source: trunk/LMDZ.GENERIC/libf/phystd/optci.F90 @ 873

Last change on this file since 873 was 873, checked in by aslmd, 12 years ago

LMDZ.GENERIC (and LMDZ.UNIVERSAL)

  • Optimized calculations for continuum (done for H2 and He, to be done for others)
    • new common bilinear interpolation routine (bilinearbig)
    • optimization: only one calculation is actually needed

to find indexes of wavelength for bilinear interpolation
... because this will not change with level and integration step!

  • optimization: use while loop in bilinearbig
  • completely similar results obtained (test case for a gas giant, many simulated days)

NB: those changes really improve gcm speed (factor 2.2 for whole model!)

continuum was very expensive, now very cheap
--> e.g. 1 day, 25 dyn ts, 5 phys ts
--> before: 243 seconds (including 120 seconds for continuum bilinear interpolation)
--> after: 108 seconds

  • Corrected a bug: Continuum in inifis instead of continuum

... until now, most users (unbeknownst to them) were running with the continuum by default!

  • Cosmetic changes in optcv (mostly spaces and line breaks)

... so that comparisons with optci are easy e.g. through vimdiff

File size: 12.9 KB
Line 
1subroutine optci(PLEV,TLEV,DTAUI,TAUCUMI,      &
2     QXIAER,QSIAER,GIAER,COSBI,WBARI,TAUAERO,  &
3     TMID,PMID,TAUGSURF,QVAR,MUVAR)
4
5  use radinc_h
6  use radcommon_h, only: gasi,tlimit,wrefVAR,Cmk,tgasref,pfgasref,wnoi,scalep,indi
7  use gases_h
8  implicit none
9
10  !==================================================================
11  !     
12  !     Purpose
13  !     -------
14  !     Calculates longwave optical constants at each level. For each
15  !     layer and spectral interval in the IR it calculates WBAR, DTAU
16  !     and COSBAR. For each level it calculates TAU.
17  !     
18  !     TAUI(L,LW) is the cumulative optical depth at level L (or alternatively
19  !     at the *bottom* of layer L), LW is the spectral wavelength interval.
20  !     
21  !     TLEV(L) - Temperature at the layer boundary (i.e., level)
22  !     PLEV(L) - Pressure at the layer boundary (i.e., level)
23  !
24  !     Authors
25  !     -------
26  !     Adapted from the NASA Ames code by R. Wordsworth (2009)
27  !     
28  !==================================================================
29
30#include "comcstfi.h"
31#include "callkeys.h"
32
33
34  real*8 DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
35  real*8 DTAUKI(L_LEVELS+1,L_NSPECTI,L_NGAUSS)
36  real*8 TAUI(L_NLEVRAD,L_NSPECTI,L_NGAUSS)
37  real*8 TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS)
38  real*8 PLEV(L_LEVELS)
39  real*8 TLEV(L_LEVELS)
40  real*8 TMID(L_LEVELS), PMID(L_LEVELS)
41  real*8 COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
42  real*8 WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
43
44  ! for aerosols
45  real*8  QXIAER(L_LEVELS+1,L_NSPECTI,NAERKIND)
46  real*8  QSIAER(L_LEVELS+1,L_NSPECTI,NAERKIND)
47  real*8  GIAER(L_LEVELS+1,L_NSPECTI,NAERKIND)
48  real*8  TAUAERO(L_LEVELS+1,NAERKIND)
49  real*8  TAUAEROLK(L_LEVELS+1,L_NSPECTI,NAERKIND)
50  real*8  TAEROS(L_LEVELS,L_NSPECTI,NAERKIND)
51
52  integer L, NW, NG, K, LK, IAER
53  integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS)
54  real*8  ANS, TAUGAS
55  real*8  DPR(L_LEVELS), U(L_LEVELS)
56  real*8  LCOEF(4), LKCOEF(L_LEVELS,4)
57
58  real*8 taugsurf(L_NSPECTI,L_NGAUSS-1)
59  real*8 DCONT
60  double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc
61  double precision p_cross
62
63  ! variable species mixing ratio variables
64  real*8  QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS)
65  real*8  KCOEF(4)
66  integer NVAR(L_LEVELS)
67
68  ! temporary variables for multiple aerosol calculation
69  real*8 atemp, btemp
70
71  ! variables for k in units m^-1
72  real*8 dz(L_LEVELS)
73  !real*8 rho !! see test below
74
75  integer igas, jgas
76
77  integer interm
78
79  !--- Kasting's CIA ----------------------------------------
