1 | !Completed |
---|
2 | MODULE ocean_slab_mod |
---|
3 | ! |
---|
4 | !================================================================== |
---|
5 | ! |
---|
6 | ! Purpose |
---|
7 | ! ------- |
---|
8 | ! The dynamical slab ocean model of the Generic-PCM. It has the following features: |
---|
9 | ! (a) Computes sea ice creation and evolution. |
---|
10 | ! (b) Snow has thermodynamic properties. |
---|
11 | ! (c) Computes oceanic horizontal transport (diffusion & surface-wind driven Ekman transport). |
---|
12 | ! (d) Can be used in parallel mode. |
---|
13 | ! |
---|
14 | ! Authors |
---|
15 | ! ------- |
---|
16 | ! S. Bhatnagar and E. Millour (2023) |
---|
17 | ! Adapted from the ocean modules of LMDZ Earth (F. Codron) and the Generic-PCM (B. Charnay, 2013). |
---|
18 | ! |
---|
19 | ! Notes |
---|
20 | ! ----- |
---|
21 | ! Compared to the old model, the new model has the following changes (non-exhaustive): |
---|
22 | ! (a) More realistic description of sea ice creation and evolution - simultaneous |
---|
23 | ! surface, side and bottom melting / freezing depending on fluxes. |
---|
24 | ! (b) Snow has an effective heat capacity. |
---|
25 | ! (c) Snow has "weight"; it can sink an ice block if there is too much of it. |
---|
26 | ! (d) Snow can be blown off by wind. |
---|
27 | ! (e) The two-layer ocean allows for convective adjustment. |
---|
28 | ! (f) Diffusion can follow the Gent-McWilliams scheme + Eddy diffusivity. |
---|
29 | ! (g) Can be used in parallel mode. |
---|
30 | ! |
---|
31 | !================================================================== |
---|
32 | |
---|
33 | USE dimphy, ONLY: klon |
---|
34 | USE mod_grid_phy_lmdz, ONLY: klon_glo |
---|
35 | USE mod_phys_lmdz_mpi_data, ONLY: is_mpi_root |
---|
36 | |
---|
37 | IMPLICIT NONE |
---|
38 | PRIVATE |
---|
39 | PUBLIC :: ocean_slab_init, ocean_slab_ice, ocean_slab_noice, & |
---|
40 | ocean_slab_frac, ocean_slab_get_vars, ocean_slab_final |
---|
41 | |
---|
42 | !*********************************************************************************** |
---|
43 | ! Global saved variables |
---|
44 | !*********************************************************************************** |
---|
45 | ! number of slab vertical layers |
---|
46 | INTEGER, PUBLIC, SAVE :: nslay=2 |
---|
47 | !$OMP THREADPRIVATE(nslay) |
---|
48 | ! number of oceanic grid points |
---|
49 | INTEGER, PUBLIC, SAVE :: knon |
---|
50 | !$OMP THREADPRIVATE(knon) |
---|
51 | ! timestep for coupling (update slab temperature) in timesteps |
---|
52 | INTEGER, PRIVATE, SAVE :: cpl_pas |
---|
53 | !$OMP THREADPRIVATE(cpl_pas) |
---|
54 | ! cyang = 1/heat capacity of top layer (rho.c.H) |
---|
55 | REAL, PRIVATE, SAVE :: cyang |
---|
56 | !$OMP THREADPRIVATE(cyang) |
---|
57 | ! depth of slab layers (1st or 2nd layer) |
---|
58 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: slabh |
---|
59 | !$OMP THREADPRIVATE(slabh) |
---|
60 | ! slab temperature |
---|
61 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: tslab |
---|
62 | !$OMP THREADPRIVATE(tslab) |
---|
63 | ! heat flux convergence due to Ekman |
---|
64 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_ekman |
---|
65 | !$OMP THREADPRIVATE(dt_ekman) |
---|
66 | ! heat flux convergence due to horiz diffusion |
---|
67 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_hdiff |
---|
68 | !$OMP THREADPRIVATE(dt_hdiff) |
---|
69 | ! heat flux convergence due to GM eddy advection |
---|
70 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_gm |
---|
71 | !$OMP THREADPRIVATE(dt_gm) |
---|
72 | ! fraction of ocean covered by sea ice (sic / (oce+sic)) |
---|
73 | REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: fsic |
---|
74 | !$OMP THREADPRIVATE(fsic) |
---|
75 | ! temperature of the sea ice |
---|
76 | REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: tice |
---|
77 | !$OMP THREADPRIVATE(tice) |
---|
78 | ! sea ice thickness, in kg/m2 |
---|
79 | REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: seaice |
---|
80 | !$OMP THREADPRIVATE(seaice) |
---|
81 | ! net surface heat flux, weighted by open ocean fraction |
---|
82 | ! slab_bils accumulated over cpl_pas timesteps |
---|
83 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: bils_cum |
---|
84 | !$OMP THREADPRIVATE(bils_cum) |
---|
85 | ! net heat flux into the ocean below the ice : conduction + solar radiation |
---|
86 | REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: slab_bilg |
---|
87 | !$OMP THREADPRIVATE(slab_bilg) |
---|
88 | ! slab_bilg cululated over cpl_pas timesteps |
---|
89 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: bilg_cum |
---|
90 | !$OMP THREADPRIVATE(bilg_cum) |
---|
91 | ! wind stress saved over cpl_pas timesteps |
---|
92 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: taux_cum |
---|
93 | !$OMP THREADPRIVATE(taux_cum) |
---|
94 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: tauy_cum |
---|
95 | !$OMP THREADPRIVATE(tauy_cum) |
---|
96 | |
---|
97 | !*********************************************************************************** |
---|
98 | ! Parameters (could be read in def file: move to slab_init) |
---|
99 | !*********************************************************************************** |
---|
100 | ! snow and ice physical characteristics: |
---|
101 | REAL, PARAMETER :: t_freeze=271.35 ! freezing sea water temp [in K] |
---|
102 | REAL, PARAMETER :: t_melt=273.15 ! melting ice temp [in K] |
---|
103 | REAL, PARAMETER :: sno_den=300. !mean snow density [in kg/m3] |
---|
104 | REAL, PARAMETER :: ice_den=917. ! ice density [in kg/m3] |
---|
105 | REAL, PARAMETER :: sea_den=1026. ! sea water density [in kg/m3] |
---|
106 | REAL, PARAMETER :: ice_cond=2.17*ice_den !conductivity of ice [in W/(m.K) or (W.kg)/(K.m4)] |
---|
107 | REAL, PRIVATE, SAVE :: sno_cond ! conductivity of snow [in W/(m.K) or (W.kg)/(K.m4)] |
---|
108 | !$OMP THREADPRIVATE(sno_cond) |
---|
109 | REAL, PARAMETER :: ice_cap=2067. ! specific heat capacity, snow and ice [in J/(kg.K)] |
---|
110 | REAL, PARAMETER :: sea_cap=3994. ! specific heat capacity, seawater [in J/(kg.K)] |
---|
111 | REAL, PARAMETER :: ice_lat=334000. ! freeze /melt latent heat snow and ice [in J/kg] |
---|
112 | REAL, PARAMETER :: ice_sub=2834000. ! latent heat of sublimation for snow and ice [in J/kg] |
---|
113 | |
---|
114 | ! control of snow and ice cover & freeze / melt (heights in m converted to kg/m2) |
---|
115 | REAL, PARAMETER, PUBLIC :: snow_min=0.05*sno_den ! critical snow height [in kg/m2] |
---|
116 | REAL, PARAMETER :: snow_wfact=0.4 ! max fraction of falling snow blown into ocean [in kg/m2] |
---|
117 | REAL, PARAMETER :: ice_frac_min=0.001 |
---|
118 | REAL, PRIVATE, SAVE :: ice_frac_max ! Max ice fraction (leads) |
---|
119 | !$OMP THREADPRIVATE(ice_frac_max) |
---|
120 | REAL, PARAMETER :: h_ice_min=0.01*ice_den ! min ice thickness [in kg/m2] |
---|
