[135] | 1 | subroutine optci(PLEV,TLEV,DTAUI,TAUCUMI, & |
---|
| 2 | QXIAER,QSIAER,GIAER,COSBI,WBARI,TAUAERO, & |
---|
| 3 | TMID,PMID,TAUGSURF,QVAR) |
---|
| 4 | |
---|
| 5 | use radinc_h |
---|
[253] | 6 | use radcommon_h, only: gasi, tlimit, wrefVAR, Cmk,tgasref,pfgasref,wnoi,scalep |
---|
[135] | 7 | implicit none |
---|
| 8 | |
---|
| 9 | !================================================================== |
---|
| 10 | ! |
---|
| 11 | ! Purpose |
---|
| 12 | ! ------- |
---|
| 13 | ! Calculates longwave optical constants at each level. For each |
---|
| 14 | ! layer and spectral interval in the IR it calculates WBAR, DTAU |
---|
| 15 | ! and COSBAR. For each level it calculates TAU. |
---|
| 16 | ! |
---|
| 17 | ! TAUI(L,LW) is the cumulative optical depth at level L (or alternatively |
---|
| 18 | ! at the *bottom* of layer L), LW is the spectral wavelength interval. |
---|
| 19 | ! |
---|
| 20 | ! TLEV(L) - Temperature at the layer boundary (i.e., level) |
---|
| 21 | ! PLEV(L) - Pressure at the layer boundary (i.e., level) |
---|
| 22 | ! |
---|
| 23 | ! Authors |
---|
| 24 | ! ------- |
---|
| 25 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
| 26 | ! |
---|
| 27 | !================================================================== |
---|
| 28 | |
---|
| 29 | |
---|
| 30 | #include "comcstfi.h" |
---|
| 31 | #include "callkeys.h" |
---|
[253] | 32 | #include "gases.h" |
---|
[135] | 33 | |
---|
| 34 | |
---|
| 35 | real*8 DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 36 | real*8 DTAUKI(L_LEVELS+1,L_NSPECTI,L_NGAUSS) |
---|
| 37 | real*8 TAUI(L_NLEVRAD,L_NSPECTI,L_NGAUSS) |
---|
| 38 | real*8 TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
| 39 | real*8 PLEV(L_LEVELS) |
---|
| 40 | real*8 TLEV(L_LEVELS) |
---|
| 41 | real*8 TMID(L_LEVELS), PMID(L_LEVELS) |
---|
| 42 | real*8 COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 43 | real*8 WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 44 | |
---|
| 45 | ! For aerosols |
---|
| 46 | real*8 QXIAER(L_LEVELS+1,L_NSPECTI,NAERKIND) |
---|
| 47 | real*8 QSIAER(L_LEVELS+1,L_NSPECTI,NAERKIND) |
---|
| 48 | real*8 GIAER(L_LEVELS+1,L_NSPECTI,NAERKIND) |
---|
| 49 | real*8 TAUAERO(L_LEVELS+1,NAERKIND) |
---|
| 50 | real*8 TAUAEROLK(L_LEVELS+1,L_NSPECTI,NAERKIND) |
---|
| 51 | real*8 TAEROS(L_LEVELS,L_NSPECTI,NAERKIND) |
---|
| 52 | |
---|
| 53 | integer L, NW, NG, K, LK, IAER |
---|
| 54 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 55 | real*8 ANS, TAUGAS |
---|
| 56 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 57 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
| 58 | |
---|
| 59 | real*8 taugsurf(L_NSPECTI,L_NGAUSS-1) |
---|
[253] | 60 | real*8 DCONT |
---|
| 61 | double precision wn_cont, p_cont, T_cont |
---|
[135] | 62 | |
---|
