[3100] | 1 | !Completed |
---|
| 2 | MODULE ocean_slab_mod |
---|
[1298] | 3 | ! |
---|
[3100] | 4 | !================================================================== |
---|
[1298] | 5 | ! |
---|
[3100] | 6 | ! Purpose |
---|
| 7 | ! ------- |
---|
| 8 | ! The dynamical slab ocean model of the Generic-PCM. It has the following features: |
---|
| 9 | ! (a) Computes sea ice creation and evolution. |
---|
| 10 | ! (b) Snow has thermodynamic properties. |
---|
| 11 | ! (c) Computes oceanic horizontal transport (diffusion & surface-wind driven Ekman transport). |
---|
| 12 | ! (d) Can be used in parallel mode. |
---|
[1298] | 13 | ! |
---|
[3100] | 14 | ! Authors |
---|
| 15 | ! ------- |
---|
| 16 | ! S. Bhatnagar and E. Millour (2023) |
---|
| 17 | ! Adapted from the ocean modules of LMDZ Earth (F. Codron) and the Generic-PCM (B. Charnay, 2013). |
---|
[1298] | 18 | ! |
---|
[3100] | 19 | ! Notes |
---|
| 20 | ! ----- |
---|
| 21 | ! Compared to the old model, the new model has the following changes (non-exhaustive): |
---|
| 22 | ! (a) More realistic description of sea ice creation and evolution - simultaneous |
---|
| 23 | ! surface, side and bottom melting / freezing depending on fluxes. |
---|
| 24 | ! (b) Snow has an effective heat capacity. |
---|
| 25 | ! (c) Snow has "weight"; it can sink an ice block if there is too much of it. |
---|
| 26 | ! (d) Snow can be blown off by wind. |
---|
| 27 | ! (e) The two-layer ocean allows for convective adjustment. |
---|
| 28 | ! (f) Diffusion can follow the Gent-McWilliams scheme + Eddy diffusivity. |
---|
| 29 | ! (g) Can be used in parallel mode. |
---|
| 30 | ! |
---|
| 31 | !================================================================== |
---|
[1298] | 32 | |
---|
[3100] | 33 | USE dimphy, ONLY: klon |
---|
| 34 | USE mod_grid_phy_lmdz, ONLY: klon_glo |
---|
| 35 | USE mod_phys_lmdz_mpi_data, ONLY: is_mpi_root |
---|
[1298] | 36 | |
---|
[3100] | 37 | IMPLICIT NONE |
---|
| 38 | PRIVATE |
---|
| 39 | PUBLIC :: ocean_slab_init, ocean_slab_ice, ocean_slab_noice, & |
---|
| 40 | ocean_slab_frac, ocean_slab_get_vars, ocean_slab_final |
---|
[1298] | 41 | |
---|
[3100] | 42 | !*********************************************************************************** |
---|
| 43 | ! Global saved variables |
---|
| 44 | !*********************************************************************************** |
---|
| 45 | ! number of slab vertical layers |
---|
| 46 | INTEGER, PUBLIC, SAVE :: nslay=2 |
---|
| 47 | !$OMP THREADPRIVATE(nslay) |
---|
| 48 | ! number of oceanic grid points |
---|
| 49 | INTEGER, PUBLIC, SAVE :: knon |
---|
| 50 | !$OMP THREADPRIVATE(knon) |
---|
| 51 | ! timestep for coupling (update slab temperature) in timesteps |
---|
[1298] | 52 | INTEGER, PRIVATE, SAVE :: cpl_pas |
---|
| 53 | !$OMP THREADPRIVATE(cpl_pas) |
---|
[3100] | 54 | ! cyang = 1/heat capacity of top layer (rho.c.H) |
---|
| 55 | REAL, PRIVATE, SAVE :: cyang |
---|
| 56 | !$OMP THREADPRIVATE(cyang) |
---|
| 57 | ! depth of slab layers (1st or 2nd layer) |
---|
[1298] | 58 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: slabh |
---|
| 59 | !$OMP THREADPRIVATE(slabh) |
---|
[3100] | 60 | ! slab temperature |
---|
| 61 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: tslab |
---|
| 62 | !$OMP THREADPRIVATE(tslab) |
---|
| 63 | ! heat flux convergence due to Ekman |
---|
| 64 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_ekman |
---|
| 65 | !$OMP THREADPRIVATE(dt_ekman) |
---|
| 66 | ! heat flux convergence due to horiz diffusion |
---|
| 67 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_hdiff |
---|
| 68 | !$OMP THREADPRIVATE(dt_hdiff) |
---|
| 69 | ! heat flux convergence due to GM eddy advection |
---|
| 70 | REAL, ALLOCATABLE, DIMENSION(:,:), PUBLIC, SAVE :: dt_gm |
---|
| 71 | !$OMP THREADPRIVATE(dt_gm) |
---|
| 72 | ! fraction of ocean covered by sea ice (sic / (oce+sic)) |
---|
| 73 | REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: fsic |
---|
| 74 | !$OMP THREADPRIVATE(fsic) |
---|
| 75 | ! temperature of the sea ice |
---|
| 76 | REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: tice |
---|
| 77 | !$OMP THREADPRIVATE(tice) |
---|
| 78 | ! sea ice thickness, in kg/m2 |
---|
| 79 | REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: seaice |
---|
| 80 | !$OMP THREADPRIVATE(seaice) |
---|
| 81 | ! net surface heat flux, weighted by open ocean fraction |
---|
| 82 | ! slab_bils accumulated over cpl_pas timesteps |
---|
| 83 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: bils_cum |
---|
| 84 | !$OMP THREADPRIVATE(bils_cum) |
---|
| 85 | ! net heat flux into the ocean below the ice : conduction + solar radiation |
---|
| 86 | REAL, ALLOCATABLE, DIMENSION(:), PUBLIC, SAVE :: slab_bilg |
---|
| 87 | !$OMP THREADPRIVATE(slab_bilg) |
---|
| 88 | ! slab_bilg cululated over cpl_pas timesteps |
---|
| 89 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: bilg_cum |
---|
| 90 | !$OMP THREADPRIVATE(bilg_cum) |
---|
| 91 | ! wind stress saved over cpl_pas timesteps |
---|