121 | REAL, PARAMETER :: h_ice_thin=0.15*ice_den ! thin ice thickness [in kg/m2] |
---|
122 | ! below ice_thin, priority is to melt lateral / grow height |
---|
123 | ! ice_thin is also height of new ice |
---|
124 | REAL, PRIVATE, SAVE :: h_ice_thick ! thin ice thickness |
---|
125 | !$OMP THREADPRIVATE(h_ice_thick) |
---|
126 | ! above ice_thick, priority is melt height / grow lateral |
---|
127 | REAL, PARAMETER :: h_ice_new=1.*ice_den ! max height of new open ocean ice [in kg/m2] |
---|
128 | REAL, PARAMETER :: h_ice_max=10.*ice_den ! max ice height [in kg/m2] |
---|
129 | |
---|
130 | REAL, PARAMETER :: epsfra=1.0E-05 ! minimial grid fraction size below which there is no ice |
---|
131 | |
---|
132 | REAL, PARAMETER, PUBLIC :: capcalocean=50.*4.228e+06 ! surface heat capacity [J.K-1.m-2] (assuming 50 m slab ocean) |
---|
133 | REAL, PARAMETER, PUBLIC :: capcalseaice=5.1444e+06*0.15 |
---|
134 | REAL, PARAMETER, PUBLIC :: capcalsno=2.3867e+06*0.15 |
---|
135 | |
---|
136 | REAL, PARAMETER, PUBLIC :: h_alb_ice=0.3*ice_den ! height (in kg/m2) used in the calculation of sea ice albedo vs thickness |
---|
137 | ! (changed from 50cm to 30cm based on comparisons with Brandt et al. 2005) ; more info in the slab ocean wiki page |
---|
138 | REAL, PARAMETER, PUBLIC :: h_sno_alb=0.02*sno_den ! height (in kg/m2) for control of snow fraction |
---|
139 | |
---|
140 | REAL, PARAMETER, PUBLIC :: alb_ice_min=0.08 ! minimum sea ice albedo used for calculation of albedo as a function of sea ice thickness (https://lmdz-forge.lmd.jussieu.fr/mediawiki/Planets/index.php/Slab_ocean_model) |
---|
141 | |
---|
142 | ! Horizontal transport parameters |
---|
143 | ! flag for horizontal diffusion |
---|
144 | LOGICAL, PUBLIC, SAVE :: slab_hdiff |
---|
145 | !$OMP THREADPRIVATE(slab_hdiff) |
---|
146 | ! flag for GM eddy diffusivity |
---|
147 | LOGICAL, PUBLIC, SAVE :: slab_gm |
---|
148 | !$OMP THREADPRIVATE(slab_gm) |
---|
149 | REAL, PRIVATE, SAVE :: coef_hdiff ! coefficient for horizontal diffusion |
---|
150 | !$OMP THREADPRIVATE(coef_hdiff) |
---|
151 | ! flags for Ekman, conv adjustment |
---|
152 | LOGICAL, PUBLIC, SAVE :: slab_ekman |
---|
153 | !$OMP THREADPRIVATE(slab_ekman) |
---|
154 | INTEGER, PUBLIC, SAVE :: slab_cadj |
---|
155 | !$OMP THREADPRIVATE(slab_cadj) |
---|
156 | |
---|
157 | !*********************************************************************************** |
---|
158 | |
---|
159 | CONTAINS |
---|
160 | ! |
---|
161 | !*********************************************************************************** |
---|
162 | ! |
---|
163 | SUBROUTINE ocean_slab_init(dtime, pctsrf_rst, tslab_rst, tice_rst, seaice_rst, zmasq) |
---|
164 | |
---|
165 | ! This routine |
---|
166 | ! (1) allocates variables initialised from restart fields |
---|
167 | ! (2) allocates some other variables internal to the ocean module |
---|
168 | |
---|
169 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
170 | USE mod_phys_lmdz_transfert_para, ONLY : gather |
---|
171 | USE slab_heat_transp_mod, ONLY : ini_slab_transp |
---|
172 | |
---|
173 | ! Input variables |
---|
174 | !*********************************************************************************** |
---|
175 | REAL, INTENT(IN) :: dtime |
---|
176 | ! Variables read from restart file |
---|
177 | REAL, DIMENSION(klon), INTENT(IN) :: pctsrf_rst |
---|
178 | REAL, DIMENSION(klon,nslay), INTENT(IN) :: tslab_rst |
---|
179 | REAL, DIMENSION(klon), INTENT(IN) :: tice_rst |
---|
180 | REAL, DIMENSION(klon), INTENT(IN) :: seaice_rst |
---|
181 | REAL, DIMENSION(klon), INTENT(IN) :: zmasq |
---|
182 | |
---|
183 | ! Local variables |
---|
184 | !************************************************************************************ |
---|
185 | INTEGER :: error |
---|
186 | REAL, DIMENSION(klon_glo) :: zmasq_glo |
---|
187 | CHARACTER (len = 80) :: abort_message |
---|
188 | CHARACTER (len = 20) :: modname = 'ocean_slab_init' |
---|
189 | |
---|
190 | !*********************************************************************************** |
---|
191 | ! Define some parameters |
---|
192 | !*********************************************************************************** |
---|
193 | ! |
---|
194 | ! cpl_pas coupling period (update of tslab and ice fraction) |
---|
195 | ! for a calculation at each physical timestep, cpl_pas=1 |
---|
196 | cpl_pas = NINT(86400./dtime * 1.0) ! une fois par jour |
---|
197 | CALL getin_p('cpl_pas',cpl_pas) |
---|
198 | print *,'cpl_pas',cpl_pas |
---|
199 | ! Number of slab layers |
---|
200 | ! nslay=2 |
---|
201 | ! CALL getin_p('slab_layers',nslay) |
---|
202 | print *,'number of slab layers : ',nslay |
---|
203 | ! Layer thickness |
---|
204 | ALLOCATE(slabh(nslay), stat = error) |
---|
205 | IF (error /= 0) THEN |
---|
206 | abort_message='Pb allocation slabh' |
---|
207 | CALL abort_physic(modname,abort_message,1) |
---|
208 | ENDIF |
---|
209 | slabh(1)=50. ! Height of first ocean layer (wind-mixed layer) |
---|
210 | CALL getin_p('slab_depth',slabh(1)) |
---|
211 | IF (nslay.GT.1) THEN |
---|
212 | slabh(2)=150. ! Height of second ocean layer (deep ocean layer) |
---|
213 | END IF |
---|
214 | ! cyang = 1/heat capacity of top layer (rho.c.H) |
---|
215 | cyang=1/(slabh(1)*sea_den*sea_cap) |
---|
216 | |
---|
217 | ! ********** Sea Ice parameters *********** |
---|
218 | ice_frac_max = 0.999999 ! frac = 1 may lead to some problems. |
---|
219 | CALL getin_p('ice_frac_max',ice_frac_max) |
---|
220 | h_ice_thick = 1.5 |
---|
221 | CALL getin_p('h_ice_thick',h_ice_thick) |
---|
222 | h_ice_thick = h_ice_thick * ice_den |
---|
223 | sno_cond = 0.31 |
---|
224 | CALL getin_p('sno_cond',sno_cond) |
---|
225 | sno_cond = sno_cond * sno_den |
---|
226 | |
---|
227 | ! ********** Heat Transport parameters **** |
---|
228 | ! Ekman transport |
---|
229 | ! slab_ekman=0 |
---|
230 | slab_ekman=.FALSE. |
---|
231 | CALL getin_p('slab_ekman',slab_ekman) |
---|
232 | ! GM eddy advection (2-layers only) |
---|
233 | slab_gm=.FALSE. |
---|
234 | CALL getin_p('slab_gm',slab_gm) |
---|
235 | ! IF (slab_ekman.LT.2) THEN |
---|
236 | IF (.NOT.slab_ekman) THEN |
---|
237 | slab_gm=.FALSE. |
---|
238 | ENDIF |
---|
239 | ! Horizontal diffusion |
---|
240 | slab_hdiff=.FALSE. |
---|
241 | CALL getin_p('slab_hdiff',slab_hdiff) |
---|
242 | IF (slab_gm) THEN |
---|
243 | coef_hdiff=8000. ! non-dimensional; coef_hdiff should be 25000 if GM is off |
---|
244 | ELSE |
---|
245 | coef_hdiff=25000. |
---|
246 | ENDIF |
---|
247 | CALL getin_p('coef_hdiff',coef_hdiff) |
---|
248 | |
---|
249 | ! Convective adjustment |
---|
250 | ! IF (nslay.EQ.1) THEN |
---|
251 | ! slab_cadj=0 |
---|
252 | ! ELSE |
---|
253 | slab_cadj=1 |
---|
254 | ! END IF |
---|
255 | CALL getin_p('slab_cadj',slab_cadj) |
---|
256 | |
---|
257 | !************************************************************************************ |
---|
258 | ! Allocate surface fraction read from restart file |
