 indi(nw,igas,igas) = interm
186
187              elseif(igas.eq.igas_H2)then
188
189                 ! first do self-induced absorption
190                 interm = indi(nw,igas,igas)
191                 call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
192                 indi(nw,igas,igas) = interm
193
194                 ! then cross-interactions with other gases
195                 do jgas=1,ngasmx
196                    p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k)))
197                    dtempc  = 0.0d0
198                    if(jgas.eq.igas_N2)then
199                       interm = indi(nw,igas,jgas)
200                       call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
201                       indi(nw,igas,jgas) = interm
202                    elseif(jgas.eq.igas_He)then
203                       interm = indi(nw,igas,jgas)
204                       call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
205                       indi(nw,igas,jgas) = interm
206                    endif
207                    dtemp = dtemp + dtempc
208                 enddo
209
210              elseif(igas.eq.igas_CH4)then
211
212                 ! first do self-induced absorption
213                 interm = indi(nw,igas,igas)
214                 call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
215                 indi(nw,igas,igas) = interm
216
217                 ! then cross-interactions with other gases
218                 do jgas=1,ngasmx
219                    p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k)))
220                    dtempc  = 0.0d0
221                    if(jgas.eq.igas_H2)then
222                       interm = indi(nw,igas,jgas)
223                       call interpolateH2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
224                       indi(nw,igas,jgas) = interm
225                    elseif(jgas.eq.igas_He)then
226                       interm = indi(nw,igas,jgas)
227                       call interpolateHeCH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
228                       indi(nw,igas,jgas) = interm
229                    endif
230                    dtemp = dtemp + dtempc
231                 enddo
232
233              elseif(igas.eq.igas_H2O.and.T_cont.gt.100.0)then
234                 ! Compute self and foreign (with air) continuum of H2O
235                 p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air!
236                 interm = indi(nw,igas,igas)
237                 call interpolateH2O_self_foreign(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) ! MTCKD v3.3
238                 indi(nw,igas,igas) = interm
239
240              endif
241
242              DCONT = DCONT + dtemp
243
244           enddo
245
246           ! Oobleck test
247           !rho = PMID(k)*scalep / (TMID(k)*286.99)
248           !if(WNOI(nw).gt.300.0 .and. WNOI(nw).lt.500.0)then
249           !   DCONT = rho * 0.125 * 4.6e-4
250           !elseif(WNOI(nw).gt.500.0 .and. WNOI(nw).lt.700.0)then
251           !   DCONT = 1000*dpr(k) * 1.0 * 4.6e-4 / g
252           !   DCONT = rho * 1.0 * 4.6e-4
253           !elseif(WNOI(nw).gt.700.0 .and. WNOI(nw).lt.900.0)then
254           !   DCONT = rho * 0.125 * 4.6e-4
255           !endif
256
257           DCONT = DCONT*dz(k)
258
259        endif
260
261        do ng=1,L_NGAUSS-1
262
263           ! Now compute TAUGAS
264
265           ! Interpolate between water mixing ratios
266           ! WRATIO = 0.0 if the requested water amount is equal to, or outside the
267           ! the water data range
268
269           if(L_REFVAR.eq.1)then ! added by RW for special no variable case
270           
271              ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically
272              ! the execution time of optci/v -> ~ factor 2 on the whole radiative
273              ! transfer on the tested simulations !
274
275              IF (corrk_recombin) THEN ! added by JVO
276                tmpk = GASI_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) ! contains the mix of recombined species
277              ELSE
278                tmpk = GASI(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG)
279              ENDIF
280
281              KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASI(MT(K),MP(K),1,NW,NG)
282              KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASI(MT(K),MP(K)+1,1,NW,NG)
283              KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASI(MT(K)+1,MP(K)+1,1,NW,NG)
284              KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASI(MT(K)+1,MP(K),1,NW,NG)
285
286           else
287
288              IF (corrk_recombin) THEN ! added by JVO
289                tmpkvar = GASI_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG)
290              ELSE
291                tmpkvar = GASI(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG)
292              ENDIF
293
294              KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) *  &
295                        ( tmpkvar(1,1,2)-tmpkvar(1,1,1) )
296
297              KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) *  &
298                        ( tmpkvar(1,2,2)-tmpkvar(1,2,1) )
299
300              KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) *  &
301                        ( tmpkvar(2,2,2)-tmpkvar(2,2,1) )
302             
303              KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) *  &
304                        ( tmpkvar(2,1,2)-tmpkvar(2,1,1) )
305
306           endif
307
308           ! Interpolate the gaseous k-coefficients to the requested T,P values
309
310           ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) +            &
311                LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4)
312
313           TAUGAS  = U(k)*ANS
314
315           TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT
316           DTAUKI(K,nw,ng) = TAUGAS    &
317                             + DCONT   & ! For parameterized continuum absorption
318                             + DAERO     ! For aerosol absorption
319
320        end do
321
322        ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS),
323        ! which holds continuum opacity only
324
325        NG              = L_NGAUSS
326        DTAUKI(K,nw,ng) = 0.d0      &
327                          + DCONT   & ! For parameterized continuum absorption
328                          + DAERO     ! For aerosol absorption
329
330     end do
331  end do
332
333  !=======================================================================
334  !     Now the full treatment for the layers, where besides the opacity
335  !     we need to calculate the scattering albedo and asymmetry factors
336
337  do iaer=1,naerkind
338    DO NW=1,L_NSPECTI
339     DO K=2,L_LEVELS
340           TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER)*QSIAER(K,NW,IAER) ! effect of scattering albedo
341     ENDDO
342    ENDDO
343  end do
344 
345  DO NW=1,L_NSPECTI
346     DO L=1,L_NLAYRAD-1
347        K              = 2*L+1
348        btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind))
349     END DO ! L vertical loop
350     
351     ! Last level
352     L           = L_NLAYRAD
353     K           = 2*L+1   
354     btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind))
355     
356  END DO                    ! NW spectral loop
357 
358
359  DO NW=1,L_NSPECTI
360     NG = L_NGAUSS
361     DO L=1,L_NLAYRAD-1
362
363        K              = 2*L+1
364        DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) + DTAUKI(K+1,NW,NG)! + 1.e-50
365
366        atemp = 0.