| 92 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: taux_cum |
---|
| 93 | !$OMP THREADPRIVATE(taux_cum) |
---|
| 94 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: tauy_cum |
---|
| 95 | !$OMP THREADPRIVATE(tauy_cum) |
---|
[1298] | 96 | |
---|
[3100] | 97 | !*********************************************************************************** |
---|
| 98 | ! Parameters (could be read in def file: move to slab_init) |
---|
| 99 | !*********************************************************************************** |
---|
| 100 | ! snow and ice physical characteristics: |
---|
| 101 | REAL, PARAMETER :: t_freeze=271.35 ! freezing sea water temp [in K] |
---|
| 102 | REAL, PARAMETER :: t_melt=273.15 ! melting ice temp [in K] |
---|
| 103 | REAL, PARAMETER :: sno_den=300. !mean snow density [in kg/m3] |
---|
| 104 | REAL, PARAMETER :: ice_den=917. ! ice density [in kg/m3] |
---|
| 105 | REAL, PARAMETER :: sea_den=1026. ! sea water density [in kg/m3] |
---|
| 106 | REAL, PARAMETER :: ice_cond=2.17*ice_den !conductivity of ice [in W/(m.K) or (W.kg)/(K.m4)] |
---|
| 107 | REAL, PRIVATE, SAVE :: sno_cond ! conductivity of snow [in W/(m.K) or (W.kg)/(K.m4)] |
---|
| 108 | REAL, PARAMETER :: ice_cap=2067. ! specific heat capacity, snow and ice [in J/(kg.K)] |
---|
| 109 | REAL, PARAMETER :: sea_cap=3994. ! specific heat capacity, seawater [in J/(kg.K)] |
---|
| 110 | REAL, PARAMETER :: ice_lat=334000. ! freeze /melt latent heat snow and ice [in J/kg] |
---|
| 111 | REAL, PARAMETER :: ice_sub=2834000. ! latent heat of sublimation for snow and ice [in J/kg] |
---|
| 112 | |
---|
| 113 | ! control of snow and ice cover & freeze / melt (heights in m converted to kg/m2) |
---|
| 114 | REAL, PARAMETER :: snow_min=0.05*sno_den ! critical snow height [in kg/m2] |
---|
| 115 | REAL, PARAMETER :: snow_wfact=0.4 ! max fraction of falling snow blown into ocean [in kg/m2] |
---|
| 116 | REAL, PARAMETER :: ice_frac_min=0.001 |
---|
| 117 | REAL, PRIVATE, SAVE :: ice_frac_max ! Max ice fraction (leads) |
---|
| 118 | REAL, PARAMETER :: h_ice_min=0.01*ice_den ! min ice thickness [in kg/m2] |
---|
| 119 | REAL, PARAMETER :: h_ice_thin=0.15*ice_den ! thin ice thickness [in kg/m2] |
---|
| 120 | ! below ice_thin, priority is to melt lateral / grow height |
---|
| 121 | ! ice_thin is also height of new ice |
---|
| 122 | REAL, PRIVATE, SAVE :: h_ice_thick ! thin ice thickness |
---|
| 123 | ! above ice_thick, priority is melt height / grow lateral |
---|
| 124 | REAL, PARAMETER :: h_ice_new=1.*ice_den ! max height of new open ocean ice [in kg/m2] |
---|
| 125 | REAL, PARAMETER :: h_ice_max=10.*ice_den ! max ice height [in kg/m2] |
---|
| 126 | |
---|
| 127 | REAL, PARAMETER :: epsfra=1.0E-05 ! minimial grid fraction size below which there is no ice |
---|
| 128 | |
---|
| 129 | REAL, PARAMETER, PUBLIC :: capcalocean=50.*4.228e+06 ! surface heat capacity [J.K-1.m-2] (assuming 50 m slab ocean) |
---|
| 130 | REAL, PARAMETER, PUBLIC :: capcalseaice=5.1444e+06*0.15 |
---|
| 131 | REAL, PARAMETER, PUBLIC :: capcalsno=2.3867e+06*0.15 |
---|
| 132 | |
---|
| 133 | REAL, PARAMETER, PUBLIC :: h_alb_ice=0.5*ice_den ! height for full ice albedo |
---|
| 134 | REAL, PARAMETER, PUBLIC :: h_sno_alb=0.02*sno_den ! height for control of snow fraction |
---|
| 135 | |
---|
| 136 | REAL, PARAMETER, PUBLIC :: alb_ice_min=0.2 |
---|
| 137 | REAL, PARAMETER, PUBLIC :: alb_ice_max=0.65 |
---|
| 138 | |
---|
| 139 | ! Horizontal transport parameters |
---|
| 140 | ! flag for horizontal diffusion |
---|
| 141 | LOGICAL, PUBLIC, SAVE :: slab_hdiff |
---|
| 142 | !$OMP THREADPRIVATE(slab_hdiff) |
---|
| 143 | ! flag for GM eddy diffusivity |
---|
| 144 | LOGICAL, PUBLIC, SAVE :: slab_gm |
---|
| 145 | !$OMP THREADPRIVATE(slab_gm) |
---|
| 146 | REAL, PRIVATE, SAVE :: coef_hdiff ! coefficient for horizontal diffusion |
---|
| 147 | !$OMP THREADPRIVATE(coef_hdiff) |
---|
| 148 | ! flags for Ekman, conv adjustment |
---|
| 149 | LOGICAL, PUBLIC, SAVE :: slab_ekman |
---|
| 150 | !$OMP THREADPRIVATE(slab_ekman) |
---|
| 151 | INTEGER, PUBLIC, SAVE :: slab_cadj |
---|
| 152 | !$OMP THREADPRIVATE(slab_cadj) |
---|
| 153 | |
---|
| 154 | !*********************************************************************************** |
---|
| 155 | |
---|
[1298] | 156 | CONTAINS |
---|
| 157 | ! |
---|
[3100] | 158 | !*********************************************************************************** |
---|
[1298] | 159 | ! |
---|
[3100] | 160 | SUBROUTINE ocean_slab_init(dtime, pctsrf_rst, tslab_rst, tice_rst, seaice_rst, zmasq) |
---|
[1298] | 161 | |
---|
[3100] | 162 | ! This routine |
---|
| 163 | ! (1) allocates variables initialised from restart fields |
---|
| 164 | ! (2) allocates some other variables internal to the ocean module |
---|
[1298] | 165 | |
---|
[3100] | 166 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
| 167 | USE mod_phys_lmdz_transfert_para, ONLY : gather |
---|
| 168 | USE slab_heat_transp_mod, ONLY : ini_slab_transp |
---|
[1298] | 169 | |
---|
[3100] | 170 | ! Input variables |
---|