---|
259 | !************************************************************************************ |
---|
260 | ALLOCATE(fsic(klon), stat = error) |
---|
261 | IF (error /= 0) THEN |
---|
262 | abort_message='Pb allocation tmp_pctsrf_slab' |
---|
263 | CALL abort_physic(modname,abort_message,1) |
---|
264 | ENDIF |
---|
265 | fsic(:)=0. |
---|
266 | !zmasq = continent fraction |
---|
267 | WHERE (1.-zmasq(:)>EPSFRA) |
---|
268 | ! fsic(:) = MIN(pctsrf_rst(:,is_sic)/(1.-zmasq(:)),ice_frac_max) |
---|
269 | fsic(:) = MIN(pctsrf_rst(:)/(1.-zmasq(:)),ice_frac_max) |
---|
270 | END WHERE |
---|
271 | |
---|
272 | !************************************************************************************ |
---|
273 | ! Allocate saved fields |
---|
274 | !************************************************************************************ |
---|
275 | ALLOCATE(tslab(klon,nslay), stat=error) |
---|
276 | IF (error /= 0) CALL abort_physic & |
---|
277 | (modname,'pb allocation tslab', 1) |
---|
278 | tslab(:,:) = tslab_rst(:,:) |
---|
279 | |
---|
280 | ALLOCATE(bils_cum(klon), stat = error) |
---|
281 | IF (error /= 0) THEN |
---|
282 | abort_message='Pb allocation slab_bils_cum' |
---|
283 | CALL abort_physic(modname,abort_message,1) |
---|
284 | ENDIF |
---|
285 | bils_cum(:) = 0.0 |
---|
286 | |
---|
287 | ! IF (version_ocean=='sicINT') THEN ! interactive sea ice |
---|
288 | ALLOCATE(slab_bilg(klon), stat = error) |
---|
289 | IF (error /= 0) THEN |
---|
290 | abort_message='Pb allocation slab_bilg' |
---|
291 | CALL abort_physic(modname,abort_message,1) |
---|
292 | ENDIF |
---|
293 | slab_bilg(:) = 0.0 |
---|
294 | ALLOCATE(bilg_cum(klon), stat = error) |
---|
295 | IF (error /= 0) THEN |
---|
296 | abort_message='Pb allocation slab_bilg_cum' |
---|
297 | CALL abort_physic(modname,abort_message,1) |
---|
298 | ENDIF |
---|
299 | bilg_cum(:) = 0.0 |
---|
300 | ALLOCATE(tice(klon), stat = error) |
---|
301 | IF (error /= 0) THEN |
---|
302 | abort_message='Pb allocation slab_tice' |
---|
303 | CALL abort_physic(modname,abort_message,1) |
---|
304 | ENDIF |
---|
305 | tice(:) = tice_rst(:) |
---|
306 | ALLOCATE(seaice(klon), stat = error) |
---|
307 | IF (error /= 0) THEN |
---|
308 | abort_message='Pb allocation slab_seaice' |
---|
309 | CALL abort_physic(modname,abort_message,1) |
---|
310 | ENDIF |
---|
311 | seaice(:) = seaice_rst(:) |
---|
312 | ! END IF |
---|
313 | |
---|
314 | IF (slab_hdiff) THEN !horizontal diffusion |
---|
315 | ALLOCATE(dt_hdiff(klon,nslay), stat = error) |
---|
316 | IF (error /= 0) THEN |
---|
317 | abort_message='Pb allocation dt_hdiff' |
---|
318 | CALL abort_physic(modname,abort_message,1) |
---|
319 | ENDIF |
---|
320 | dt_hdiff(:,:) = 0.0 |
---|
321 | ENDIF |
---|
322 | |
---|
323 | IF (slab_gm) THEN !GM advection |
---|
324 | ALLOCATE(dt_gm(klon,nslay), stat = error) |
---|
325 | IF (error /= 0) THEN |
---|
326 | abort_message='Pb allocation dt_gm' |
---|
327 | CALL abort_physic(modname,abort_message,1) |
---|
328 | ENDIF |
---|
329 | dt_gm(:,:) = 0.0 |
---|
330 | ENDIF |
---|
331 | |
---|
332 | ! IF (slab_ekman.GT.0) THEN ! ekman transport |
---|
333 | IF (slab_ekman) THEN ! ekman transport |
---|
334 | ALLOCATE(dt_ekman(klon,nslay), stat = error) |
---|
335 | IF (error /= 0) THEN |
---|
336 | abort_message='Pb allocation dt_ekman' |
---|
337 | CALL abort_physic(modname,abort_message,1) |
---|
338 | ENDIF |
---|
339 | dt_ekman(:,:) = 0.0 |
---|
340 | ALLOCATE(taux_cum(klon), stat = error) |
---|
341 | IF (error /= 0) THEN |
---|
342 | abort_message='Pb allocation taux_cum' |
---|
343 | CALL abort_physic(modname,abort_message,1) |
---|
344 | ENDIF |
---|
345 | taux_cum(:) = 0.0 |
---|
346 | ALLOCATE(tauy_cum(klon), stat = error) |
---|
347 | IF (error /= 0) THEN |
---|
348 | abort_message='Pb allocation tauy_cum' |
---|
349 | CALL abort_physic(modname,abort_message,1) |
---|
350 | ENDIF |
---|
351 | tauy_cum(:) = 0.0 |
---|
352 | ENDIF |
---|
353 | |
---|
354 | ! Initialize transport |
---|
355 | IF (slab_hdiff.OR.(slab_ekman)) THEN |
---|
356 | CALL gather(zmasq,zmasq_glo) |
---|
357 | ! Master thread/process only |
---|
358 | !$OMP MASTER |
---|
359 | IF (is_mpi_root) THEN |
---|
360 | CALL ini_slab_transp(zmasq_glo) |
---|
361 | END IF |
---|
362 | !$OMP END MASTER |
---|
363 | END IF |
---|
364 | |
---|
365 | END SUBROUTINE ocean_slab_init |
---|
366 | ! |
---|
367 | !*********************************************************************************** |
---|
368 | ! |
---|
369 | SUBROUTINE ocean_slab_frac(pctsrf_chg, zmasq) |
---|
370 | |
---|
371 | ! This routine sends back the sea ice and ocean fraction to the main physics routine. |
---|
372 | ! Called only with interactive sea ice. |
---|
373 | |
---|
374 | ! Arguments |
---|
375 | !************************************************************************************ |
---|
376 | REAL, DIMENSION(klon), INTENT(IN) :: zmasq ! proxy of rnat |
---|
377 | REAL, DIMENSION(klon), INTENT(OUT) :: pctsrf_chg ! sea-ice fraction |
---|
378 | |
---|
379 | pctsrf_chg(:)=fsic(:)*(1.-zmasq(:)) |
---|
380 | |
---|
381 | END SUBROUTINE ocean_slab_frac |
---|
382 | ! |
---|
383 | !************************************************************************************ |
---|
384 | ! |
---|
385 | SUBROUTINE ocean_slab_noice(itime, dtime, knon, knindex, & |
---|
386 | precip_snow, tsurf_in, & |
---|
387 | radsol, snow, fluxsens, & |
---|
388 | tsurf_new, flux_u1, flux_v1, zmasq) |
---|
389 | |
---|
390 | USE slab_heat_transp_mod, ONLY: divgrad_phy,slab_ekman2,slab_gmdiff |
---|
391 | USE mod_phys_lmdz_para |
---|
392 | |
---|
393 | ! This routine |
---|
394 | ! (1) computes surface turbulent fluxes over points with some open ocean |
---|
395 | ! (2) reads additional Q-flux (everywhere) |
---|
396 | ! (3) computes horizontal transport (diffusion & Ekman) |
---|
397 | ! (4) updates slab temperature every cpl_pas ; creates new ice if needed. |
---|
398 | |
---|
399 | ! Note : |
---|
400 | ! klon total number of points |
---|
401 | ! knon number of points with open ocean (varies with time) |
---|
402 | ! knindex gives position of the knon points within klon. |
---|
403 | ! In general, local saved variables have klon values |
---|
404 | ! variables exchanged with PBL module have knon. |
---|
405 | |
---|
406 | ! Input arguments |
---|
407 | !*********************************************************************************** |
---|
408 | INTEGER, INTENT(IN) :: itime ! current timestep INTEGER, |
---|
409 | INTEGER, INTENT(IN) :: knon ! number of points |
---|
410 | INTEGER, DIMENSION(klon), INTENT(IN) :: knindex |
---|
411 | REAL, INTENT(IN) :: dtime ! timestep (s) |
---|
412 | REAL, DIMENSION(klon), INTENT(IN) :: precip_snow !, precip_rain |
---|
413 | |
---|
414 | REAL, DIMENSION(klon), INTENT(IN) :: tsurf_in ! surface temperature |
---|
415 | REAL, DIMENSION(klon), INTENT(IN) :: radsol ! net surface (radiative) flux |
