[716] | 1 | subroutine optci(PLEV,TLEV,DTAUI,TAUCUMI, & |
---|
| 2 | QXIAER,QSIAER,GIAER,COSBI,WBARI,TAUAERO, & |
---|
| 3 | TMID,PMID,TAUGSURF,QVAR,MUVAR) |
---|
[135] | 4 | |
---|
[716] | 5 | use radinc_h |
---|
| 6 | use radcommon_h, only: gasi,tlimit,wrefVAR,Cmk,tgasref,pfgasref,wnoi,scalep |
---|
| 7 | use gases_h |
---|
| 8 | implicit none |
---|
[135] | 9 | |
---|
[716] | 10 | !================================================================== |
---|
| 11 | ! |
---|
| 12 | ! Purpose |
---|
| 13 | ! ------- |
---|
| 14 | ! Calculates longwave optical constants at each level. For each |
---|
| 15 | ! layer and spectral interval in the IR it calculates WBAR, DTAU |
---|
| 16 | ! and COSBAR. For each level it calculates TAU. |
---|
| 17 | ! |
---|
| 18 | ! TAUI(L,LW) is the cumulative optical depth at level L (or alternatively |
---|
| 19 | ! at the *bottom* of layer L), LW is the spectral wavelength interval. |
---|
| 20 | ! |
---|
| 21 | ! TLEV(L) - Temperature at the layer boundary (i.e., level) |
---|
| 22 | ! PLEV(L) - Pressure at the layer boundary (i.e., level) |
---|
| 23 | ! |
---|
| 24 | ! Authors |
---|
| 25 | ! ------- |
---|
| 26 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
| 27 | ! |
---|
| 28 | !================================================================== |
---|
[135] | 29 | |
---|
| 30 | #include "comcstfi.h" |
---|
| 31 | #include "callkeys.h" |
---|
| 32 | |
---|
| 33 | |
---|
[716] | 34 | real*8 DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 35 | real*8 DTAUKI(L_LEVELS+1,L_NSPECTI,L_NGAUSS) |
---|
| 36 | real*8 TAUI(L_NLEVRAD,L_NSPECTI,L_NGAUSS) |
---|
| 37 | real*8 TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
| 38 | real*8 PLEV(L_LEVELS) |
---|
| 39 | real*8 TLEV(L_LEVELS) |
---|
| 40 | real*8 TMID(L_LEVELS), PMID(L_LEVELS) |
---|
| 41 | real*8 COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 42 | real*8 WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
[135] | 43 | |
---|
[716] | 44 | ! for aerosols |
---|
| 45 | real*8 QXIAER(L_LEVELS+1,L_NSPECTI,NAERKIND) |
---|
| 46 | real*8 QSIAER(L_LEVELS+1,L_NSPECTI,NAERKIND) |
---|
| 47 | real*8 GIAER(L_LEVELS+1,L_NSPECTI,NAERKIND) |
---|
| 48 | real*8 TAUAERO(L_LEVELS+1,NAERKIND) |
---|
| 49 | real*8 TAUAEROLK(L_LEVELS+1,L_NSPECTI,NAERKIND) |
---|
| 50 | real*8 TAEROS(L_LEVELS,L_NSPECTI,NAERKIND) |
---|
[135] | 51 | |
---|
[716] | 52 | integer L, NW, NG, K, LK, IAER |
---|
| 53 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 54 | real*8 ANS, TAUGAS |
---|
| 55 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 56 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
[135] | 57 | |
---|
[716] | 58 | real*8 taugsurf(L_NSPECTI,L_NGAUSS-1) |
---|
| 59 | real*8 DCONT |
---|
| 60 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
---|
| 61 | double precision p_cross |
---|
[135] | 62 | |
---|
[716] | 63 | ! variable species mixing ratio variables |
---|
| 64 | real*8 QVAR(L_LEVELS), WRATIO(L_LEVELS), MUVAR(L_LEVELS) |
---|
| 65 | real*8 KCOEF(4) |
---|
| 66 | integer NVAR(L_LEVELS) |
---|
[135] | 67 | |
---|
[716] | 68 | ! temporary variables for multiple aerosol calculation |
---|
| 69 | real*8 atemp, btemp |
---|
[135] | 70 | |
---|
[716] | 71 | ! variables for k in units m^-1 |