| 171 | !*********************************************************************************** |
---|
[1298] | 172 | REAL, INTENT(IN) :: dtime |
---|
| 173 | ! Variables read from restart file |
---|
[3100] | 174 | REAL, DIMENSION(klon), INTENT(IN) :: pctsrf_rst |
---|
| 175 | REAL, DIMENSION(klon,nslay), INTENT(IN) :: tslab_rst |
---|
| 176 | REAL, DIMENSION(klon), INTENT(IN) :: tice_rst |
---|
| 177 | REAL, DIMENSION(klon), INTENT(IN) :: seaice_rst |
---|
| 178 | REAL, DIMENSION(klon), INTENT(IN) :: zmasq |
---|
[1298] | 179 | |
---|
| 180 | ! Local variables |
---|
[3100] | 181 | !************************************************************************************ |
---|
[1298] | 182 | INTEGER :: error |
---|
[3100] | 183 | REAL, DIMENSION(klon_glo) :: zmasq_glo |
---|
[1298] | 184 | CHARACTER (len = 80) :: abort_message |
---|
[3100] | 185 | CHARACTER (len = 20) :: modname = 'ocean_slab_init' |
---|
[1298] | 186 | |
---|
[3100] | 187 | !*********************************************************************************** |
---|
| 188 | ! Define some parameters |
---|
| 189 | !*********************************************************************************** |
---|
| 190 | ! |
---|
| 191 | ! cpl_pas coupling period (update of tslab and ice fraction) |
---|
| 192 | ! for a calculation at each physical timestep, cpl_pas=1 |
---|
| 193 | cpl_pas = NINT(86400./dtime * 1.0) ! une fois par jour |
---|
| 194 | CALL getin_p('cpl_pas',cpl_pas) |
---|
| 195 | print *,'cpl_pas',cpl_pas |
---|
| 196 | ! Number of slab layers |
---|
| 197 | ! nslay=2 |
---|
| 198 | ! CALL getin_p('slab_layers',nslay) |
---|
| 199 | print *,'number of slab layers : ',nslay |
---|
| 200 | ! Layer thickness |
---|
| 201 | ALLOCATE(slabh(nslay), stat = error) |
---|
[1298] | 202 | IF (error /= 0) THEN |
---|
[3100] | 203 | abort_message='Pb allocation slabh' |
---|
[1682] | 204 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 205 | ENDIF |
---|
[3100] | 206 | slabh(1)=50. ! Height of first ocean layer (wind-mixed layer) |
---|
| 207 | CALL getin_p('slab_depth',slabh(1)) |
---|
| 208 | IF (nslay.GT.1) THEN |
---|
| 209 | slabh(2)=150. ! Height of second ocean layer (deep ocean layer) |
---|
| 210 | END IF |
---|
| 211 | ! cyang = 1/heat capacity of top layer (rho.c.H) |
---|
| 212 | cyang=1/(slabh(1)*sea_den*sea_cap) |
---|
[1298] | 213 | |
---|
[3100] | 214 | ! ********** Sea Ice parameters *********** |
---|
| 215 | ice_frac_max = 0.99 ! frac = 1 may lead to some problems. |
---|
| 216 | CALL getin_p('ice_frac_max',ice_frac_max) |
---|
| 217 | h_ice_thick = 1.5 |
---|
| 218 | CALL getin_p('h_ice_thick',h_ice_thick) |
---|
| 219 | h_ice_thick = h_ice_thick * ice_den |
---|
| 220 | sno_cond = 0.31 |
---|
| 221 | CALL getin_p('sno_cond',sno_cond) |
---|
| 222 | sno_cond = sno_cond * sno_den |
---|
[1298] | 223 | |
---|
[3100] | 224 | ! ********** Heat Transport parameters **** |
---|
| 225 | ! Ekman transport |
---|
| 226 | ! slab_ekman=0 |
---|
| 227 | slab_ekman=.FALSE. |
---|
| 228 | CALL getin_p('slab_ekman',slab_ekman) |
---|
| 229 | ! GM eddy advection (2-layers only) |
---|
| 230 | slab_gm=.FALSE. |
---|
| 231 | CALL getin_p('slab_gm',slab_gm) |
---|
| 232 | ! IF (slab_ekman.LT.2) THEN |
---|
| 233 | IF (.NOT.slab_ekman) THEN |
---|
| 234 | slab_gm=.FALSE. |
---|
[1298] | 235 | ENDIF |
---|
[3100] | 236 | ! Horizontal diffusion |
---|
| 237 | slab_hdiff=.FALSE. |
---|
| 238 | CALL getin_p('slab_hdiff',slab_hdiff) |
---|
| 239 | IF (slab_gm) THEN |
---|
| 240 | coef_hdiff=8000. ! non-dimensional; coef_hdiff should be 25000 if GM is off |
---|
| 241 | ELSE |
---|
| 242 | coef_hdiff=25000. |
---|
[1298] | 243 | ENDIF |
---|
[3100] | 244 | CALL getin_p('coef_hdiff',coef_hdiff) |
---|
[1298] | 245 | |
---|
[3100] | 246 | ! Convective adjustment |
---|
| 247 | ! IF (nslay.EQ.1) THEN |
---|
| 248 | ! slab_cadj=0 |
---|
| 249 | ! ELSE |
---|
| 250 | slab_cadj=1 |
---|
| 251 | ! END IF |
---|
| 252 | CALL getin_p('slab_cadj',slab_cadj) |
---|
[1298] | 253 | |
---|
[3100] | 254 | !************************************************************************************ |
---|
| 255 | ! Allocate surface fraction read from restart file |
---|
| 256 | !************************************************************************************ |
---|
| 257 | ALLOCATE(fsic(klon), stat = error) |
---|
[1298] | 258 | IF (error /= 0) THEN |
---|
[3100] | 259 | abort_message='Pb allocation tmp_pctsrf_slab' |
---|
[1682] | 260 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 261 | ENDIF |
---|
[3100] | 262 | fsic(:)=0. |
---|
| 263 | !zmasq = continent fraction |
---|
| 264 | WHERE (1.-zmasq(:)>EPSFRA) |
---|
| 265 | ! fsic(:) = MIN(pctsrf_rst(:,is_sic)/(1.-zmasq(:)),ice_frac_max) |
---|
| 266 | fsic(:) = MIN(pctsrf_rst(:)/(1.-zmasq(:)),ice_frac_max) |
---|
| 267 | END WHERE |
---|
[1298] | 268 | |
---|
[3100] | 269 | !************************************************************************************ |
---|
| 270 | ! Allocate saved fields |
---|
| 271 | !************************************************************************************ |