367        if(DTAUI(L,NW,NG) .GT. 1.0D-9) then
368           do iaer=1,naerkind
369              atemp = atemp +                                     &
370                   GIAER(K,NW,IAER)   * TAUAEROLK(K,NW,IAER) +    &
371                   GIAER(K+1,NW,IAER) * TAUAEROLK(K+1,NW,IAER)
372           end do
373           WBARI(L,nw,ng) = btemp(L,nw)  / DTAUI(L,NW,NG)
374        else
375           WBARI(L,nw,ng) = 0.0D0
376           DTAUI(L,NW,NG) = 1.0D-9
377        endif
378
379        if(btemp(L,nw) .GT. 0.0d0) then
380           cosbi(L,NW,NG) = atemp/btemp(L,nw)
381        else
382           cosbi(L,NW,NG) = 0.0D0
383        end if
384
385     END DO ! L vertical loop
386     
387     ! Last level
388     
389     L              = L_NLAYRAD
390     K              = 2*L+1
391     DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) ! + 1.e-50
392
393     atemp = 0.
394     if(DTAUI(L,NW,NG) .GT. 1.0D-9) then
395        do iaer=1,naerkind
396           atemp = atemp + GIAER(K,NW,IAER)   * TAUAEROLK(K,NW,IAER)
397        end do
398        WBARI(L,nw,ng) = btemp(L,nw)  / DTAUI(L,NW,NG)
399     else
400        WBARI(L,nw,ng) = 0.0D0
401        DTAUI(L,NW,NG) = 1.0D-9
402     endif
403
404     if(btemp(L,nw) .GT. 0.0d0) then
405        cosbi(L,NW,NG) = atemp/btemp(L,nw)
406     else
407        cosbi(L,NW,NG) = 0.0D0
408     end if
409     
410
411     ! Now the other Gauss points, if needed.
412
413     DO NG=1,L_NGAUSS-1
414        IF(TAUGSURF(NW,NG) .gt. TLIMIT) THEN
415
416           DO L=1,L_NLAYRAD-1
417              K              = 2*L+1
418              DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)+DTAUKI(K+1,NW,NG)! + 1.e-50
419
420              if(DTAUI(L,NW,NG) .GT. 1.0D-9) then
421
422                 WBARI(L,nw,ng) = btemp(L,nw)  / DTAUI(L,NW,NG)
423
424              else
425                 WBARI(L,nw,ng) = 0.0D0
426                 DTAUI(L,NW,NG) = 1.0D-9
427              endif
428
429              cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS)
430           END DO ! L vertical loop
431           
432           ! Last level
433           L              = L_NLAYRAD
434           K              = 2*L+1
435           DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)! + 1.e-50
436
437           if(DTAUI(L,NW,NG) .GT. 1.0D-9) then
438
439              WBARI(L,nw,ng) = btemp(L,nw)  / DTAUI(L,NW,NG)
440
441           else
442              WBARI(L,nw,ng) = 0.0D0
443              DTAUI(L,NW,NG) = 1.0D-9
444           endif
445
446           cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS)
447           
448        END IF
449
450     END DO                 ! NG Gauss loop
451  END DO                    ! NW spectral loop
452
453  ! Total extinction optical depths
454
455  DO NG=1,L_NGAUSS       ! full gauss loop
456     DO NW=1,L_NSPECTI       
457        TAUCUMI(1,NW,NG)=0.0D0
458        DO K=2,L_LEVELS
459           TAUCUMI(K,NW,NG)=TAUCUMI(K-1,NW,NG)+DTAUKI(K,NW,NG)
460        END DO
461     END DO                 ! end full gauss loop
462  END DO
463
464  ! be aware when comparing with textbook results
465  ! (e.g. Pierrehumbert p. 218) that
466  ! taucumi does not take the <cos theta>=0.5 factor into
467  ! account. It is the optical depth for a vertically
468  ! ascending ray with angle theta = 0.
469
470  !open(127,file='taucum.out')
471  !do nw=1,L_NSPECTI
472  !   write(127,*) taucumi(L_LEVELS,nw,L_NGAUSS)
473  !enddo
474  !close(127)
475 
476!  print*,'WBARI'
477!  print*,WBARI
478!  print*,'DTAUI'
479!  print*,DTAUI
480!  call abort
481
482end subroutine optci
483
484END MODULE optci_mod
485
Note: See TracBrowser for help on using the repository browser.