---|
416 | REAL, DIMENSION(klon), INTENT(IN) :: flux_u1, flux_v1 ! Comes from turbdiff |
---|
417 | REAL, DIMENSION(klon), INTENT(IN) :: fluxsens !, sensible heat flux |
---|
418 | REAL, DIMENSION(klon), INTENT(IN) :: zmasq ! proxy of rnat |
---|
419 | |
---|
420 | ! In/Output arguments |
---|
421 | !************************************************************************************ |
---|
422 | REAL, DIMENSION(klon), INTENT(INOUT) :: snow ! in kg/m2 |
---|
423 | |
---|
424 | ! Output arguments |
---|
425 | !************************************************************************************ |
---|
426 | REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new ! new surface tempearture |
---|
427 | |
---|
428 | ! Local variables |
---|
429 | !************************************************************************************ |
---|
430 | INTEGER :: i,ki,k |
---|
431 | REAL :: t_cadj |
---|
432 | |
---|
433 | ! for new ice creation |
---|
434 | REAL :: e_freeze |
---|
435 | REAL, DIMENSION(klon) :: slab_bils ! weighted surface heat flux |
---|
436 | ! horizontal diffusion and Ekman local vars |
---|
437 | ! dimension = global domain (klon_glo) instead of // subdomains |
---|
438 | REAL, DIMENSION(klon_glo,nslay) :: dt_hdiff_glo,dt_ekman_glo,dt_gm_glo |
---|
439 | ! dt_ekman_glo saved for diagnostic, dt_ekman_tmp used for time loop |
---|
440 | REAL, DIMENSION(klon_glo,nslay) :: dt_hdiff_tmp, dt_ekman_tmp |
---|
441 | REAL, DIMENSION(klon_glo,nslay) :: tslab_glo |
---|
442 | REAL, DIMENSION(klon_glo) :: taux_glo,tauy_glo |
---|
443 | |
---|
444 | !**************************************************************************************** |
---|
445 | ! 1) Surface fluxes calculation |
---|
446 | ! Points with some open ocean only |
---|
447 | !**************************************************************************************** |
---|
448 | ! save total cumulated heat fluxes locally |
---|
449 | ! radiative + turbulent + melt of falling snow |
---|
450 | slab_bils(:)=0. |
---|
451 | DO i=1,knon |
---|
452 | ki=knindex(i) |
---|
453 | slab_bils(ki)=(1.-fsic(ki))*(fluxsens(ki)+radsol(ki) & |
---|
454 | -precip_snow(ki)*ice_lat*(1.+snow_wfact*fsic(ki))) |
---|
455 | bils_cum(ki)=bils_cum(ki)+slab_bils(ki) |
---|
456 | END DO |
---|
457 | |
---|
458 | ! Compute surface wind stress |
---|
459 | ! CALL calcul_flux_wind(knon, dtime, & |
---|
460 | ! u0, v0, u1, v1, gustiness, cdragm, & |
---|
461 | ! flux_u1, flux_v1) |
---|
462 | |
---|
463 | ! save cumulated wind stress |
---|
464 | IF (slab_ekman) THEN |
---|
465 | DO i=1,knon |
---|
466 | ki=knindex(i) |
---|
467 | taux_cum(ki)=taux_cum(ki)+flux_u1(ki)*(1.-fsic(ki))/cpl_pas |
---|
468 | tauy_cum(ki)=tauy_cum(ki)+flux_v1(ki)*(1.-fsic(ki))/cpl_pas |
---|
469 | END DO |
---|
470 | ENDIF |
---|
471 | |
---|
472 | !**************************************************************************************** |
---|
473 | ! 2) Q-Flux : get global variables lmt_bils, diff_sst and diff_siv from file |
---|
474 | ! limit_slab.nc |
---|
475 | ! |
---|
476 | !**************************************************************************************** |
---|
477 | ! CALL limit_slab(itime, dtime, jour, lmt_bils, diff_sst, diff_siv) |
---|
478 | ! lmt_bils and diff_sst,siv saved by limit_slab |
---|
479 | ! qflux = total QFlux correction (in W/m2) |
---|
480 | ! IF (qflux_bnd.EQ.2) THEN |
---|
481 | ! dt_qflux(:,1) = lmt_bils(:,1)+diff_sst(:)/cyang/86400. |
---|
482 | ! dt_qflux_sic(:) = -diff_siv(:)*ice_den*ice_lat/86400. |
---|
483 | ! ELSE |
---|
484 | ! dt_qflux(:,1) = lmt_bils(:,1)+diff_sst(:)/cyang/86400. & |
---|
485 | ! - diff_siv(:)*ice_den*ice_lat/86400. |
---|
486 | ! END IF |
---|
487 | ! IF (nslay.GT.1) THEN |
---|
488 | ! dt_qflux(:,2:nslay)=lmt_bils(:,2:nslay) |
---|
489 | ! END IF |
---|
490 | |
---|
491 | !**************************************************************************************** |
---|
492 | ! 3) Recalculate new temperature (add Surf fluxes, Q-Flux, Ocean transport) |
---|
493 | ! Bring to freezing temp and make sea ice if necessary |
---|
494 | ! |
---|
495 | !***********************************************o***************************************** |
---|
496 | tsurf_new=tsurf_in |
---|
497 | IF (MOD(itime,cpl_pas).EQ.0) THEN ! time to update tslab & fraction |
---|
498 | ! *********************************** |
---|
499 | ! Horizontal transport |
---|
500 | ! *********************************** |
---|
501 | IF (slab_ekman) THEN |
---|
502 | ! copy wind stress to global var |
---|
503 | CALL gather(taux_cum,taux_glo) |
---|
504 | CALL gather(tauy_cum,tauy_glo) |
---|
505 | END IF |
---|
506 | |
---|
507 | IF (slab_hdiff.OR.(slab_ekman)) THEN |
---|
508 | CALL gather(tslab,tslab_glo) |
---|
509 | ! Compute horiz transport on one process only |
---|
510 | IF (is_mpi_root .AND. is_omp_root) THEN ! Only master processus |
---|
511 | IF (slab_hdiff) THEN |
---|
512 | dt_hdiff_glo(:,:)=0. |
---|
513 | END IF |
---|
514 | IF (slab_ekman) THEN |
---|
515 | dt_ekman_glo(:,:)=0. |
---|
516 | END IF |
---|
517 | IF (slab_gm) THEN |
---|
518 | dt_gm_glo(:,:)=0. |
---|
519 | END IF |
---|
520 | DO i=1,cpl_pas ! time splitting for numerical stability |
---|
521 | ! IF (slab_ekman.GT.0) THEN |
---|
522 | ! SELECT CASE (slab_ekman) |
---|
523 | ! CASE (1) ! 1.5 layer scheme |
---|
524 | ! CALL slab_ekman1(taux_glo,tauy_glo,tslab_glo,dt_ekman_tmp) |
---|
525 | ! CASE (2) ! 2-layers |
---|
526 | ! CALL slab_ekman2(taux_glo,tauy_glo,tslab_glo,dt_ekman_tmp,dt_hdiff_tmp,slab_gm) |
---|
527 | ! CASE DEFAULT |
---|
528 | ! dt_ekman_tmp(:,:)=0. |
---|
529 | ! END SELECT |
---|
530 | IF (slab_ekman) THEN |
---|
531 | CALL slab_ekman2(taux_glo,tauy_glo,tslab_glo,dt_ekman_tmp,dt_hdiff_tmp,slab_gm) |
---|
532 | |
---|
533 | dt_ekman_glo(:,:)=dt_ekman_glo(:,:)+dt_ekman_tmp(:,:) |
---|
534 | ! convert dt_ekman from K.s-1.(kg.m-2) to K.s-1 |
---|
535 | DO k=1,nslay |
---|
536 | dt_ekman_tmp(:,k)=dt_ekman_tmp(:,k)/(slabh(k)*sea_den) |
---|
537 | ENDDO |
---|
538 | tslab_glo=tslab_glo+dt_ekman_tmp*dtime |
---|
539 | IF (slab_gm) THEN ! Gent-McWilliams eddy advection |
---|
540 | dt_gm_glo(:,:)=dt_gm_glo(:,:)+ dt_hdiff_tmp(:,:) |
---|
541 | ! convert dt from K.s-1.(kg.m-2) to K.s-1 |
---|
542 | DO k=1,nslay |
---|
543 | dt_hdiff_tmp(:,k)=dt_hdiff_tmp(:,k)/(slabh(k)*sea_den) |
---|
544 | END DO |
---|
545 | tslab_glo=tslab_glo+dt_hdiff_tmp*dtime |
---|
546 | END IF |
---|
547 | ENDIF |
---|
548 | IF (slab_hdiff) THEN ! horizontal diffusion |
---|
549 | ! laplacian of slab T |
---|
550 | CALL divgrad_phy(nslay,tslab_glo,dt_hdiff_tmp) |
---|
551 | ! multiply by diff coef and normalize to 50m slab equivalent |
---|
552 | dt_hdiff_tmp=dt_hdiff_tmp*coef_hdiff*50./SUM(slabh) |
---|
553 | dt_hdiff_glo(:,:)=dt_hdiff_glo(:,:)+ dt_hdiff_tmp(:,:) |
---|
554 | tslab_glo=tslab_glo+dt_hdiff_tmp*dtime |
---|
555 | END IF |
---|
556 | END DO ! time splitting |
---|