---|
| 272 | ALLOCATE(tslab(klon,nslay), stat=error) |
---|
| 273 | IF (error /= 0) CALL abort_physic & |
---|
| 274 | (modname,'pb allocation tslab', 1) |
---|
| 275 | tslab(:,:) = tslab_rst(:,:) |
---|
| 276 | |
---|
| 277 | ALLOCATE(bils_cum(klon), stat = error) |
---|
[1298] | 278 | IF (error /= 0) THEN |
---|
[3100] | 279 | abort_message='Pb allocation slab_bils_cum' |
---|
[1682] | 280 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 281 | ENDIF |
---|
[3100] | 282 | bils_cum(:) = 0.0 |
---|
[1298] | 283 | |
---|
[3100] | 284 | ! IF (version_ocean=='sicINT') THEN ! interactive sea ice |
---|
| 285 | ALLOCATE(slab_bilg(klon), stat = error) |
---|
| 286 | IF (error /= 0) THEN |
---|
| 287 | abort_message='Pb allocation slab_bilg' |
---|
| 288 | CALL abort_physic(modname,abort_message,1) |
---|
| 289 | ENDIF |
---|
| 290 | slab_bilg(:) = 0.0 |
---|
| 291 | ALLOCATE(bilg_cum(klon), stat = error) |
---|
| 292 | IF (error /= 0) THEN |
---|
| 293 | abort_message='Pb allocation slab_bilg_cum' |
---|
| 294 | CALL abort_physic(modname,abort_message,1) |
---|
| 295 | ENDIF |
---|
| 296 | bilg_cum(:) = 0.0 |
---|
| 297 | ALLOCATE(tice(klon), stat = error) |
---|
| 298 | IF (error /= 0) THEN |
---|
| 299 | abort_message='Pb allocation slab_tice' |
---|
| 300 | CALL abort_physic(modname,abort_message,1) |
---|
| 301 | ENDIF |
---|
| 302 | tice(:) = tice_rst(:) |
---|
| 303 | ALLOCATE(seaice(klon), stat = error) |
---|
| 304 | IF (error /= 0) THEN |
---|
| 305 | abort_message='Pb allocation slab_seaice' |
---|
| 306 | CALL abort_physic(modname,abort_message,1) |
---|
| 307 | ENDIF |
---|
| 308 | seaice(:) = seaice_rst(:) |
---|
| 309 | ! END IF |
---|
[1298] | 310 | |
---|
[3100] | 311 | IF (slab_hdiff) THEN !horizontal diffusion |
---|
| 312 | ALLOCATE(dt_hdiff(klon,nslay), stat = error) |
---|
| 313 | IF (error /= 0) THEN |
---|
| 314 | abort_message='Pb allocation dt_hdiff' |
---|
| 315 | CALL abort_physic(modname,abort_message,1) |
---|
| 316 | ENDIF |
---|
| 317 | dt_hdiff(:,:) = 0.0 |
---|
[1298] | 318 | ENDIF |
---|
| 319 | |
---|
[3100] | 320 | IF (slab_gm) THEN !GM advection |
---|
| 321 | ALLOCATE(dt_gm(klon,nslay), stat = error) |
---|
| 322 | IF (error /= 0) THEN |
---|
| 323 | abort_message='Pb allocation dt_gm' |
---|
| 324 | CALL abort_physic(modname,abort_message,1) |
---|
| 325 | ENDIF |
---|
| 326 | dt_gm(:,:) = 0.0 |
---|
[1298] | 327 | ENDIF |
---|
| 328 | |
---|
[3100] | 329 | ! IF (slab_ekman.GT.0) THEN ! ekman transport |
---|
| 330 | IF (slab_ekman) THEN ! ekman transport |
---|
| 331 | ALLOCATE(dt_ekman(klon,nslay), stat = error) |
---|
| 332 | IF (error /= 0) THEN |
---|
| 333 | abort_message='Pb allocation dt_ekman' |
---|
| 334 | CALL abort_physic(modname,abort_message,1) |
---|
| 335 | ENDIF |
---|
| 336 | dt_ekman(:,:) = 0.0 |
---|
| 337 | ALLOCATE(taux_cum(klon), stat = error) |
---|
| 338 | IF (error /= 0) THEN |
---|
| 339 | abort_message='Pb allocation taux_cum' |
---|
| 340 | CALL abort_physic(modname,abort_message,1) |
---|
| 341 | ENDIF |
---|
| 342 | taux_cum(:) = 0.0 |
---|
| 343 | ALLOCATE(tauy_cum(klon), stat = error) |
---|
| 344 | IF (error /= 0) THEN |
---|
| 345 | abort_message='Pb allocation tauy_cum' |
---|
| 346 | CALL abort_physic(modname,abort_message,1) |
---|
| 347 | ENDIF |
---|
| 348 | tauy_cum(:) = 0.0 |
---|
| 349 | ENDIF |
---|
[1298] | 350 | |
---|
[3100] | 351 | ! Initialize transport |
---|
| 352 | IF (slab_hdiff.OR.(slab_ekman)) THEN |
---|
| 353 | CALL gather(zmasq,zmasq_glo) |
---|
| 354 | ! Master thread/process only |
---|
| 355 | !$OMP MASTER |
---|
| 356 | IF (is_mpi_root) THEN |
---|
| 357 | CALL ini_slab_transp(zmasq_glo) |
---|
| 358 | END IF |
---|
| 359 | !$OMP END MASTER |
---|
| 360 | END IF |
---|
[1298] | 361 | |
---|
[3100] | 362 | END SUBROUTINE ocean_slab_init |
---|
| 363 | ! |
---|
| 364 | !*********************************************************************************** |
---|
| 365 | ! |
---|
| 366 | SUBROUTINE ocean_slab_frac(pctsrf_chg, zmasq) |
---|
[1298] | 367 | |
---|
[3100] | 368 | ! This routine sends back the sea ice and ocean fraction to the main physics routine. |
---|
| 369 | ! Called only with interactive sea ice. |
---|
[1298] | 370 | |
---|
[3100] | 371 | ! Arguments |
---|
| 372 | !************************************************************************************ |
---|
| 373 | REAL, DIMENSION(klon), INTENT(IN) :: zmasq ! proxy of rnat |
---|
| 374 | REAL, DIMENSION(klon), INTENT(OUT) :: pctsrf_chg ! sea-ice fraction |
---|
[1298] | 375 | |
---|
[3100] | 376 | pctsrf_chg(:)=fsic(:)*(1.-zmasq(:)) |
---|
| 377 | |
---|
| 378 | END SUBROUTINE ocean_slab_frac |
---|
[1298] | 379 | ! |
---|
[3100] | 380 | !************************************************************************************ |
---|
[1298] | 381 | ! |
---|
[3100] | 382 | SUBROUTINE ocean_slab_noice(itime, dtime, knon, knindex, & |
---|
| 383 | precip_snow, tsurf_in, & |
---|
| 384 | radsol, snow, fluxsens, & |
---|
| 385 | tsurf_new, flux_u1, flux_v1, zmasq) |