| 63 | ! Water mixing ratio variables |
---|
| 64 | real*8 QVAR(L_LEVELS), WRATIO(L_LEVELS) |
---|
| 65 | real*8 KCOEF(4) |
---|
| 66 | integer NVAR(L_LEVELS) |
---|
| 67 | |
---|
| 68 | ! temporary variables for multiple aerosol calculation |
---|
| 69 | real*8 atemp, btemp |
---|
| 70 | |
---|
| 71 | ! variables for k in units m^-1 |
---|
[253] | 72 | real*8 rho, dz(L_LEVELS) |
---|
[135] | 73 | |
---|
[253] | 74 | integer igas |
---|
| 75 | |
---|
| 76 | !--- Kasting's CIA ---------------------------------------- |
---|
| 77 | !real*8, parameter :: Ci(L_NSPECTI)=[ & |
---|
| 78 | ! 3.8E-5, 1.2E-5, 2.8E-6, 7.6E-7, 4.5E-7, 2.3E-7, & |
---|
| 79 | ! 5.4E-7, 1.6E-6, 0.0, & |
---|
| 80 | ! 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
| 81 | ! 0.0, 4.0E-7, 4.0E-6, 1.4E-5, & |
---|
| 82 | ! 1.0E-5, 1.2E-6, 2.0E-7, 5.0E-8, 3.0E-8, 0.0 ] |
---|
| 83 | !real*8, parameter :: Ti(L_NSPECTI)=[ -2.2, -1.9, & |
---|
| 84 | ! -1.7, -1.7, -1.7, -1.7, -1.7, -1.7, & |
---|
| 85 | ! 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
| 86 | ! -1.7,-1.7,-1.7,-1.7,-1.7,-1.7,-1.7, -1.7,0.0 ] |
---|
| 87 | !---------------------------------------------------------- |
---|
| 88 | |
---|
[135] | 89 | !======================================================================= |
---|
| 90 | ! Determine the total gas opacity throughout the column, for each |
---|
| 91 | ! spectral interval, NW, and each Gauss point, NG. |
---|
| 92 | |
---|
[253] | 93 | taugsurf(:,:) = 0.0 |
---|
| 94 | dpr(:) = 0.0 |
---|
| 95 | lkcoef(:,:) = 0.0 |
---|
[135] | 96 | |
---|
| 97 | do K=2,L_LEVELS |
---|
| 98 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
[253] | 99 | U(k) = Cmk*DPR(k) ! only Cmk line in optci.F |
---|
[135] | 100 | |
---|
[253] | 101 | !--- Kasting's CIA ---------------------------------------- |
---|
| 102 | !dz(k)=dpr(k)*189.02*TMID(K)/(0.03720*PMID(K)) |
---|
| 103 | ! this is CO2 path length (in cm) as written by Francois |
---|
| 104 | ! delta_z = delta_p * R_specific * T / (g * P) |
---|
| 105 | ! But Kasting states that W is in units of _atmosphere_ cm |
---|
| 106 | ! So we do |
---|
| 107 | !dz(k)=dz(k)*(PMID(K)/1013.25) |
---|
| 108 | !dz(k)=dz(k)/100.0 ! in m for SI calc |
---|
| 109 | !---------------------------------------------------------- |
---|
[135] | 110 | |
---|
[253] | 111 | ! if we have continuum opacities, we need dz |
---|
| 112 | dz(k)=dpr(k)*R*TMID(K)/(g*PMID(K)) |
---|
[135] | 113 | |
---|
| 114 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & |
---|
| 115 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
---|
[253] | 116 | |
---|
[135] | 117 | do LK=1,4 |
---|
| 118 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 119 | end do |
---|
| 120 | |
---|
[253] | 121 | |
---|
[135] | 122 | DO NW=1,L_NSPECTI |