---|
| 72 | real*8 rho, dz(L_LEVELS) |
---|
[135] | 73 | |
---|
[716] | 74 | integer igas, jgas |
---|
[253] | 75 | |
---|
[716] | 76 | !--- Kasting's CIA ---------------------------------------- |
---|
| 77 | !real*8, parameter :: Ci(L_NSPECTI)=[ & |
---|
| 78 | ! 3.8E-5, 1.2E-5, 2.8E-6, 7.6E-7, 4.5E-7, 2.3E-7, & |
---|
| 79 | ! 5.4E-7, 1.6E-6, 0.0, & |
---|
| 80 | ! 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
| 81 | ! 0.0, 4.0E-7, 4.0E-6, 1.4E-5, & |
---|
| 82 | ! 1.0E-5, 1.2E-6, 2.0E-7, 5.0E-8, 3.0E-8, 0.0 ] |
---|
| 83 | !real*8, parameter :: Ti(L_NSPECTI)=[ -2.2, -1.9, & |
---|
| 84 | ! -1.7, -1.7, -1.7, -1.7, -1.7, -1.7, & |
---|
| 85 | ! 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
| 86 | ! -1.7,-1.7,-1.7,-1.7,-1.7,-1.7,-1.7, -1.7,0.0 ] |
---|
| 87 | !---------------------------------------------------------- |
---|
[253] | 88 | |
---|
[716] | 89 | !======================================================================= |
---|
| 90 | ! Determine the total gas opacity throughout the column, for each |
---|
| 91 | ! spectral interval, NW, and each Gauss point, NG. |
---|
[135] | 92 | |
---|
[716] | 93 | taugsurf(:,:) = 0.0 |
---|
| 94 | dpr(:) = 0.0 |
---|
| 95 | lkcoef(:,:) = 0.0 |
---|
[135] | 96 | |
---|
[716] | 97 | do K=2,L_LEVELS |
---|
| 98 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
[135] | 99 | |
---|
[716] | 100 | !--- Kasting's CIA ---------------------------------------- |
---|
| 101 | !dz(k)=dpr(k)*189.02*TMID(K)/(0.03720*PMID(K)) |
---|
| 102 | ! this is CO2 path length (in cm) as written by Francois |
---|
| 103 | ! delta_z = delta_p * R_specific * T / (g * P) |
---|
| 104 | ! But Kasting states that W is in units of _atmosphere_ cm |
---|
| 105 | ! So we do |
---|
| 106 | !dz(k)=dz(k)*(PMID(K)/1013.25) |
---|
| 107 | !dz(k)=dz(k)/100.0 ! in m for SI calc |
---|
| 108 | !---------------------------------------------------------- |
---|
[135] | 109 | |
---|
[716] | 110 | ! if we have continuum opacities, we need dz |
---|
| 111 | if(kastprof)then |
---|
| 112 | dz(k) = dpr(k)*(1000.0*8.3145/muvar(k))*TMID(K)/(g*PMID(K)) |
---|
| 113 | U(k) = (Cmk*mugaz/(muvar(k)))*DPR(k) |
---|
| 114 | else |
---|
| 115 | dz(k) = dpr(k)*R*TMID(K)/(g*PMID(K)) |
---|
| 116 | U(k) = Cmk*DPR(k) ! only Cmk line in optci.F |
---|
| 117 | endif |
---|
[135] | 118 | |
---|
[716] | 119 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & |
---|
| 120 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
---|
[135] | 121 | |
---|
[716] | 122 | do LK=1,4 |
---|
| 123 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 124 | end do |
---|
[253] | 125 | |
---|
[135] | 126 | |
---|
[716] | 127 | DO NW=1,L_NSPECTI |
---|
| 128 | do iaer=1,naerkind |
---|
| 129 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXIAER(K,NW,IAER) |
---|
| 130 | end do |
---|
| 131 | END DO |
---|
| 132 | end do ! levels |
---|
[135] | 133 | |
---|
[716] | 134 | do K=2,L_LEVELS |
---|
| 135 | do nw=1,L_NSPECTI |
---|
[135] | 136 | |
---|
[716] | 137 | DCONT = 0.0 ! continuum absorption |
---|
[135] | 138 | |
---|
[716] | 139 | if(Continuum.and.(.not.graybody))then |
---|
| 140 | ! include continua if necessary |
---|
| 141 | wn_cont = dble(wnoi(nw)) |
---|
| 142 | T_cont = dble(TMID(k)) |
---|