---|
[1298] | 386 | |
---|
[3100] | 387 | USE slab_heat_transp_mod, ONLY: divgrad_phy,slab_ekman2,slab_gmdiff |
---|
| 388 | USE mod_phys_lmdz_para |
---|
[1298] | 389 | |
---|
[3100] | 390 | ! This routine |
---|
| 391 | ! (1) computes surface turbulent fluxes over points with some open ocean |
---|
| 392 | ! (2) reads additional Q-flux (everywhere) |
---|
| 393 | ! (3) computes horizontal transport (diffusion & Ekman) |
---|
| 394 | ! (4) updates slab temperature every cpl_pas ; creates new ice if needed. |
---|
[1298] | 395 | |
---|
[3100] | 396 | ! Note : |
---|
| 397 | ! klon total number of points |
---|
| 398 | ! knon number of points with open ocean (varies with time) |
---|
| 399 | ! knindex gives position of the knon points within klon. |
---|
| 400 | ! In general, local saved variables have klon values |
---|
| 401 | ! variables exchanged with PBL module have knon. |
---|
[1298] | 402 | |
---|
[3100] | 403 | ! Input arguments |
---|
| 404 | !*********************************************************************************** |
---|
| 405 | INTEGER, INTENT(IN) :: itime ! current timestep INTEGER, |
---|
| 406 | INTEGER, INTENT(IN) :: knon ! number of points |
---|
| 407 | INTEGER, DIMENSION(klon), INTENT(IN) :: knindex |
---|
| 408 | REAL, INTENT(IN) :: dtime ! timestep (s) |
---|
| 409 | REAL, DIMENSION(klon), INTENT(IN) :: precip_snow !, precip_rain |
---|
[1298] | 410 | |
---|
[3100] | 411 | REAL, DIMENSION(klon), INTENT(IN) :: tsurf_in ! surface temperature |
---|
| 412 | REAL, DIMENSION(klon), INTENT(IN) :: radsol ! net surface (radiative) flux |
---|
| 413 | REAL, DIMENSION(klon), INTENT(IN) :: flux_u1, flux_v1 ! Comes from turbdiff |
---|
| 414 | REAL, DIMENSION(klon), INTENT(IN) :: fluxsens !, sensible heat flux |
---|
| 415 | REAL, DIMENSION(klon), INTENT(IN) :: zmasq ! proxy of rnat |
---|
[1298] | 416 | |
---|
[3100] | 417 | ! In/Output arguments |
---|
| 418 | !************************************************************************************ |
---|
| 419 | REAL, DIMENSION(klon), INTENT(INOUT) :: snow ! in kg/m2 |
---|
[1298] | 420 | |
---|
| 421 | ! Output arguments |
---|
[3100] | 422 | !************************************************************************************ |
---|
| 423 | REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new ! new surface tempearture |
---|
[1298] | 424 | |
---|
| 425 | ! Local variables |
---|
[3100] | 426 | !************************************************************************************ |
---|
| 427 | INTEGER :: i,ki,k |
---|
| 428 | REAL :: t_cadj |
---|
[1298] | 429 | |
---|
[3100] | 430 | ! for new ice creation |
---|
| 431 | REAL :: e_freeze |
---|
| 432 | REAL, DIMENSION(klon) :: slab_bils ! weighted surface heat flux |
---|
| 433 | ! horizontal diffusion and Ekman local vars |
---|
| 434 | ! dimension = global domain (klon_glo) instead of // subdomains |
---|
| 435 | REAL, DIMENSION(klon_glo,nslay) :: dt_hdiff_glo,dt_ekman_glo,dt_gm_glo |
---|
| 436 | ! dt_ekman_glo saved for diagnostic, dt_ekman_tmp used for time loop |
---|
| 437 | REAL, DIMENSION(klon_glo,nslay) :: dt_hdiff_tmp, dt_ekman_tmp |
---|
| 438 | REAL, DIMENSION(klon_glo,nslay) :: tslab_glo |
---|
| 439 | REAL, DIMENSION(klon_glo) :: taux_glo,tauy_glo |
---|
[1298] | 440 | |
---|
[3100] | 441 | !**************************************************************************************** |
---|
| 442 | ! 1) Surface fluxes calculation |
---|
| 443 | ! Points with some open ocean only |
---|
| 444 | !**************************************************************************************** |
---|
| 445 | ! save total cumulated heat fluxes locally |
---|
| 446 | ! radiative + turbulent + melt of falling snow |
---|
| 447 | slab_bils(:)=0. |
---|
| 448 | DO i=1,knon |
---|
| 449 | ki=knindex(i) |
---|
| 450 | slab_bils(ki)=(1.-fsic(ki))*(fluxsens(ki)+radsol(ki) & |
---|
| 451 | -precip_snow(ki)*ice_lat*(1.+snow_wfact*fsic(ki))) |
---|
| 452 | bils_cum(ki)=bils_cum(ki)+slab_bils(ki) |
---|
| 453 | END DO |
---|
[1298] | 454 | |
---|
[3100] | 455 | ! Compute surface wind stress |
---|
| 456 | ! CALL calcul_flux_wind(knon, dtime, & |
---|
| 457 | ! u0, v0, u1, v1, gustiness, cdragm, & |
---|
| 458 | ! AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
| 459 | ! p1lay, temp_air, & |
---|
| 460 | ! flux_u1, flux_v1) |
---|
[1298] | 461 | |
---|
[3100] | 462 | ! save cumulated wind stress |
---|
| 463 | IF (slab_ekman) THEN |
---|
| 464 | DO i=1,knon |
---|
| 465 | ki=knindex(i) |
---|
| 466 | taux_cum(ki)=taux_cum(ki)+flux_u1(ki)*(1.-fsic(ki))/cpl_pas |
---|
| 467 | tauy_cum(ki)=tauy_cum(ki)+flux_v1(ki)*(1.-fsic(ki))/cpl_pas |
---|
| 468 | END DO |
---|
| 469 | ENDIF |
---|
[1298] | 470 | |
---|
[3100] | 471 | !**************************************************************************************** |
---|
| 472 | ! 2) Q-Flux : get global variables lmt_bils, diff_sst and diff_siv from file |
---|
| 473 | ! limit_slab.nc |
---|
| 474 | ! |
---|
| 475 | !**************************************************************************************** |