80  !real*8, parameter :: Ci(L_NSPECTI)=[                         &
81  !     3.8E-5, 1.2E-5, 2.8E-6, 7.6E-7, 4.5E-7, 2.3E-7,    &
82  !     5.4E-7, 1.6E-6, 0.0,                               &
83  !     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,            &
84  !     0.0, 4.0E-7, 4.0E-6, 1.4E-5,    &
85  !     1.0E-5, 1.2E-6, 2.0E-7, 5.0E-8, 3.0E-8, 0.0 ]
86  !real*8, parameter :: Ti(L_NSPECTI)=[ -2.2, -1.9,             &
87  !     -1.7, -1.7, -1.7, -1.7, -1.7, -1.7,                &
88  !     0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, &
89  !     -1.7,-1.7,-1.7,-1.7,-1.7,-1.7,-1.7, -1.7,0.0 ]
90  !----------------------------------------------------------
91
92  !! AS: to save time in computing continuum (see bilinearbig)
93  IF (.not.ALLOCATED(indi)) THEN
94      ALLOCATE(indi(L_NSPECTI,ngasmx))
95      indi = -9999  ! this initial value means "to be calculated"
96  ENDIF
97
98  !=======================================================================
99  !     Determine the total gas opacity throughout the column, for each
100  !     spectral interval, NW, and each Gauss point, NG.
101
102  taugsurf(:,:) = 0.0
103  dpr(:)        = 0.0
104  lkcoef(:,:)   = 0.0
105
106  do K=2,L_LEVELS
107     DPR(k) = PLEV(K)-PLEV(K-1)
108
109     !--- Kasting's CIA ----------------------------------------
110     !dz(k)=dpr(k)*189.02*TMID(K)/(0.03720*PMID(K))
111     ! this is CO2 path length (in cm) as written by Francois
112     ! delta_z = delta_p * R_specific * T / (g * P)
113     ! But Kasting states that W is in units of _atmosphere_ cm
114     ! So we do
115     !dz(k)=dz(k)*(PMID(K)/1013.25)
116     !dz(k)=dz(k)/100.0 ! in m for SI calc
117     !----------------------------------------------------------
118
119     ! if we have continuum opacities, we need dz
120     if(kastprof)then
121        dz(k) = dpr(k)*(1000.0*8.3145/muvar(k))*TMID(K)/(g*PMID(K))
122        U(k)  = (Cmk*mugaz/(muvar(k)))*DPR(k)
123     else
124        dz(k) = dpr(k)*R*TMID(K)/(g*PMID(K))
125        U(k)  = Cmk*DPR(k)    ! only Cmk line in optci.F
126     endif
127
128     call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, &
129          LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K))
130
131     do LK=1,4
132        LKCOEF(K,LK) = LCOEF(LK)
133     end do
134
135
136     DO NW=1,L_NSPECTI
137        do iaer=1,naerkind
138           TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXIAER(K,NW,IAER)
139        end do
140     END DO
141  end do                    ! levels
142
143  do K=2,L_LEVELS
144
145     do NW=1,L_NSPECTI
146
147        DCONT = 0.0 ! continuum absorption
148
149        if(continuum.and.(.not.graybody))then
150           ! include continua if necessary
151           wn_cont = dble(wnoi(nw))
152           T_cont  = dble(TMID(k))
153           do igas=1,ngasmx
154
155              if(gfrac(igas).eq.-1)then ! variable
156                 p_cont  = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol
157              else
158                 p_cont  = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k)))
159              endif
160
161              dtemp=0.0
162              if(igas.eq.igas_N2)then
163
164                 call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.)
165
166              elseif(igas.eq.igas_H2)then
167
168                 ! first do self-induced absorption
169                 interm = indi(nw,igas)
170                 call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
171                 indi(nw,igas) = interm
172
173                 ! then cross-interactions with other gases
174                 do jgas=1,ngasmx
175                    p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k)))
176                    dtempc  = 0.0
177                    if(jgas.eq.igas_N2)then
178                       call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.)
179                    elseif(jgas.eq.igas_He)then