---|
| 123 | do iaer=1,naerkind |
---|
[253] | 124 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXIAER(K,NW,IAER) |
---|
[135] | 125 | end do |
---|
| 126 | END DO |
---|
| 127 | end do ! levels |
---|
| 128 | |
---|
| 129 | do K=2,L_LEVELS |
---|
| 130 | do nw=1,L_NSPECTI |
---|
| 131 | |
---|
[253] | 132 | DCONT = 0.0 ! continuum absorption |
---|
[135] | 133 | |
---|
[253] | 134 | ! include H2 continuum |
---|
| 135 | do igas=1,ngasmx |
---|
| 136 | if(gnom(igas).eq.'H2_')then |
---|
[135] | 137 | |
---|
[253] | 138 | wn_cont = dble(wnoi(nw)) |
---|
| 139 | T_cont = dble(TMID(k)) |
---|
| 140 | p_cont = dble(PMID(k)*scalep*gfrac(igas)) |
---|
[135] | 141 | |
---|
[253] | 142 | call interpolateH2H2(wn_cont,T_cont,p_cont,DCONT,.false.) |
---|
[135] | 143 | |
---|
[253] | 144 | DCONT=DCONT*dz(k) |
---|
| 145 | |
---|
| 146 | |
---|
| 147 | endif |
---|
| 148 | enddo |
---|
| 149 | |
---|
| 150 | !--- Kasting's CIA ---------------------------------------- |
---|
| 151 | !DCO2 = dz(k)*Ci(nw)*(1.2859*PMID(k)/1000.0)*(TMID(k)/300.)**Ti(nw) |
---|
| 152 | !DCO2 = 130*Ci(nw)*(pmid(k)/1013.25)**2*(tmid(k)/300.)**Ti(nw) * dz(k) |
---|
| 153 | ! these two have been verified to give the same results |
---|
| 154 | !---------------------------------------------------------- |
---|
| 155 | |
---|
| 156 | ! Water continuum currently inactive! |
---|
| 157 | !if(varactive)then |
---|
| 158 | ! call water_cont(PMID(K),TMID(K),WRATIO(K),WNOI(nw),DCO2) |
---|
| 159 | !endif |
---|
| 160 | |
---|
| 161 | do ng=1,L_NGAUSS-1 |
---|
| 162 | |
---|
[135] | 163 | ! Now compute TAUGAS |
---|
| 164 | |
---|
| 165 | ! Interpolate between water mixing ratios |
---|
| 166 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
---|
| 167 | ! the water data range |
---|
| 168 | |
---|
[253] | 169 | if(L_REFVAR.eq.1)then ! added by RW for special no variable case |
---|
[135] | 170 | KCOEF(1) = GASI(MT(K),MP(K),1,NW,NG) |
---|
| 171 | KCOEF(2) = GASI(MT(K),MP(K)+1,1,NW,NG) |
---|
| 172 | KCOEF(3) = GASI(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 173 | KCOEF(4) = GASI(MT(K)+1,MP(K),1,NW,NG) |
---|
| 174 | else |
---|
| 175 | |
---|
[253] | 176 | KCOEF(1) = GASI(MT(K),MP(K),NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 177 | (GASI(MT(K),MP(K),NVAR(K)+1,NW,NG) - & |
---|
| 178 | GASI(MT(K),MP(K),NVAR(K),NW,NG)) |
---|
[135] | 179 | |
---|
[253] | 180 | KCOEF(2) = GASI(MT(K),MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 181 | (GASI(MT(K),MP(K)+1,NVAR(K)+1,NW,NG) - & |
---|
| 182 | GASI(MT(K),MP(K)+1,NVAR(K),NW,NG)) |
---|
[135] | 183 | |
---|
[253] | 184 | KCOEF(3) = GASI(MT(K)+1,MP(K)+1,NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 185 | (GASI(MT(K)+1,MP(K)+1,NVAR(K)+1,NW,NG) - & |
---|
| 186 | GASI(MT(K)+1,MP(K)+1,NVAR(K),NW,NG)) |