---|
| 476 | ! CALL limit_slab(itime, dtime, jour, lmt_bils, diff_sst, diff_siv) |
---|
| 477 | ! lmt_bils and diff_sst,siv saved by limit_slab |
---|
| 478 | ! qflux = total QFlux correction (in W/m2) |
---|
| 479 | ! IF (qflux_bnd.EQ.2) THEN |
---|
| 480 | ! dt_qflux(:,1) = lmt_bils(:,1)+diff_sst(:)/cyang/86400. |
---|
| 481 | ! dt_qflux_sic(:) = -diff_siv(:)*ice_den*ice_lat/86400. |
---|
| 482 | ! ELSE |
---|
| 483 | ! dt_qflux(:,1) = lmt_bils(:,1)+diff_sst(:)/cyang/86400. & |
---|
| 484 | ! - diff_siv(:)*ice_den*ice_lat/86400. |
---|
| 485 | ! END IF |
---|
| 486 | ! IF (nslay.GT.1) THEN |
---|
| 487 | ! dt_qflux(:,2:nslay)=lmt_bils(:,2:nslay) |
---|
| 488 | ! END IF |
---|
[1298] | 489 | |
---|
[3100] | 490 | !**************************************************************************************** |
---|
| 491 | ! 3) Recalculate new temperature (add Surf fluxes, Q-Flux, Ocean transport) |
---|
| 492 | ! Bring to freezing temp and make sea ice if necessary |
---|
| 493 | ! |
---|
| 494 | !***********************************************o***************************************** |
---|
| 495 | tsurf_new=tsurf_in |
---|
| 496 | IF (MOD(itime,cpl_pas).EQ.0) THEN ! time to update tslab & fraction |
---|
| 497 | ! *********************************** |
---|
| 498 | ! Horizontal transport |
---|
| 499 | ! *********************************** |
---|
| 500 | IF (slab_ekman) THEN |
---|
| 501 | ! copy wind stress to global var |
---|
| 502 | CALL gather(taux_cum,taux_glo) |
---|
| 503 | CALL gather(tauy_cum,tauy_glo) |
---|
| 504 | END IF |
---|
[1298] | 505 | |
---|
[3100] | 506 | IF (slab_hdiff.OR.(slab_ekman)) THEN |
---|
| 507 | CALL gather(tslab,tslab_glo) |
---|
| 508 | ! Compute horiz transport on one process only |
---|
| 509 | IF (is_mpi_root .AND. is_omp_root) THEN ! Only master processus |
---|
| 510 | IF (slab_hdiff) THEN |
---|
| 511 | dt_hdiff_glo(:,:)=0. |
---|
| 512 | END IF |
---|
| 513 | IF (slab_ekman) THEN |
---|
| 514 | dt_ekman_glo(:,:)=0. |
---|
| 515 | END IF |
---|
| 516 | IF (slab_gm) THEN |
---|
| 517 | dt_gm_glo(:,:)=0. |
---|
| 518 | END IF |
---|
| 519 | DO i=1,cpl_pas ! time splitting for numerical stability |
---|
| 520 | ! IF (slab_ekman.GT.0) THEN |
---|
| 521 | ! SELECT CASE (slab_ekman) |
---|
| 522 | ! CASE (1) ! 1.5 layer scheme |
---|
| 523 | ! CALL slab_ekman1(taux_glo,tauy_glo,tslab_glo,dt_ekman_tmp) |
---|
| 524 | ! CASE (2) ! 2-layers |
---|
| 525 | ! CALL slab_ekman2(taux_glo,tauy_glo,tslab_glo,dt_ekman_tmp,dt_hdiff_tmp,slab_gm) |
---|
| 526 | ! CASE DEFAULT |
---|
| 527 | ! dt_ekman_tmp(:,:)=0. |
---|
| 528 | ! END SELECT |
---|
| 529 | IF (slab_ekman) THEN |
---|
| 530 | CALL slab_ekman2(taux_glo,tauy_glo,tslab_glo,dt_ekman_tmp,dt_hdiff_tmp,slab_gm) |
---|
[1298] | 531 | |
---|
[3100] | 532 | dt_ekman_glo(:,:)=dt_ekman_glo(:,:)+dt_ekman_tmp(:,:) |
---|
| 533 | ! convert dt_ekman from K.s-1.(kg.m-2) to K.s-1 |
---|
| 534 | DO k=1,nslay |
---|
| 535 | dt_ekman_tmp(:,k)=dt_ekman_tmp(:,k)/(slabh(k)*sea_den) |
---|
| 536 | ENDDO |
---|
| 537 | tslab_glo=tslab_glo+dt_ekman_tmp*dtime |
---|
| 538 | IF (slab_gm) THEN ! Gent-McWilliams eddy advection |
---|
| 539 | dt_gm_glo(:,:)=dt_gm_glo(:,:)+ dt_hdiff_tmp(:,:) |
---|
| 540 | ! convert dt from K.s-1.(kg.m-2) to K.s-1 |
---|
| 541 | DO k=1,nslay |
---|
| 542 | dt_hdiff_tmp(:,k)=dt_hdiff_tmp(:,k)/(slabh(k)*sea_den) |
---|
| 543 | END DO |
---|
| 544 | tslab_glo=tslab_glo+dt_hdiff_tmp*dtime |
---|
| 545 | END IF |
---|
| 546 | ENDIF |
---|
| 547 | IF (slab_hdiff) THEN ! horizontal diffusion |
---|
| 548 | ! laplacian of slab T |
---|
| 549 | CALL divgrad_phy(nslay,tslab_glo,dt_hdiff_tmp) |
---|
| 550 | ! multiply by diff coef and normalize to 50m slab equivalent |
---|
| 551 | dt_hdiff_tmp=dt_hdiff_tmp*coef_hdiff*50./SUM(slabh) |
---|
| 552 | dt_hdiff_glo(:,:)=dt_hdiff_glo(:,:)+ dt_hdiff_tmp(:,:) |
---|
| 553 | tslab_glo=tslab_glo+dt_hdiff_tmp*dtime |
---|
| 554 | END IF |
---|
| 555 | END DO ! time splitting |
---|
| 556 | IF (slab_hdiff) THEN |
---|
| 557 | !dt_hdiff_glo saved in W/m2 |
---|
| 558 | DO k=1,nslay |
---|
| 559 | dt_hdiff_glo(:,k)=dt_hdiff_glo(:,k)*slabh(k)*sea_den*sea_cap/cpl_pas |
---|
| 560 | END DO |
---|
| 561 | END IF |
---|
| 562 | IF (slab_gm) THEN |
---|
| 563 | !dt_hdiff_glo saved in W/m2 |
---|
| 564 | dt_gm_glo(:,:)=dt_gm_glo(:,:)*sea_cap/cpl_pas |
---|
| 565 | END IF |
---|
| 566 | IF (slab_ekman) THEN |
---|
| 567 | ! dt_ekman_glo saved in W/m2 |
---|
| 568 | dt_ekman_glo(:,:)=dt_ekman_glo(:,:)*sea_cap/cpl_pas |
---|
| 569 | END IF |
---|
| 570 | END IF ! master process |
---|
| 571 | !$OMP BARRIER |
---|
| 572 | ! Send new fields back to all processes |
---|
| 573 | CALL Scatter(tslab_glo,tslab) |
---|
| 574 | IF (slab_hdiff) THEN |
---|
| 575 | CALL Scatter(dt_hdiff_glo,dt_hdiff) |
---|
| 576 | END IF |
---|
| 577 | IF (slab_gm) THEN |
---|
| 578 | CALL Scatter(dt_gm_glo,dt_gm) |
---|
| 579 | END IF |
---|
| 580 | IF (slab_ekman) THEN |
---|
| 581 | CALL Scatter(dt_ekman_glo,dt_ekman) |
---|
| 582 | ! clear wind stress |
---|