| 143 | do igas=1,ngasmx |
---|
[135] | 144 | |
---|
[716] | 145 | if(gfrac(igas).eq.-1)then ! variable |
---|
| 146 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
---|
| 147 | else |
---|
| 148 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
| 149 | endif |
---|
[253] | 150 | |
---|
[716] | 151 | dtemp=0.0 |
---|
| 152 | if(igas.eq.igas_N2)then |
---|
[305] | 153 | |
---|
[716] | 154 | call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.) |
---|
[253] | 155 | |
---|
[716] | 156 | elseif(igas.eq.igas_H2)then |
---|
[253] | 157 | |
---|
[716] | 158 | ! first do self-induced absorption |
---|
| 159 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.) |
---|
[253] | 160 | |
---|
[716] | 161 | ! then cross-interactions with other gases |
---|
| 162 | do jgas=1,ngasmx |
---|
| 163 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
| 164 | dtempc = 0.0 |
---|
| 165 | if(jgas.eq.igas_N2)then |
---|
| 166 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.) |
---|
| 167 | elseif(jgas.eq.igas_He)then |
---|
| 168 | call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.) |
---|
| 169 | endif |
---|
| 170 | dtemp = dtemp + dtempc |
---|
| 171 | enddo |
---|
[135] | 172 | |
---|
[716] | 173 | elseif(igas.eq.igas_H2O.and.T_cont.gt.200.0)then |
---|
[135] | 174 | |
---|
[716] | 175 | p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! |
---|
| 176 | if(H2Ocont_simple)then |
---|
| 177 | call interpolateH2Ocont_PPC(wn_cont,T_cont,p_cont,p_air,dtemp,.false.) |
---|
| 178 | else |
---|
| 179 | call interpolateH2Ocont_CKD(wn_cont,T_cont,p_cont,p_air,dtemp,.false.) |
---|
| 180 | endif |
---|
[135] | 181 | |
---|
[716] | 182 | endif |
---|
[135] | 183 | |
---|
[716] | 184 | DCONT = DCONT + dtemp |
---|
[135] | 185 | |
---|
[716] | 186 | enddo |
---|
[135] | 187 | |
---|
[716] | 188 | ! Oobleck test |
---|
| 189 | !rho = PMID(k)*scalep / (TMID(k)*286.99) |
---|
| 190 | !if(WNOI(nw).gt.300.0 .and. WNOI(nw).lt.500.0)then |
---|
| 191 | ! DCONT = rho * 0.125 * 4.6e-4 |
---|
| 192 | !elseif(WNOI(nw).gt.500.0 .and. WNOI(nw).lt.700.0)then |
---|
| 193 | ! DCONT = 1000*dpr(k) * 1.0 * 4.6e-4 / g |
---|
| 194 | ! DCONT = rho * 1.0 * 4.6e-4 |
---|
| 195 | !elseif(WNOI(nw).gt.700.0 .and. WNOI(nw).lt.900.0)then |
---|
| 196 | ! DCONT = rho * 0.125 * 4.6e-4 |
---|
| 197 | !endif |
---|
[135] | 198 | |
---|
[716] | 199 | DCONT = DCONT*dz(k) |
---|
[135] | 200 | |
---|
[716] | 201 | endif |
---|
[135] | 202 | |
---|
[716] | 203 | ! RW 7/3/12: already done above |
---|
| 204 | !if(.not.Continuum)then |
---|
| 205 | ! DCONT=0.0 |
---|
| 206 | !endif |
---|
[253] | 207 | |
---|
[716] | 208 | !--- Kasting's CIA ---------------------------------------- |
---|
| 209 | !DCO2 = dz(k)*Ci(nw)*(1.2859*PMID(k)/1000.0)*(TMID(k)/300.)**Ti(nw) |
---|
| 210 | !DCO2 = 130*Ci(nw)*(pmid(k)/1013.25)**2*(tmid(k)/300.)**Ti(nw) * dz(k) |
---|
| 211 | ! these two have been verified to give the same results |
---|
| 212 | !---------------------------------------------------------- |
---|
[135] | 213 | |
---|
[716] | 214 | do ng=1,L_NGAUSS-1 |
---|
[135] | 215 | |
---|
[716] | 216 | ! Now compute TAUGAS |
---|
[135] | 217 | |
---|
[716] | 218 | ! Interpolate between water mixing ratios |
---|