557 | IF (slab_hdiff) THEN |
---|
558 | !dt_hdiff_glo saved in W/m2 |
---|
559 | DO k=1,nslay |
---|
560 | dt_hdiff_glo(:,k)=dt_hdiff_glo(:,k)*slabh(k)*sea_den*sea_cap/cpl_pas |
---|
561 | END DO |
---|
562 | END IF |
---|
563 | IF (slab_gm) THEN |
---|
564 | !dt_hdiff_glo saved in W/m2 |
---|
565 | dt_gm_glo(:,:)=dt_gm_glo(:,:)*sea_cap/cpl_pas |
---|
566 | END IF |
---|
567 | IF (slab_ekman) THEN |
---|
568 | ! dt_ekman_glo saved in W/m2 |
---|
569 | dt_ekman_glo(:,:)=dt_ekman_glo(:,:)*sea_cap/cpl_pas |
---|
570 | END IF |
---|
571 | END IF ! master process |
---|
572 | !$OMP BARRIER |
---|
573 | ! Send new fields back to all processes |
---|
574 | CALL Scatter(tslab_glo,tslab) |
---|
575 | IF (slab_hdiff) THEN |
---|
576 | CALL Scatter(dt_hdiff_glo,dt_hdiff) |
---|
577 | END IF |
---|
578 | IF (slab_gm) THEN |
---|
579 | CALL Scatter(dt_gm_glo,dt_gm) |
---|
580 | END IF |
---|
581 | IF (slab_ekman) THEN |
---|
582 | CALL Scatter(dt_ekman_glo,dt_ekman) |
---|
583 | ! clear wind stress |
---|
584 | taux_cum(:)=0. |
---|
585 | tauy_cum(:)=0. |
---|
586 | END IF |
---|
587 | ENDIF ! transport |
---|
588 | |
---|
589 | ! *********************************** |
---|
590 | ! Other heat fluxes |
---|
591 | ! *********************************** |
---|
592 | ! Add cumulated ocean surface fluxes |
---|
593 | tslab(:,1) = tslab(:,1) + bils_cum(:)*cyang*dtime |
---|
594 | ! Convective adjustment if 2 layers |
---|
595 | IF ((nslay.GT.1).AND.(slab_cadj.GT.0)) THEN |
---|
596 | DO i=1,klon |
---|
597 | IF (tslab(i,2).GT.tslab(i,1)) THEN |
---|
598 | ! mean (mass-weighted) temperature |
---|
599 | t_cadj=SUM(tslab(i,:)*slabh(:))/SUM(slabh(:)) |
---|
600 | tslab(i,1)=t_cadj |
---|
601 | tslab(i,2)=t_cadj |
---|
602 | END IF |
---|
603 | END DO |
---|
604 | END IF |
---|
605 | ! Add read QFlux |
---|
606 | ! IF (qflux_bnd.EQ.1) THEN |
---|
607 | ! ! QFlux from ocean circ. cannot cool tslab below freezing. |
---|
608 | ! dq_freeze = (t_freeze - tslab(:,1)) / (cyang*dtime*cpl_pas) |
---|
609 | ! dt_qflux(:,1) = MAX(dt_qflux(:,1), MIN(dq_freeze,0.)) |
---|
610 | ! ELSE IF (qflux_bnd.EQ.2) THEN |
---|
611 | ! dq_freeze = (t_freeze - tslab(:,1)) / (cyang*dtime*cpl_pas) & |
---|
612 | ! - dt_qflux_sic(:) |
---|
613 | ! dt_qflux(:,1) = MAX(dt_qflux(:,1), MIN(dq_freeze,0.)) & |
---|
614 | ! + dt_qflux_sic(:) |
---|
615 | ! END IF |
---|
616 | ! DO k=1,nslay |
---|
617 | ! tslab(:,k) = tslab(:,k) + dt_qflux(:,k)*cyang*dtime*cpl_pas & |
---|
618 | ! * slabh(1)/slabh(k) |
---|
619 | ! END DO |
---|
620 | |
---|
621 | ! *********************************** |
---|
622 | ! Update surface temperature and ice |
---|
623 | ! *********************************** |
---|
624 | ! SELECT CASE(version_ocean) |
---|
625 | ! CASE('sicNO') ! no sea ice even below freezing ! |
---|
626 | ! DO i=1,knon |
---|
627 | ! ki=knindex(i) |
---|
628 | ! tsurf_new(i)=tslab(ki,1) |
---|
629 | ! END DO |
---|
630 | ! CASE('sicOBS') ! "realistic" case, for prescribed sea ice |
---|
631 | ! ! tslab cannot be below freezing |
---|
632 | ! DO i=1,knon |
---|
633 | ! ki=knindex(i) |
---|
634 | ! IF (tslab(ki,1).LT.t_freeze) THEN |
---|
635 | ! tslab(ki,1)=t_freeze |
---|
636 | ! END IF |
---|
637 | ! tsurf_new(i)=tslab(ki,1) |
---|
638 | ! END DO |
---|
639 | ! CASE('sicINT') ! interactive sea ice |
---|
640 | DO i=1,knon |
---|
641 | ki=knindex(i) |
---|
642 | ! Check if new slab temperature is below freezing |
---|
643 | IF (tslab(ki,1).LT.t_freeze) THEN |
---|
644 | ! We need to form ice now over ice-free points |
---|
645 | ! Else points not seen by slab_ice |
---|
646 | IF (fsic(ki)*(1.-zmasq(ki)).LT.epsfra) THEN |
---|
647 | ! No ice present yet. |
---|
648 | ! quantity of new ice formed |
---|
649 | e_freeze=(t_freeze-tslab(ki,1))/cyang/ice_lat & |
---|
650 | +fsic(ki)*seaice(ki) |
---|
651 | ! new ice forms at h_ice_thin |
---|
652 | tsurf_new(ki)=t_freeze |
---|
653 | tice(ki)=t_freeze |
---|
654 | fsic(ki)=MIN(ice_frac_max,e_freeze/h_ice_thin) |
---|
655 | IF (fsic(ki).GT.ice_frac_min) THEN |
---|
656 | seaice(ki)=MIN(e_freeze/fsic(ki),h_ice_max) |
---|
657 | tslab(ki,1)=t_freeze |
---|
658 | ELSE |
---|
659 | fsic(ki)=0. |
---|
660 | END IF |
---|
661 | END IF ! sea ice present |
---|
662 | ! if ice already present, new ice formed in slab_ice routine. |
---|
663 | ! ELSE ! temperature above freezing |
---|
664 | ! tsurf_new(i)=tslab(ki,1) |
---|
665 | END IF |
---|
666 | END DO |
---|
667 | ! END SELECT |
---|
668 | bils_cum(:)=0.0! clear cumulated fluxes |
---|
669 | END IF ! coupling time |
---|
670 | END SUBROUTINE ocean_slab_noice |
---|
671 | ! |
---|
672 | !***************************************************************************** |
---|
673 | |
---|
674 | ! SUBROUTINE ocean_slab_ice( & |
---|
675 | ! itime, dtime, jour, knon, knindex, & |
---|
676 | ! tsurf_in, p1lay, cdragh, cdragm, precip_rain, precip_snow, temp_air, spechum, & |
---|
677 | ! AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
678 | ! AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
679 | ! ps, u1, v1, gustiness, & |
---|
680 | ! radsol, snow, qsurf, qsol, agesno, & |
---|
681 | ! alb1_new, alb2_new, evap, fluxsens, fluxlat, flux_u1, flux_v1, & |
---|
682 | ! tsurf_new, dflux_s, dflux_l, swnet) |
---|
683 | |
---|
684 | SUBROUTINE ocean_slab_ice(itime, dtime, knon, knindex, & |
---|
685 | precip_snow, tsurf_in, & |
---|
686 | radsol, snow, fluxsens, & |
---|
687 | tsurf_new, evap, flux_u1, flux_v1, zmasq) |
---|
688 | |
---|
689 | ! USE calcul_fluxs_mod |
---|
690 | |
---|
691 | ! INCLUDE "YOMCST.h" |
---|
692 | ! INCLUDE "clesphys.h" |
---|
693 | |
---|
694 | ! This routine |
---|
695 | ! (1) computes surface turbulent fluxes over points with some sea ice |
---|
696 | ! (2) computes condutive fluxes in the snow and ice, and ice-ocean flux |
---|
697 | ! (3) computes snow/ice albedo |
---|
698 | ! (4) updates snow/ice temperature, surface melt if needed. |
---|
699 | ! (5) lateral growth if tslab < freezing |
---|
700 | ! (6) bottom & side melt / growth depending on bottom fluxes |
---|
701 | ! (7) updates slab temperature every cpl_pas |
---|
702 | |
---|
703 | ! Note : |
---|
704 | ! klon total number of points |
---|
705 | ! knon number of points with open ocean (varies with time) |
---|
706 | ! knindex gives position of the knon points within klon. |
---|
707 | ! In general, local saved variables have klon values |
---|
708 | ! variables exchanged with PBL module have knon. |
---|
709 | |
---|
710 | ! Input arguments |
---|
711 | !**************************************************************************************** |
---|
712 | INTEGER, INTENT(IN) :: itime, knon !, jour |
---|
713 | INTEGER, DIMENSION(klon), INTENT(IN) :: knindex |
---|
714 | REAL, INTENT(IN) :: dtime |
---|
715 | REAL, DIMENSION(klon), INTENT(IN) :: tsurf_in |
---|
716 | ! REAL, DIMENSION(klon), INTENT(IN) :: p1lay |
---|
717 | ! REAL, DIMENSION(klon), INTENT(IN) :: cdragh, cdragm |