| 583 | taux_cum(:)=0. |
---|
| 584 | tauy_cum(:)=0. |
---|
| 585 | END IF |
---|
| 586 | ENDIF ! transport |
---|
[1298] | 587 | |
---|
[3100] | 588 | ! *********************************** |
---|
| 589 | ! Other heat fluxes |
---|
| 590 | ! *********************************** |
---|
| 591 | ! Add cumulated ocean surface fluxes |
---|
| 592 | tslab(:,1) = tslab(:,1) + bils_cum(:)*cyang*dtime |
---|
| 593 | ! Convective adjustment if 2 layers |
---|
| 594 | IF ((nslay.GT.1).AND.(slab_cadj.GT.0)) THEN |
---|
| 595 | DO i=1,klon |
---|
| 596 | IF (tslab(i,2).GT.tslab(i,1)) THEN |
---|
| 597 | ! mean (mass-weighted) temperature |
---|
| 598 | t_cadj=SUM(tslab(i,:)*slabh(:))/SUM(slabh(:)) |
---|
| 599 | tslab(i,1)=t_cadj |
---|
| 600 | tslab(i,2)=t_cadj |
---|
| 601 | END IF |
---|
| 602 | END DO |
---|
| 603 | END IF |
---|
| 604 | ! Add read QFlux |
---|
| 605 | ! IF (qflux_bnd.EQ.1) THEN |
---|
| 606 | ! ! QFlux from ocean circ. cannot cool tslab below freezing. |
---|
| 607 | ! dq_freeze = (t_freeze - tslab(:,1)) / (cyang*dtime*cpl_pas) |
---|
| 608 | ! dt_qflux(:,1) = MAX(dt_qflux(:,1), MIN(dq_freeze,0.)) |
---|
| 609 | ! ELSE IF (qflux_bnd.EQ.2) THEN |
---|
| 610 | ! dq_freeze = (t_freeze - tslab(:,1)) / (cyang*dtime*cpl_pas) & |
---|
| 611 | ! - dt_qflux_sic(:) |
---|
| 612 | ! dt_qflux(:,1) = MAX(dt_qflux(:,1), MIN(dq_freeze,0.)) & |
---|
| 613 | ! + dt_qflux_sic(:) |
---|
| 614 | ! END IF |
---|
| 615 | ! DO k=1,nslay |
---|
| 616 | ! tslab(:,k) = tslab(:,k) + dt_qflux(:,k)*cyang*dtime*cpl_pas & |
---|
| 617 | ! * slabh(1)/slabh(k) |
---|
| 618 | ! END DO |
---|
[1298] | 619 | |
---|
[3100] | 620 | ! *********************************** |
---|
| 621 | ! Update surface temperature and ice |
---|
| 622 | ! *********************************** |
---|
| 623 | ! SELECT CASE(version_ocean) |
---|
| 624 | ! CASE('sicNO') ! no sea ice even below freezing ! |
---|
| 625 | ! DO i=1,knon |
---|
| 626 | ! ki=knindex(i) |
---|
| 627 | ! tsurf_new(i)=tslab(ki,1) |
---|
| 628 | ! END DO |
---|
| 629 | ! CASE('sicOBS') ! "realistic" case, for prescribed sea ice |
---|
| 630 | ! ! tslab cannot be below freezing |
---|
| 631 | ! DO i=1,knon |
---|
| 632 | ! ki=knindex(i) |
---|
| 633 | ! IF (tslab(ki,1).LT.t_freeze) THEN |
---|
| 634 | ! tslab(ki,1)=t_freeze |
---|
| 635 | ! END IF |
---|
| 636 | ! tsurf_new(i)=tslab(ki,1) |
---|
| 637 | ! END DO |
---|
| 638 | ! CASE('sicINT') ! interactive sea ice |
---|
| 639 | DO i=1,knon |
---|
| 640 | ki=knindex(i) |
---|
| 641 | ! Check if new slab temperature is below freezing |
---|
| 642 | IF (tslab(ki,1).LT.t_freeze) THEN |
---|
| 643 | ! We need to form ice now over ice-free points |
---|
| 644 | ! Else points not seen by slab_ice |
---|
| 645 | IF (fsic(ki)*(1.-zmasq(ki)).LT.epsfra) THEN |
---|
| 646 | ! No ice present yet. |
---|
| 647 | ! quantity of new ice formed |
---|
| 648 | e_freeze=(t_freeze-tslab(ki,1))/cyang/ice_lat & |
---|
| 649 | +fsic(ki)*seaice(ki) |
---|
| 650 | ! new ice forms at h_ice_thin |
---|
| 651 | tsurf_new(ki)=t_freeze |
---|
| 652 | tice(ki)=t_freeze |
---|
| 653 | fsic(ki)=MIN(ice_frac_max,e_freeze/h_ice_thin) |
---|
| 654 | IF (fsic(ki).GT.ice_frac_min) THEN |
---|
| 655 | seaice(ki)=MIN(e_freeze/fsic(ki),h_ice_max) |
---|
| 656 | tslab(ki,1)=t_freeze |
---|
| 657 | ELSE |
---|
| 658 | fsic(ki)=0. |
---|
| 659 | END IF |
---|
| 660 | END IF ! sea ice present |
---|
| 661 | ! if ice already present, new ice formed in slab_ice routine. |
---|
| 662 | ! ELSE ! temperature above freezing |
---|
| 663 | ! tsurf_new(i)=tslab(ki,1) |
---|
| 664 | END IF |
---|
| 665 | END DO |
---|
| 666 | ! END SELECT |
---|
| 667 | bils_cum(:)=0.0! clear cumulated fluxes |
---|
| 668 | END IF ! coupling time |
---|
| 669 | END SUBROUTINE ocean_slab_noice |
---|
| 670 | ! |
---|
| 671 | !***************************************************************************** |
---|
[1298] | 672 | |
---|
[3100] | 673 | ! SUBROUTINE ocean_slab_ice( & |
---|
| 674 | ! itime, dtime, jour, knon, knindex, & |
---|
| 675 | ! tsurf_in, p1lay, cdragh, cdragm, precip_rain, precip_snow, temp_air, spechum, & |
---|
| 676 | ! AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
| 677 | ! AcoefU, AcoefV, BcoefU, BcoefV, & |
---|
| 678 | ! ps, u1, v1, gustiness, & |
---|
| 679 | ! radsol, snow, qsurf, qsol, agesno, & |
---|
| 680 | ! alb1_new, alb2_new, evap, fluxsens, fluxlat, flux_u1, flux_v1, & |
---|
| 681 | ! tsurf_new, dflux_s, dflux_l, swnet) |
---|
[1298] | 682 | |
---|
[3100] | 683 | SUBROUTINE ocean_slab_ice(itime, dtime, knon, knindex, & |
---|
| 684 | precip_snow, tsurf_in, & |
---|
| 685 | radsol, snow, fluxsens, & |
---|
| 686 | tsurf_new, evap, flux_u1, flux_v1, zmasq) |
---|
[1298] | 687 | |
---|
[3100] | 688 | ! USE calcul_fluxs_mod |
---|
[1298] | 689 | |
---|
[3100] | 690 | ! INCLUDE "YOMCST.h" |
---|
| 691 | ! INCLUDE "clesphys.h" |
---|
[1298] | 692 | |
---|
[3100] | 693 | ! This routine |
---|
| 694 | ! (1) computes surface turbulent fluxes over points with some sea ice |
---|
| 695 | ! (2) computes condutive fluxes in the snow and ice, and ice-ocean flux |