180                       interm = indi(nw,jgas)
181                       call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
182                       indi(nw,jgas) = interm
183                    endif
184                    dtemp = dtemp + dtempc
185                 enddo
186
187              elseif(igas.eq.igas_H2O.and.T_cont.gt.200.0)then
188
189                 p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air!
190                 if(H2Ocont_simple)then
191                    call interpolateH2Ocont_PPC(wn_cont,T_cont,p_cont,p_air,dtemp,.false.)
192                 else
193                    call interpolateH2Ocont_CKD(wn_cont,T_cont,p_cont,p_air,dtemp,.false.)
194                 endif
195
196              endif
197
198              DCONT = DCONT + dtemp
199
200           enddo
201
202           ! Oobleck test
203           !rho = PMID(k)*scalep / (TMID(k)*286.99)
204           !if(WNOI(nw).gt.300.0 .and. WNOI(nw).lt.500.0)then
205           !   DCONT = rho * 0.125 * 4.6e-4
206           !elseif(WNOI(nw).gt.500.0 .and. WNOI(nw).lt.700.0)then
207           !   DCONT = 1000*dpr(k) * 1.0 * 4.6e-4 / g
208           !   DCONT = rho * 1.0 * 4.6e-4
209           !elseif(WNOI(nw).gt.700.0 .and. WNOI(nw).lt.900.0)then
210           !   DCONT = rho * 0.125 * 4.6e-4
211           !endif
212
213           DCONT = DCONT*dz(k)
214
215        endif
216
217        ! RW 7/3/12: already done above
218        !if(.not.Continuum)then
219        !   DCONT=0.0
220        !endif
221
222        !--- Kasting's CIA ----------------------------------------
223        !DCO2   = dz(k)*Ci(nw)*(1.2859*PMID(k)/1000.0)*(TMID(k)/300.)**Ti(nw)
224        !DCO2 = 130*Ci(nw)*(pmid(k)/1013.25)**2*(tmid(k)/300.)**Ti(nw) * dz(k)
225        ! these two have been verified to give the same results
226        !----------------------------------------------------------
227
228        do ng=1,L_NGAUSS-1
229
230           ! Now compute TAUGAS
231
232           ! Interpolate between water mixing ratios
233           ! WRATIO = 0.0 if the requested water amount is equal to, or outside the
234           ! the water data range
235
236           if(L_REFVAR.eq.1)then ! added by RW for special no variable case
237              KCOEF(1) = GASI(MT(K),MP(K),1,NW,NG)
238              KCOEF(2) = GASI(MT(K),MP(K)+1,1,NW,NG)
239              KCOEF(3) = GASI(MT(K)+1,MP(K)+1,1,NW,NG)
240              KCOEF(4) = GASI(MT(K)+1,MP(K),1,NW,NG)
241           else
242
243              KCOEF(1) = GASI(MT(K),MP(K),NVAR(K),NW,NG) + WRATIO(K)*     &
244                   (GASI(MT(K),MP(K),NVAR(K)+1,NW,NG) -                   &
245                   GASI(MT(K),MP(K),NVAR(K),NW,NG))
246
247              KCOEF(2) = GASI(MT(K),MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)*   &
248                   (GASI(MT(K),MP(K)+1,NVAR(K)+1,NW,NG) -                 &
249                   GASI(MT(K),MP(K)+1,NVAR(K),NW,NG))
250
251              KCOEF(3) = GASI(MT(K)+1,MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* &
252                   (GASI(MT(K)+1,MP(K)+1,NVAR(K)+1,NW,NG) -               &
253                   GASI(MT(K)+1,MP(K)+1,NVAR(K),NW,NG))
254
255              KCOEF(4) = GASI(MT(K)+1,MP(K),NVAR(K),NW,NG) + WRATIO(K)*   &
256                   (GASI(MT(K)+1,MP(K),NVAR(K)+1,NW,NG) -                 &
257                   GASI(MT(K)+1,MP(K),NVAR(K),NW,NG))
258
259           endif
260
261           ! Interpolate the gaseous k-coefficients to the requested T,P values
262
263           ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) +            &
264                LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4)
265
266           TAUGAS  = U(k)*ANS
267
268           TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT
269           DTAUKI(K,nw,ng) = TAUGAS &
270                             + DCONT ! For parameterized continuum absorption
271
272           do iaer=1,naerkind
273              DTAUKI(K,nw,ng) = DTAUKI(K,nw,ng) + TAEROS(K,NW,IAER)