---|
718 | REAL, DIMENSION(klon), INTENT(IN) :: precip_snow !, precip_rain |
---|
719 | REAL, DIMENSION(klon), INTENT(IN) :: evap, fluxsens!,fluxlat |
---|
720 | REAL, DIMENSION(klon), INTENT(IN) :: flux_u1, flux_v1 |
---|
721 | REAL, DIMENSION(klon), INTENT(IN) :: zmasq ! proxy of rnat |
---|
722 | ! REAL, DIMENSION(klon), INTENT(IN) :: spechum, temp_air |
---|
723 | ! REAL, DIMENSION(klon), INTENT(IN) :: AcoefH, AcoefQ, BcoefH, BcoefQ |
---|
724 | ! REAL, DIMENSION(klon), INTENT(IN) :: AcoefU, AcoefV, BcoefU, BcoefV |
---|
725 | ! REAL, DIMENSION(klon), INTENT(IN) :: ps |
---|
726 | ! REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, gustiness |
---|
727 | ! REAL, DIMENSION(klon), INTENT(IN) :: swnet |
---|
728 | |
---|
729 | ! In/Output arguments |
---|
730 | !**************************************************************************************** |
---|
731 | REAL, DIMENSION(klon), INTENT(INOUT) :: snow!, qsol |
---|
732 | ! REAL, DIMENSION(klon), INTENT(INOUT) :: agesno |
---|
733 | REAL, DIMENSION(klon), INTENT(INOUT) :: radsol |
---|
734 | |
---|
735 | ! Output arguments |
---|
736 | !**************************************************************************************** |
---|
737 | ! REAL, DIMENSION(klon), INTENT(OUT) :: qsurf |
---|
738 | ! REAL, DIMENSION(klon), INTENT(OUT) :: alb1_new ! new albedo in visible SW interval |
---|
739 | ! REAL, DIMENSION(klon), INTENT(OUT) :: alb2_new ! new albedo in near IR interval |
---|
740 | ! REAL, DIMENSION(klon), INTENT(OUT) :: evap, fluxsens!, fluxlat |
---|
741 | ! REAL, DIMENSION(klon), INTENT(OUT) :: flux_u1, flux_v1 |
---|
742 | REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new |
---|
743 | ! REAL, DIMENSION(klon), INTENT(OUT) :: dflux_s, dflux_l |
---|
744 | |
---|
745 | ! Local variables |
---|
746 | !**************************************************************************************** |
---|
747 | INTEGER :: i,ki |
---|
748 | ! REAL, DIMENSION(klon) :: cal, beta, dif_grnd |
---|
749 | ! REAL, DIMENSION(klon) :: u0, v0 |
---|
750 | ! REAL, DIMENSION(klon) :: u1_lay, v1_lay |
---|
751 | REAL, DIMENSION(klon) :: f_bot ! bottom ocean - ice flux |
---|
752 | |
---|
753 | ! intermediate heat fluxes: |
---|
754 | ! (conduction snow / ice, shortwave penetration, bottom turbulent fluxes) |
---|
755 | REAL :: f_cond_s, f_cond_i, f_turb |
---|
756 | ! friction velocity, 1/C and 1/tau conduction for ice |
---|
757 | REAL :: ustar |
---|
758 | ! REAL :: uscap, ustau |
---|
759 | ! for snow/ice albedo: |
---|
760 | ! REAL :: alb_snow, alb_ice, alb_pond |
---|
761 | ! REAL :: frac_snow, frac_ice, frac_pond |
---|
762 | ! REAL :: z1_i, z2_i, z1_s, zlog ! height parameters |
---|
763 | ! for ice melt / freeze |
---|
764 | REAL :: e_melt, e_freeze, snow_evap, h_test, h_new |
---|
765 | ! dhsic, dfsic change in ice mass, fraction. |
---|
766 | ! frac_mf ratio of lateral / thickness growth / melt |
---|
767 | REAL :: dhsic, dfsic, frac_mf |
---|
768 | |
---|
769 | !******************************************************************************* |
---|
770 | ! 1) Update surface , ice and slab temperature |
---|
771 | !******************************************************************************* |
---|
772 | ! Wind stress |
---|
773 | ! flux_u1, flux_v1 from physics |
---|
774 | ! save cumulated wind stress |
---|
775 | ! Use ocean-ice stress = wind stress * (1.-fsic) |
---|
776 | ! IF (slab_ekman.GT.0) THEN |
---|
777 | IF (slab_ekman) THEN |
---|
778 | DO i=1,knon |
---|
779 | ki=knindex(i) |
---|
780 | taux_cum(ki)=taux_cum(ki)+flux_u1(ki)*fsic(ki)*(1.-fsic(ki))/cpl_pas |
---|
781 | tauy_cum(ki)=tauy_cum(ki)+flux_v1(ki)*fsic(ki)*(1.-fsic(ki))/cpl_pas |
---|
782 | END DO |
---|
783 | ENDIF |
---|
784 | |
---|
785 | ! Initialize ice-ocean flux |
---|
786 | slab_bilg(:)=0. |
---|
787 | |
---|
788 | ! Old, explicit scheme for snow & ice conductive fluxes |
---|
789 | ! radsol is total surface fluxes (input) : radiative + turbulent |
---|
790 | DO i=1,knon |
---|
791 | ki=knindex(i) ! For PCM : you can probably replace ki by i |
---|
792 | ! ocean-ice turbulent heat flux |
---|
793 | ! turbulent velocity = (tau/rho)^1/2 |
---|
794 | ustar = MAX(5e-4, SQRT((1.-fsic(ki)) & |
---|
795 | * SQRT(flux_u1(ki)**2 + flux_v1(ki)**2) / sea_den)) |
---|
796 | f_turb = 0.0057 * sea_den * sea_cap * ustar * (tslab(ki,1) - t_freeze) |
---|
797 | ! f_turb >0 and cannot bring tslab below zero |
---|
798 | f_turb = MAX(0., MIN(f_turb, & |
---|
799 | (tslab(ki,1)-t_freeze) / (cyang*dtime*cpl_pas))) |
---|
800 | |
---|
801 | ! ice conductive flux (pos up) |
---|
802 | IF (seaice(ki).GT.0) THEN |
---|
803 | f_cond_i = ice_cond*(t_freeze-tice(ki))/seaice(ki) |
---|
804 | ELSE |
---|
805 | f_cond_i = 0 |
---|
806 | END IF |
---|
807 | |
---|
808 | ! If snow layer present, tsurf = tsnow |
---|
809 | ! Problem here, as tsurf_in # tsnow ? |
---|
810 | IF (snow(ki).GT.snow_min) THEN |
---|
811 | ! snow conductive flux (pos up) |
---|
812 | f_cond_s=sno_cond*(tice(ki)-tsurf_in(ki))/snow(ki) |
---|
813 | ! update ice temperature |
---|
814 | tice(ki)=tice(ki) + 2./ice_cap/(snow(ki)+seaice(ki)) & |
---|
815 | *(f_cond_i-f_cond_s)*dtime |
---|
816 | ! update snow temperature |
---|
817 | tsurf_new(ki) = tsurf_in(ki) + 2./ice_cap/snow(ki) & |
---|
818 | *(fluxsens(ki)+radsol(ki)+f_cond_s)*dtime |
---|
819 | ELSE IF (seaice(ki).GT.0) THEN ! bare ice. tsurf = tice |
---|
820 | ! update ice temperature |
---|
821 | tice(ki) = tice(ki) + 2./ice_cap/seaice(ki) & |
---|
822 | *(fluxsens(ki)+radsol(ki)+f_cond_i)*dtime |
---|
823 | tsurf_new(ki) = tice(ki) |
---|
824 | END IF |
---|
825 | ! bottom flux (used to grow ice from below) |
---|
826 | f_bot(ki) = f_turb - f_cond_i |
---|
827 | slab_bilg(ki) = -f_turb |
---|
828 | END DO |
---|
829 | ! |
---|
830 | !! Surface turbulent fluxes (sens, lat etc) and update surface temp. |
---|
831 | ! dif_grnd(:)=0. |
---|
832 | ! beta(:) = 1. |
---|
833 | ! CALL calcul_fluxs(knon, is_sic, dtime, & |
---|
834 | ! tsurf_in, p1lay, cal, beta, cdragh, cdragh, ps, & |
---|
835 | ! precip_rain, precip_snow, snow, qsurf, & |
---|
836 | ! radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, & |
---|
837 | ! f_qsat_oce,AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
838 | ! tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
839 | ! DO i=1,knon |
---|
840 | ! IF (snow(i).LT.snow_min) tice(knindex(i))=tsurf_new(i) |
---|
841 | ! END DO |
---|
842 | |
---|
843 | ! Surface, snow-ice and ice-ocean fluxes. |
---|
844 | ! Prepare call to calcul_fluxs (cal, beta, radsol, dif_grnd) |
---|
845 | |
---|
846 | ! Surface turbulent fluxes (sens, lat etc) and update surface temp. |
---|
847 | ! beta(:) = 1. |
---|
848 | ! CALL calcul_fluxs(knon, is_sic, dtime, & |
---|
849 | ! tsurf_in, p1lay, cal, beta, cdragh, cdragh, ps, & |
---|
850 | ! precip_rain, precip_snow, snow, qsurf, & |
---|