---|
[135] | 187 | |
---|
[253] | 188 | KCOEF(4) = GASI(MT(K)+1,MP(K),NVAR(K),NW,NG) + WRATIO(K)* & |
---|
| 189 | (GASI(MT(K)+1,MP(K),NVAR(K)+1,NW,NG) - & |
---|
| 190 | GASI(MT(K)+1,MP(K),NVAR(K),NW,NG)) |
---|
[135] | 191 | endif |
---|
| 192 | |
---|
| 193 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
| 194 | |
---|
[253] | 195 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
[135] | 196 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
[253] | 197 | |
---|
[135] | 198 | TAUGAS = U(k)*ANS |
---|
| 199 | |
---|
[253] | 200 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
| 201 | !TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS |
---|
[135] | 202 | |
---|
[253] | 203 | DTAUKI(K,nw,ng) = TAUGAS + DCONT ! For parameterized continuum absorption |
---|
| 204 | |
---|
[135] | 205 | do iaer=1,naerkind |
---|
[253] | 206 | DTAUKI(K,nw,ng) = DTAUKI(K,nw,ng) + TAEROS(K,NW,IAER) |
---|
| 207 | end do ! a bug was here! |
---|
[135] | 208 | |
---|
| 209 | end do |
---|
| 210 | |
---|
| 211 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 212 | ! which holds continuum opacity only |
---|
| 213 | |
---|
| 214 | NG = L_NGAUSS |
---|
[253] | 215 | DTAUKI(K,nw,ng) = 0.0 + DCONT ! For parameterized continuum absorption |
---|
| 216 | |
---|
[135] | 217 | do iaer=1,naerkind |
---|
[253] | 218 | DTAUKI(K,nw,ng) = DTAUKI(K,nw,ng) + TAEROS(K,NW,IAER) |
---|
| 219 | end do ! a bug was here! |
---|
[135] | 220 | |
---|
| 221 | end do |
---|
| 222 | end do |
---|
| 223 | |
---|
| 224 | |
---|
| 225 | !======================================================================= |
---|
| 226 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 227 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
| 228 | |
---|
| 229 | DO NW=1,L_NSPECTI |
---|
| 230 | DO K=2,L_LEVELS+1 |
---|
| 231 | do iaer=1,naerkind |
---|
| 232 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER)*QSIAER(K,NW,IAER) |
---|
| 233 | end do |
---|
| 234 | ENDDO |
---|
| 235 | ENDDO |
---|
| 236 | |
---|
| 237 | DO NW=1,L_NSPECTI |
---|
| 238 | NG = L_NGAUSS |
---|
| 239 | DO L=1,L_NLAYRAD |
---|
| 240 | |
---|
| 241 | K = 2*L+1 |
---|
| 242 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) + DTAUKI(K+1,NW,NG)! + 1.e-50 |
---|
| 243 | |
---|
| 244 | atemp = 0. |
---|
| 245 | btemp = 0. |
---|
| 246 | if(DTAUI(L,NW,NG) .GT. 1.0E-9) then |
---|
| 247 | do iaer=1,naerkind |
---|
| 248 | atemp = atemp + & |
---|
| 249 | GIAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) + & |
---|
| 250 | GIAER(K+1,NW,IAER) * TAUAEROLK(K+1,NW,IAER) |
---|
| 251 | btemp = btemp + TAUAEROLK(K,NW,IAER) + TAUAEROLK(K+1,NW,IAER) |
---|
| 252 | ! * + 1.e-10 |
---|
| 253 | end do |
---|
| 254 | WBARI(L,nw,ng) = btemp / DTAUI(L,NW,NG) |
---|
| 255 | else |
---|