274           end do ! a bug was here!
275
276        end do
277
278        ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS),
279        ! which holds continuum opacity only
280
281        NG              = L_NGAUSS
282        DTAUKI(K,nw,ng) = 0.0 + DCONT ! For parameterized continuum absorption
283
284        do iaer=1,naerkind
285           DTAUKI(K,nw,ng) = DTAUKI(K,nw,ng) +  TAEROS(K,NW,IAER)
286        end do ! a bug was here!
287
288     end do
289  end do
290
291
292  !=======================================================================
293  !     Now the full treatment for the layers, where besides the opacity
294  !     we need to calculate the scattering albedo and asymmetry factors
295
296  do iaer=1,naerkind
297  DO NW=1,L_NSPECTI
298     DO K=2,L_LEVELS+1
299           TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER)*QSIAER(K,NW,IAER)
300     ENDDO
301  ENDDO
302  end do
303
304  DO NW=1,L_NSPECTI
305     NG = L_NGAUSS
306     DO L=1,L_NLAYRAD
307
308        K              = 2*L+1
309        DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) + DTAUKI(K+1,NW,NG)! + 1.e-50
310
311        atemp = 0.
312        btemp = 0.
313        if(DTAUI(L,NW,NG) .GT. 1.0E-9) then
314           do iaer=1,naerkind
315              atemp = atemp +                                     &
316                   GIAER(K,NW,IAER)   * TAUAEROLK(K,NW,IAER) +    &
317                   GIAER(K+1,NW,IAER) * TAUAEROLK(K+1,NW,IAER)
318              btemp = btemp + TAUAEROLK(K,NW,IAER) + TAUAEROLK(K+1,NW,IAER)
319              !     *                    + 1.e-10
320           end do
321           WBARI(L,nw,ng) = btemp  / DTAUI(L,NW,NG)
322        else
323           WBARI(L,nw,ng) = 0.0D0
324           DTAUI(L,NW,NG) = 1.0E-9
325        endif
326
327        if(btemp .GT. 0.0) then
328           cosbi(L,NW,NG) = atemp/btemp
329        else
330           cosbi(L,NW,NG) = 0.0D0
331        end if
332
333     END DO ! L vertical loop
334
335     ! Now the other Gauss points, if needed.
336
337     DO NG=1,L_NGAUSS-1
338        IF(TAUGSURF(NW,NG) .gt. TLIMIT) THEN
339
340           DO L=1,L_NLAYRAD
341              K              = 2*L+1
342              DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)+DTAUKI(K+1,NW,NG)! + 1.e-50
343
344              btemp = 0.
345              if(DTAUI(L,NW,NG) .GT. 1.0E-9) then
346
347                 do iaer=1,naerkind
348                    btemp = btemp + TAUAEROLK(K,NW,IAER) + TAUAEROLK(K+1,NW,IAER)
349                 end do
350                 WBARI(L,nw,ng) = btemp  / DTAUI(L,NW,NG)
351
352              else
353                 WBARI(L,nw,ng) = 0.0D0
354                 DTAUI(L,NW,NG) = 1.0E-9
355              endif
356
357              cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS)
358           END DO ! L vertical loop
359        END IF
360
361     END DO                 ! NG Gauss loop
362  END DO                    ! NW spectral loop
363
364  ! Total extinction optical depths
365
366  DO NW=1,L_NSPECTI       
367     DO NG=1,L_NGAUSS       ! full gauss loop
368        TAUI(1,NW,NG)=0.0D0
369        DO L=1,L_NLAYRAD
370           TAUI(L+1,NW,NG)=TAUI(L,NW,NG)+DTAUI(L,NW,NG)
371        END DO
372
373        TAUCUMI(1,NW,NG)=0.0D0
374        DO K=2,L_LEVELS
375           TAUCUMI(K,NW,NG)=TAUCUMI(K-1,NW,NG)+DTAUKI(K,NW,NG)
376        END DO
377     END DO                 ! end full gauss loop
378  END DO
379
380  ! be aware when comparing with textbook results
381  ! (e.g. Pierrehumbert p. 218) that
382  ! taucumi does not take the <cos theta>=0.5 factor into
383  ! account. It is the optical depth for a vertically
384  ! ascending ray with angle theta = 0.
385
386  !open(127,file='taucum.out')
387  !do nw=1,L_NSPECTI
388  !   write(127,*) taucumi(L_LEVELS,nw,L_NGAUSS)
389  !enddo
390  !close(127)
391
392  return
393
394
395end subroutine optci
396
397
398
Note: See TracBrowser for help on using the repository browser.