851 | ! radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, & |
---|
852 | ! f_qsat_oce,AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
853 | ! tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
854 | |
---|
855 | !! Update remaining temperature and fluxes |
---|
856 | ! DO i=1,knon |
---|
857 | ! ki=knindex(i) |
---|
858 | ! ! ocean-ice turbulent heat flux |
---|
859 | ! ! turbulent velocity = (tau/rho)^1/2 for low ice cover |
---|
860 | ! ! min = 5e-4 for 1cm/s current |
---|
861 | ! ustar = MAX(5e-4, SQRT((1.-fsic(ki)) & |
---|
862 | ! * SQRT(flux_u1(i)**2 + flux_v1(i)**2) / sea_den)) |
---|
863 | ! f_turb = 0.0057 * sea_den * sea_cap * ustar * (tslab(ki,1) - t_freeze) |
---|
864 | ! ! ice_ocean fluxes cannot bring tslab below freezing |
---|
865 | ! f_turb = MAX(0., MIN(f_turb, slab_bilg(ki) + (tslab(ki,1)-t_freeze) & |
---|
866 | ! / (fsic(ki)*cyang*dtime*cpl_pas))) |
---|
867 | ! IF (snow(i).GT.snow_min) THEN |
---|
868 | ! ! snow conductive flux after calcul_fluxs |
---|
869 | ! f_cond_s = sno_cond * (tice(ki)-tsurf_new(i)) / snow(i) |
---|
870 | ! ! 1 / heat capacity and conductive timescale |
---|
871 | ! uscap = 2. / ice_cap / (snow(i)+seaice(ki)) |
---|
872 | ! ustau = uscap * ice_cond / seaice(ki) |
---|
873 | ! ! update ice temp |
---|
874 | ! tice(ki) = (tice(ki) + dtime*(ustau*t_freeze - uscap*f_cond_s)) & |
---|
875 | ! / (1 + dtime*ustau) |
---|
876 | ! ELSE ! bare ice |
---|
877 | ! tice(ki)=tsurf_new(i) |
---|
878 | ! END IF |
---|
879 | ! ! ice conductive flux (pos up) |
---|
880 | ! f_cond_i = ice_cond * (t_freeze-tice(ki)) / seaice(ki) |
---|
881 | ! f_bot(i) = f_turb - f_cond_i |
---|
882 | ! slab_bilg(ki) = slab_bilg(ki)-f_turb |
---|
883 | ! END DO |
---|
884 | |
---|
885 | ! weight fluxes to ocean by sea ice fraction |
---|
886 | slab_bilg(:)=slab_bilg(:)*fsic(:) |
---|
887 | |
---|
888 | !**************************************************************************************** |
---|
889 | ! 2) Update snow and ice surface : thickness and fraction |
---|
890 | !**************************************************************************************** |
---|
891 | DO i=1,knon |
---|
892 | ki=knindex(i) |
---|
893 | ! snow precip (could be before fluxes above ?) |
---|
894 | IF (precip_snow(ki) > 0.) THEN |
---|
895 | snow(ki) = snow(ki)+precip_snow(ki)*dtime*(1.-snow_wfact*(1.-fsic(ki))) |
---|
896 | END IF |
---|
897 | ! snow and ice sublimation |
---|
898 | IF (evap(ki) > 0.) THEN |
---|
899 | snow_evap = MIN (snow(ki) / dtime, evap(ki)) |
---|
900 | snow(ki) = snow(ki) - snow_evap * dtime |
---|
901 | snow(ki) = MAX(0.0, snow(ki)) |
---|
902 | seaice(ki) = MAX(0.0,seaice(ki)-(evap(ki)-snow_evap)*dtime) |
---|
903 | ENDIF |
---|
904 | ! Melt / Freeze snow from above if Tsurf>0 |
---|
905 | IF (tsurf_new(ki).GT.t_melt) THEN |
---|
906 | ! energy available for melting snow (in kg of melted snow /m2) |
---|
907 | e_melt = MIN(MAX(snow(ki)*(tsurf_new(ki)-t_melt)*ice_cap/2. & |
---|
908 | /(ice_lat+ice_cap/2.*(t_melt-tice(ki))),0.0),snow(ki)) |
---|
909 | ! remove snow |
---|
910 | IF (snow(ki).GT.e_melt) THEN |
---|
911 | snow(ki)=snow(ki)-e_melt |
---|
912 | tsurf_new(ki)=t_melt |
---|
913 | ELSE ! all snow is melted |
---|
914 | ! add remaining heat flux to ice |
---|
915 | e_melt=e_melt-snow(ki) |
---|
916 | snow(ki)=0.0 |
---|
917 | tice(ki)=tice(ki)+e_melt*ice_lat*2./(ice_cap*seaice(ki)) |
---|
918 | tsurf_new(ki)=tice(ki) |
---|
919 | END IF |
---|
920 | END IF |
---|
921 | ! Bottom melt / grow |
---|
922 | ! bottom freeze if bottom flux (cond + oce-ice) <0 |
---|
923 | IF (f_bot(ki).LT.0) THEN |
---|
924 | ! larger fraction of bottom growth |
---|
925 | frac_mf=MIN(1.,MAX(0.,(seaice(ki)-h_ice_thick) & |
---|
926 | / (h_ice_max-h_ice_thick))) |
---|
927 | ! quantity of new ice (formed at mean ice temp) |
---|
928 | e_melt= -f_bot(ki) * dtime * fsic(ki) & |
---|
929 | / (ice_lat+ice_cap/2.*(t_freeze-tice(ki))) |
---|
930 | ! first increase height to h_thick |
---|
931 | dhsic=MAX(0.,MIN(h_ice_thick-seaice(ki),e_melt/fsic(ki))) |
---|
932 | seaice(ki)=dhsic+seaice(ki) |
---|
933 | e_melt=e_melt-fsic(ki)*dhsic |
---|
934 | IF (e_melt.GT.0.) THEN |
---|
935 | ! frac_mf fraction used for lateral increase |
---|
936 | dfsic=MIN(ice_frac_max-fsic(ki),e_melt*frac_mf/seaice(ki)) |
---|
937 | fsic(ki)=fsic(ki)+dfsic |
---|
938 | e_melt=e_melt-dfsic*seaice(ki) |
---|
939 | ! rest used to increase height |
---|
940 | seaice(ki)=MIN(h_ice_max,seaice(ki)+e_melt/fsic(ki)) |
---|
941 | END IF |
---|
942 | ELSE |
---|
943 | ! melt from below if bottom flux >0 |
---|
944 | ! larger fraction of lateral melt from warm ocean |
---|
945 | frac_mf=MIN(1.,MAX(0.,(seaice(ki)-h_ice_thin) & |
---|
946 | / (h_ice_thick-h_ice_thin))) |
---|
947 | ! bring ice to freezing and melt from below |
---|
948 | ! quantity of melted ice |
---|
949 | e_melt= f_bot(ki) * dtime * fsic(ki) & |
---|
950 | / (ice_lat+ice_cap/2.*(tice(ki)-t_freeze)) |
---|
951 | ! first decrease height to h_thick |
---|
952 | IF (fsic(ki).GT.0) THEN |
---|
953 | dhsic=MAX(0.,MIN(seaice(ki)-h_ice_thick,e_melt/fsic(ki))) |
---|
954 | ELSE |
---|
955 | dhsic=0 |
---|
956 | ENDIF |
---|
957 | seaice(ki)=seaice(ki)-dhsic |
---|
958 | e_melt=e_melt-fsic(ki)*dhsic |
---|
959 | IF (e_melt.GT.0) THEN |
---|
960 | ! frac_mf fraction used for height decrease |
---|
961 | dhsic=MAX(0.,MIN(seaice(ki)-h_ice_min,e_melt*frac_mf/fsic(ki))) |
---|
962 | seaice(ki)=seaice(ki)-dhsic |
---|
963 | e_melt=e_melt-fsic(ki)*dhsic |
---|
964 | ! rest used to decrease fraction (up to 0!) |
---|
965 | dfsic=MIN(fsic(ki),e_melt/seaice(ki)) |
---|
966 | ! keep remaining in ocean if everything melted |
---|
967 | e_melt=e_melt-dfsic*seaice(ki) |
---|
968 | slab_bilg(ki) = slab_bilg(ki) + e_melt*ice_lat/dtime |
---|
969 | ELSE |
---|
970 | dfsic=0 |
---|
971 | END IF |
---|
972 | fsic(ki)=fsic(ki)-dfsic |
---|
973 | END IF |
---|
974 | ! melt ice from above if Tice>0 |
---|
975 | IF (tice(ki).GT.t_melt) THEN |
---|
976 | ! quantity of ice melted (kg/m2) |
---|
977 | e_melt=MAX(seaice(ki)*(tice(ki)-t_melt)*ice_cap/2. & |
---|
978 | /(ice_lat+ice_cap/2.*(t_melt-t_freeze)),0.0) |
---|
979 | ! melt from above, height only |
---|
980 | dhsic=MIN(seaice(ki)-h_ice_min,e_melt) |
---|
981 | e_melt=e_melt-dhsic |
---|
982 | IF (e_melt.GT.0) THEN |
---|
983 | ! lateral melt if ice too thin |
---|
984 | dfsic=MAX(fsic(ki)-ice_frac_min,e_melt/h_ice_min*fsic(ki)) |
---|
985 | ! if all melted add remaining heat to ocean |
---|
986 | e_melt=MAX(0.,e_melt*fsic(ki)-dfsic*h_ice_min) |
---|
987 | slab_bilg(ki) = slab_bilg(ki) + e_melt*ice_lat/dtime |
---|
988 | ! update height and fraction |
---|
989 | fsic(ki)=fsic(ki)-dfsic |
---|
990 | END IF |
---|
991 | seaice(ki)=seaice(ki)-dhsic |
---|
992 | ! surface temperature at melting point |
---|
993 | tice(ki)=t_melt |
---|
994 | tsurf_new(ki)=t_melt |
---|
995 | END IF |
---|
996 | ! convert snow to ice if below floating line |