| 219 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
---|
| 220 | ! the water data range |
---|
[253] | 221 | |
---|
[716] | 222 | if(L_REFVAR.eq.1)then ! added by RW for special no variable case |
---|
| 223 | KCOEF(1) = GASI(MT(K),MP(K),1,NW,NG) |
---|
| 224 | KCOEF(2) = GASI(MT(K),MP(K)+1,1,NW,NG) |
---|
| 225 | KCOEF(3) = GASI(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 226 | KCOEF(4) = GASI(MT(K)+1,MP(K),1,NW,NG) |
---|
| 227 | else |
---|
[135] | 228 | |
---|
[716] | 229 | KCOEF(1) = GASI(MT(K),MP(K),NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 230 | (GASI(MT(K),MP(K),NVAR(K)+1,NW,NG) - & |
---|
| 231 | GASI(MT(K),MP(K),NVAR(K),NW,NG)) |
---|
[135] | 232 | |
---|
[716] | 233 | KCOEF(2) = GASI(MT(K),MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 234 | (GASI(MT(K),MP(K)+1,NVAR(K)+1,NW,NG) - & |
---|
| 235 | GASI(MT(K),MP(K)+1,NVAR(K),NW,NG)) |
---|
[135] | 236 | |
---|
[716] | 237 | KCOEF(3) = GASI(MT(K)+1,MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 238 | (GASI(MT(K)+1,MP(K)+1,NVAR(K)+1,NW,NG) - & |
---|
| 239 | GASI(MT(K)+1,MP(K)+1,NVAR(K),NW,NG)) |
---|
[135] | 240 | |
---|
[716] | 241 | KCOEF(4) = GASI(MT(K)+1,MP(K),NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 242 | (GASI(MT(K)+1,MP(K),NVAR(K)+1,NW,NG) - & |
---|
| 243 | GASI(MT(K)+1,MP(K),NVAR(K),NW,NG)) |
---|
| 244 | endif |
---|
[135] | 245 | |
---|
[716] | 246 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
[135] | 247 | |
---|
[716] | 248 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
| 249 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
[135] | 250 | |
---|
[716] | 251 | TAUGAS = U(k)*ANS |
---|
[135] | 252 | |
---|
[716] | 253 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
| 254 | DTAUKI(K,nw,ng) = TAUGAS + DCONT ! For parameterized continuum absorption |
---|
[135] | 255 | |
---|
[716] | 256 | do iaer=1,naerkind |
---|
| 257 | DTAUKI(K,nw,ng) = DTAUKI(K,nw,ng) + TAEROS(K,NW,IAER) |
---|
| 258 | end do ! a bug was here! |
---|
[135] | 259 | |
---|
[716] | 260 | end do |
---|
[135] | 261 | |
---|
[716] | 262 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 263 | ! which holds continuum opacity only |
---|
[135] | 264 | |
---|
[716] | 265 | NG = L_NGAUSS |
---|
| 266 | DTAUKI(K,nw,ng) = 0.0 + DCONT ! For parameterized continuum absorption |
---|
[135] | 267 | |
---|
[716] | 268 | do iaer=1,naerkind |
---|
| 269 | DTAUKI(K,nw,ng) = DTAUKI(K,nw,ng) + TAEROS(K,NW,IAER) |
---|
| 270 | end do ! a bug was here! |
---|
[135] | 271 | |
---|
[716] | 272 | end do |
---|
| 273 | end do |
---|
[135] | 274 | |
---|
| 275 | |
---|
[716] | 276 | !======================================================================= |
---|
| 277 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 278 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
[135] | 279 | |
---|
[716] | 280 | DO NW=1,L_NSPECTI |
---|
| 281 | DO K=2,L_LEVELS+1 |
---|
| 282 | do iaer=1,naerkind |
---|
| 283 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER)*QSIAER(K,NW,IAER) |
---|
| 284 | end do |
---|
| 285 | ENDDO |
---|
| 286 | ENDDO |
---|
[135] | 287 | |
---|
[716] | 288 | DO NW=1,L_NSPECTI |
---|
| 289 | NG = L_NGAUSS |
---|
| 290 | DO L=1,L_NLAYRAD |
---|
[135] | 291 | |
---|
[716] | 292 | K = 2*L+1 |
---|