| 256 | WBARI(L,nw,ng) = 0.0D0 |
---|
| 257 | DTAUI(L,NW,NG) = 1.0E-9 |
---|
| 258 | endif |
---|
| 259 | |
---|
| 260 | if(btemp .GT. 0.0) then |
---|
| 261 | cosbi(L,NW,NG) = atemp/btemp |
---|
| 262 | else |
---|
| 263 | cosbi(L,NW,NG) = 0.0D0 |
---|
| 264 | end if |
---|
| 265 | |
---|
| 266 | END DO ! L vertical loop |
---|
| 267 | |
---|
| 268 | ! Now the other Gauss points, if needed. |
---|
| 269 | |
---|
| 270 | DO NG=1,L_NGAUSS-1 |
---|
| 271 | IF(TAUGSURF(NW,NG) .gt. TLIMIT) THEN |
---|
| 272 | |
---|
| 273 | DO L=1,L_NLAYRAD |
---|
| 274 | K = 2*L+1 |
---|
| 275 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)+DTAUKI(K+1,NW,NG)! + 1.e-50 |
---|
| 276 | |
---|
| 277 | btemp = 0. |
---|
| 278 | if(DTAUI(L,NW,NG) .GT. 1.0E-9) then |
---|
| 279 | |
---|
| 280 | do iaer=1,naerkind |
---|
| 281 | btemp = btemp + TAUAEROLK(K,NW,IAER) + TAUAEROLK(K+1,NW,IAER) |
---|
| 282 | end do |
---|
| 283 | WBARI(L,nw,ng) = btemp / DTAUI(L,NW,NG) |
---|
| 284 | |
---|
| 285 | else |
---|
| 286 | WBARI(L,nw,ng) = 0.0D0 |
---|
| 287 | DTAUI(L,NW,NG) = 1.0E-9 |
---|
| 288 | endif |
---|
| 289 | |
---|
| 290 | cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) |
---|
| 291 | END DO ! L vertical loop |
---|
| 292 | END IF |
---|
| 293 | |
---|
| 294 | END DO ! NG Gauss loop |
---|
| 295 | END DO ! NW spectral loop |
---|
| 296 | |
---|
| 297 | ! Total extinction optical depths |
---|
| 298 | |
---|
| 299 | DO NW=1,L_NSPECTI |
---|
| 300 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 301 | TAUI(1,NW,NG)=0.0D0 |
---|
| 302 | DO L=1,L_NLAYRAD |
---|
| 303 | TAUI(L+1,NW,NG)=TAUI(L,NW,NG)+DTAUI(L,NW,NG) |
---|
| 304 | END DO |
---|
| 305 | |
---|
| 306 | TAUCUMI(1,NW,NG)=0.0D0 |
---|
| 307 | DO K=2,L_LEVELS |
---|
| 308 | TAUCUMI(K,NW,NG)=TAUCUMI(K-1,NW,NG)+DTAUKI(K,NW,NG) |
---|
| 309 | END DO |
---|
| 310 | END DO ! end full gauss loop |
---|
| 311 | END DO |
---|
| 312 | |
---|
| 313 | |
---|
| 314 | return |
---|
| 315 | end subroutine optci |
---|
| 316 | |
---|
| 317 | |
---|
| 318 | !------------------------------------------------------------------------- |
---|
[253] | 319 | subroutine water_cont(p,T,wratio,nu,DCONT) |
---|
[135] | 320 | ! Calculates the continuum opacity for H2O |
---|
[253] | 321 | ! NOT CURRENTLY USED |
---|
[135] | 322 | |
---|
| 323 | implicit none |
---|
| 324 | |
---|
[253] | 325 | real p, T, wratio, nu, DCONT |
---|
[135] | 326 | real h1, h2 |
---|
| 327 | |
---|
| 328 | h1 = exp(1800.*(1./T - 0.0034)) |
---|
| 329 | h2 = 1.25e-22 + 1.67e-19*exp(-2.62e-13*nu) |
---|
| 330 | |
---|
[253] | 331 | ! DCONT = h1*h2*p*(p*wratio)**2/(R*T) |
---|
| 332 | ! DCONT=0.0 ! to be implemented... |
---|
[135] | 333 | |
---|
| 334 | return |
---|
| 335 | |
---|
| 336 | end subroutine water_cont |
---|
[253] | 337 | |
---|