---|
997 | h_test=(seaice(ki)+snow(ki))*ice_den-seaice(ki)*sea_den |
---|
998 | IF ((h_test.GT.0.).AND.(seaice(ki).GT.h_ice_min)) THEN !snow under water |
---|
999 | ! extra snow converted to ice (with added frozen sea water) |
---|
1000 | dhsic=h_test/(sea_den-ice_den+sno_den) |
---|
1001 | seaice(ki)=seaice(ki)+dhsic |
---|
1002 | snow(ki)=snow(ki)-dhsic*sno_den/ice_den |
---|
1003 | ! available energy (freeze sea water + bring to tice) |
---|
1004 | e_melt=dhsic*(1.-sno_den/ice_den)*(ice_lat+ & |
---|
1005 | ice_cap/2.*(t_freeze-tice(ki))) |
---|
1006 | ! update ice temperature |
---|
1007 | tice(ki)=tice(ki)+2.*e_melt/ice_cap/(snow(ki)+seaice(ki)) |
---|
1008 | END IF |
---|
1009 | END DO |
---|
1010 | |
---|
1011 | !******************************************************************************* |
---|
1012 | ! 3) cumulate ice-ocean fluxes, update tslab, lateral grow |
---|
1013 | !***********************************************o******************************* |
---|
1014 | !cumul fluxes. |
---|
1015 | bilg_cum(:)=bilg_cum(:)+slab_bilg(:) |
---|
1016 | IF (MOD(itime,cpl_pas).EQ.0) THEN ! time to update tslab |
---|
1017 | ! Add cumulated surface fluxes |
---|
1018 | tslab(:,1)=tslab(:,1)+bilg_cum(:)*cyang*dtime |
---|
1019 | bilg_cum(:)=0. |
---|
1020 | ! If slab temperature below freezing, new lateral growth |
---|
1021 | DO i=1,knon |
---|
1022 | ki=knindex(i) |
---|
1023 | IF (tslab(ki,1).LT.t_freeze) THEN ! create more ice |
---|
1024 | ! quantity of new ice formed over open ocean |
---|
1025 | ! (formed at mean ice temperature) |
---|
1026 | e_freeze=(t_freeze-tslab(ki,1))/cyang & |
---|
1027 | /(ice_lat+ice_cap/2.*(t_freeze-tice(ki))) |
---|
1028 | ! new ice height and fraction |
---|
1029 | h_new=MAX(h_ice_thin,MIN(h_ice_new,seaice(ki))) ! new height |
---|
1030 | ! h_new=MIN(h_ice_new,seaice(ki)) |
---|
1031 | dfsic=MIN(ice_frac_max-fsic(ki) & |
---|
1032 | ,MAX(ice_frac_min,e_freeze/h_new)) |
---|
1033 | ! update average sea ice height |
---|
1034 | seaice(ki)=(seaice(ki)*fsic(ki)+e_freeze) & |
---|
1035 | / (dfsic+fsic(ki)) |
---|
1036 | ! update snow thickness |
---|
1037 | snow(ki) = snow(ki) * fsic(ki) / (dfsic+fsic(ki)) |
---|
1038 | ! update tslab to freezing |
---|
1039 | tslab(ki,1)=t_freeze |
---|
1040 | ! update sea ice fraction |
---|
1041 | fsic(ki)=fsic(ki)+dfsic |
---|
1042 | END IF ! tslab below freezing |
---|
1043 | END DO |
---|
1044 | END IF ! coupling time |
---|
1045 | |
---|
1046 | !**************************************************************************************** |
---|
1047 | ! 4) Compute sea-ice and snow albedo |
---|
1048 | !**************************************************************************************** |
---|
1049 | ! Removed all albedo stuff as it is computed through hydrol in the Generic model |
---|
1050 | ! ------ End Albedo ---------- |
---|
1051 | |
---|
1052 | !tests remaining ice fraction (on ocean grid points) |
---|
1053 | WHERE ((zmasq==0).and. & |
---|
1054 | ((fsic.LT.ice_frac_min).OR.(seaice.LT.h_ice_min))) |
---|
1055 | !! WHERE ((fsic.LT.ice_frac_min).OR.(seaice.LT.h_ice_min)) |
---|
1056 | tslab(:,1)=tslab(:,1)-fsic*seaice*ice_lat*cyang |
---|
1057 | tice=t_melt |
---|
1058 | fsic=0. |
---|
1059 | seaice=0. |
---|
1060 | END WHERE |
---|
1061 | |
---|
1062 | END SUBROUTINE ocean_slab_ice |
---|
1063 | ! |
---|
1064 | !**************************************************************************************** |
---|
1065 | ! |
---|
1066 | SUBROUTINE ocean_slab_final |
---|
1067 | |
---|
1068 | !**************************************************************************************** |
---|
1069 | ! Deallocate module variables |
---|
1070 | !**************************************************************************************** |
---|
1071 | IF (ALLOCATED(tslab)) DEALLOCATE(tslab) |
---|
1072 | IF (ALLOCATED(fsic)) DEALLOCATE(fsic) |
---|
1073 | IF (ALLOCATED(tice)) DEALLOCATE(tice) |
---|
1074 | IF (ALLOCATED(seaice)) DEALLOCATE(seaice) |
---|
1075 | IF (ALLOCATED(slab_bilg)) DEALLOCATE(slab_bilg) |
---|
1076 | IF (ALLOCATED(bilg_cum)) DEALLOCATE(bilg_cum) |
---|
1077 | IF (ALLOCATED(bils_cum)) DEALLOCATE(bils_cum) |
---|
1078 | IF (ALLOCATED(taux_cum)) DEALLOCATE(taux_cum) |
---|
1079 | IF (ALLOCATED(tauy_cum)) DEALLOCATE(tauy_cum) |
---|
1080 | IF (ALLOCATED(dt_ekman)) DEALLOCATE(dt_ekman) |
---|
1081 | IF (ALLOCATED(dt_hdiff)) DEALLOCATE(dt_hdiff) |
---|
1082 | IF (ALLOCATED(dt_gm)) DEALLOCATE(dt_gm) |
---|
1083 | ! IF (ALLOCATED(dt_qflux)) DEALLOCATE(dt_qflux) |
---|
1084 | ! IF (ALLOCATED(dt_qflux_sic)) DEALLOCATE(dt_qflux_sic) |
---|
1085 | |
---|
1086 | END SUBROUTINE ocean_slab_final |
---|
1087 | ! |
---|
1088 | !**************************************************************************************** |
---|
1089 | ! |
---|
1090 | SUBROUTINE ocean_slab_get_vars(ngrid, tslab_loc, tice_loc, seaice_loc, & |
---|
1091 | flux_g_loc, dt_hdiff_loc,dt_ekman_loc,dt_gm_loc) |
---|
1092 | |
---|
1093 | ! "Get some variables from module ocean_slab_mod" |
---|
1094 | |
---|
1095 | INTEGER, INTENT(IN) :: ngrid |
---|
1096 | REAL, DIMENSION(ngrid,nslay), INTENT(OUT) :: tslab_loc |
---|
1097 | REAL, INTENT(OUT) :: tice_loc(ngrid) |
---|
1098 | REAL, DIMENSION(ngrid), INTENT(OUT) :: seaice_loc |
---|
1099 | REAL, DIMENSION(ngrid), INTENT(OUT) :: flux_g_loc |
---|
1100 | REAL, DIMENSION(ngrid,nslay), INTENT(OUT) :: dt_hdiff_loc ! [in W/m2] |
---|
1101 | REAL, DIMENSION(ngrid,nslay), INTENT(OUT) :: dt_ekman_loc ! [in W/m2] |
---|
1102 | REAL, DIMENSION(ngrid,nslay), INTENT(OUT) :: dt_gm_loc ! [in W/m2] |
---|
1103 | INTEGER :: i |
---|
1104 | |
---|
1105 | |
---|
1106 | ! Set the output variables |
---|
1107 | tslab_loc(:,:) = 0. |
---|
1108 | tice_loc(:)=0. |
---|
1109 | dt_hdiff_loc(:,:)=0. |
---|
1110 | dt_ekman_loc(:,:)=0. |
---|
1111 | dt_gm_loc(:,:)=0. |
---|
1112 | tslab_loc(:,:) = tslab(:,:) |
---|
1113 | tice_loc(:)=tice(:) |
---|
1114 | seaice_loc(:) = seaice(:) |
---|
1115 | flux_g_loc(:) = slab_bilg(:) |
---|
1116 | |
---|
1117 | !! dt_hdiff_loc(:,i) = dt_hdiff(:,i)*slabh(i)*1000.*4228. !Convert en W/m2 |
---|
1118 | !! dt_ekman_loc(:,i) = dt_ekman(:,i)*slabh(i)*1000.*4228. |
---|
1119 | |
---|
1120 | IF (slab_hdiff) THEN |
---|
1121 | DO i=1,nslay |
---|
1122 | dt_hdiff_loc(:,i) = dt_hdiff(:,i) |
---|
1123 | ENDDO |
---|
1124 | ENDIF |
---|
1125 | IF (slab_ekman) THEN |
---|
1126 | DO i=1,nslay |
---|
1127 | dt_ekman_loc(:,i) = dt_ekman(:,i) |
---|
1128 | ENDDO |
---|
1129 | ENDIF |
---|
1130 | IF (slab_gm) THEN |
---|
1131 | DO i=1,nslay |
---|
1132 | dt_gm_loc(:,i) = dt_gm(:,i) |
---|
1133 | ENDDO |
---|
1134 | ENDIF |
---|
1135 | |
---|
1136 | |
---|
1137 | |
---|
1138 | END SUBROUTINE ocean_slab_get_vars |
---|
1139 | ! |
---|
1140 | !**************************************************************************************** |
---|
1141 | ! |
---|
1142 | |
---|
1143 | END MODULE ocean_slab_mod |
---|