| 293 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) + DTAUKI(K+1,NW,NG)! + 1.e-50 |
---|
[135] | 294 | |
---|
[716] | 295 | atemp = 0. |
---|
| 296 | btemp = 0. |
---|
| 297 | if(DTAUI(L,NW,NG) .GT. 1.0E-9) then |
---|
| 298 | do iaer=1,naerkind |
---|
| 299 | atemp = atemp + & |
---|
| 300 | GIAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) + & |
---|
| 301 | GIAER(K+1,NW,IAER) * TAUAEROLK(K+1,NW,IAER) |
---|
| 302 | btemp = btemp + TAUAEROLK(K,NW,IAER) + TAUAEROLK(K+1,NW,IAER) |
---|
| 303 | ! * + 1.e-10 |
---|
| 304 | end do |
---|
| 305 | WBARI(L,nw,ng) = btemp / DTAUI(L,NW,NG) |
---|
| 306 | else |
---|
| 307 | WBARI(L,nw,ng) = 0.0D0 |
---|
| 308 | DTAUI(L,NW,NG) = 1.0E-9 |
---|
| 309 | endif |
---|
[135] | 310 | |
---|
[716] | 311 | if(btemp .GT. 0.0) then |
---|
| 312 | cosbi(L,NW,NG) = atemp/btemp |
---|
| 313 | else |
---|
| 314 | cosbi(L,NW,NG) = 0.0D0 |
---|
| 315 | end if |
---|
[135] | 316 | |
---|
[716] | 317 | END DO ! L vertical loop |
---|
[135] | 318 | |
---|
[716] | 319 | ! Now the other Gauss points, if needed. |
---|
[135] | 320 | |
---|
[716] | 321 | DO NG=1,L_NGAUSS-1 |
---|
| 322 | IF(TAUGSURF(NW,NG) .gt. TLIMIT) THEN |
---|
[135] | 323 | |
---|
[716] | 324 | DO L=1,L_NLAYRAD |
---|
| 325 | K = 2*L+1 |
---|
| 326 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)+DTAUKI(K+1,NW,NG)! + 1.e-50 |
---|
| 327 | |
---|
| 328 | btemp = 0. |
---|
| 329 | if(DTAUI(L,NW,NG) .GT. 1.0E-9) then |
---|
| 330 | |
---|
| 331 | do iaer=1,naerkind |
---|
| 332 | btemp = btemp + TAUAEROLK(K,NW,IAER) + TAUAEROLK(K+1,NW,IAER) |
---|
| 333 | end do |
---|
| 334 | WBARI(L,nw,ng) = btemp / DTAUI(L,NW,NG) |
---|
| 335 | |
---|
| 336 | else |
---|
| 337 | WBARI(L,nw,ng) = 0.0D0 |
---|
| 338 | DTAUI(L,NW,NG) = 1.0E-9 |
---|
| 339 | endif |
---|
| 340 | |
---|
| 341 | cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) |
---|
| 342 | END DO ! L vertical loop |
---|
| 343 | END IF |
---|
| 344 | |
---|
| 345 | END DO ! NG Gauss loop |
---|
| 346 | END DO ! NW spectral loop |
---|
| 347 | |
---|
| 348 | ! Total extinction optical depths |
---|
| 349 | |
---|
| 350 | DO NW=1,L_NSPECTI |
---|
| 351 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 352 | TAUI(1,NW,NG)=0.0D0 |
---|
| 353 | DO L=1,L_NLAYRAD |
---|
| 354 | TAUI(L+1,NW,NG)=TAUI(L,NW,NG)+DTAUI(L,NW,NG) |
---|
| 355 | END DO |
---|
| 356 | |
---|
| 357 | TAUCUMI(1,NW,NG)=0.0D0 |
---|
| 358 | DO K=2,L_LEVELS |
---|
| 359 | TAUCUMI(K,NW,NG)=TAUCUMI(K-1,NW,NG)+DTAUKI(K,NW,NG) |
---|
| 360 | END DO |
---|
| 361 | END DO ! end full gauss loop |
---|
| 362 | END DO |
---|
| 363 | |
---|
| 364 | ! be aware when comparing with textbook results |
---|
| 365 | ! (e.g. Pierrehumbert p. 218) that |
---|
| 366 | ! taucumi does not take the <cos theta>=0.5 factor into |
---|
| 367 | ! account. It is the optical depth for a vertically |
---|
| 368 | ! ascending ray with angle theta = 0. |
---|
| 369 | |
---|
| 370 | !open(127,file='taucum.out') |
---|
| 371 | !do nw=1,L_NSPECTI |
---|
| 372 | ! write(127,*) taucumi(L_LEVELS,nw,L_NGAUSS) |
---|
| 373 | !enddo |
---|
| 374 | !close(127) |
---|
| 375 | |
---|
| 376 | return |
---|
| 377 | |
---|
| 378 | |
---|
| 379 | end subroutine optci |
---|
| 380 | |
---|
| 381 | |
---|
| 382 | |
---|