---|
| 696 | ! (3) computes snow/ice albedo |
---|
| 697 | ! (4) updates snow/ice temperature, surface melt if needed. |
---|
| 698 | ! (5) lateral growth if tslab < freezing |
---|
| 699 | ! (6) bottom & side melt / growth depending on bottom fluxes |
---|
| 700 | ! (7) updates slab temperature every cpl_pas |
---|
[1298] | 701 | |
---|
[3100] | 702 | ! Note : |
---|
| 703 | ! klon total number of points |
---|
| 704 | ! knon number of points with open ocean (varies with time) |
---|
| 705 | ! knindex gives position of the knon points within klon. |
---|
| 706 | ! In general, local saved variables have klon values |
---|
| 707 | ! variables exchanged with PBL module have knon. |
---|
[1298] | 708 | |
---|
| 709 | ! Input arguments |
---|
| 710 | !**************************************************************************************** |
---|
[3100] | 711 | INTEGER, INTENT(IN) :: itime, knon !, jour |
---|
| 712 | INTEGER, DIMENSION(klon), INTENT(IN) :: knindex |
---|
| 713 | REAL, INTENT(IN) :: dtime |
---|
| 714 | REAL, DIMENSION(klon), INTENT(IN) :: tsurf_in |
---|
| 715 | ! REAL, DIMENSION(klon), INTENT(IN) :: p1lay |
---|
| 716 | ! REAL, DIMENSION(klon), INTENT(IN) :: cdragh, cdragm |
---|
| 717 | REAL, DIMENSION(klon), INTENT(IN) :: precip_snow !, precip_rain |
---|
| 718 | REAL, DIMENSION(klon), INTENT(IN) :: evap, fluxsens!,fluxlat |
---|
| 719 | REAL, DIMENSION(klon), INTENT(IN) :: flux_u1, flux_v1 |
---|
| 720 | REAL, DIMENSION(klon), INTENT(IN) :: zmasq ! proxy of rnat |
---|
| 721 | ! REAL, DIMENSION(klon), INTENT(IN) :: spechum, temp_air |
---|
| 722 | ! REAL, DIMENSION(klon), INTENT(IN) :: AcoefH, AcoefQ, BcoefH, BcoefQ |
---|
| 723 | ! REAL, DIMENSION(klon), INTENT(IN) :: AcoefU, AcoefV, BcoefU, BcoefV |
---|
| 724 | ! REAL, DIMENSION(klon), INTENT(IN) :: ps |
---|
| 725 | ! REAL, DIMENSION(klon), INTENT(IN) :: u1, v1, gustiness |
---|
| 726 | ! REAL, DIMENSION(klon), INTENT(IN) :: swnet |
---|
[1298] | 727 | |
---|
[3100] | 728 | ! In/Output arguments |
---|
| 729 | !**************************************************************************************** |
---|
| 730 | REAL, DIMENSION(klon), INTENT(INOUT) :: snow!, qsol |
---|
| 731 | ! REAL, DIMENSION(klon), INTENT(INOUT) :: agesno |
---|
| 732 | REAL, DIMENSION(klon), INTENT(INOUT) :: radsol |
---|
| 733 | |
---|
[1298] | 734 | ! Output arguments |
---|
| 735 | !**************************************************************************************** |
---|
[3100] | 736 | ! REAL, DIMENSION(klon), INTENT(OUT) :: qsurf |
---|
| 737 | ! REAL, DIMENSION(klon), INTENT(OUT) :: alb1_new ! new albedo in visible SW interval |
---|
| 738 | ! REAL, DIMENSION(klon), INTENT(OUT) :: alb2_new ! new albedo in near IR interval |
---|
| 739 | ! REAL, DIMENSION(klon), INTENT(OUT) :: evap, fluxsens!, fluxlat |
---|
| 740 | ! REAL, DIMENSION(klon), INTENT(OUT) :: flux_u1, flux_v1 |
---|
| 741 | REAL, DIMENSION(klon), INTENT(OUT) :: tsurf_new |
---|
| 742 | ! REAL, DIMENSION(klon), INTENT(OUT) :: dflux_s, dflux_l |
---|
[1298] | 743 | |
---|
| 744 | ! Local variables |
---|
| 745 | !**************************************************************************************** |
---|
[3100] | 746 | INTEGER :: i,ki |
---|
| 747 | ! REAL, DIMENSION(klon) :: cal, beta, dif_grnd |
---|
| 748 | ! REAL, DIMENSION(klon) :: u0, v0 |
---|
| 749 | ! REAL, DIMENSION(klon) :: u1_lay, v1_lay |
---|
| 750 | REAL, DIMENSION(klon) :: f_bot ! bottom ocean - ice flux |
---|
[1298] | 751 | |
---|
[3100] | 752 | ! intermediate heat fluxes: |
---|
| 753 | ! (conduction snow / ice, shortwave penetration, bottom turbulent fluxes) |
---|
| 754 | REAL :: f_cond_s, f_cond_i, f_turb |
---|
| 755 | ! friction velocity, 1/C and 1/tau conduction for ice |
---|
| 756 | REAL :: ustar |
---|
| 757 | ! REAL :: uscap, ustau |
---|
| 758 | ! for snow/ice albedo: |
---|
| 759 | ! REAL :: alb_snow, alb_ice, alb_pond |
---|
| 760 | ! REAL :: frac_snow, frac_ice, frac_pond |
---|
| 761 | ! REAL :: z1_i, z2_i, z1_s, zlog ! height parameters |
---|
| 762 | ! for ice melt / freeze |
---|
| 763 | REAL :: e_melt, e_freeze, snow_evap, h_test, h_new |
---|
| 764 | ! dhsic, dfsic change in ice mass, fraction. |
---|
| 765 | ! frac_mf ratio of lateral / thickness growth / melt |
---|
| 766 | REAL :: dhsic, dfsic, frac_mf |
---|
[1298] | 767 | |
---|
[3100] | 768 | !******************************************************************************* |
---|
| 769 | ! 1) Update surface , ice and slab temperature |
---|
| 770 | !******************************************************************************* |
---|
| 771 | ! Wind stress |
---|
| 772 | ! flux_u1, flux_v1 from physics |
---|
| 773 | ! save cumulated wind stress |
---|
| 774 | ! Use ocean-ice stress = wind stress * (1.-fsic) |
---|
| 775 | ! IF (slab_ekman.GT.0) THEN |
---|
| 776 | IF (slab_ekman) THEN |
---|
| 777 | DO i=1,knon |
---|
| 778 | ki=knindex(i) |
---|
| 779 | taux_cum(ki)=taux_cum(ki)+flux_u1(ki)*fsic(ki)*(1.-fsic(ki))/cpl_pas |
---|
| 780 | tauy_cum(ki)=tauy_cum(ki)+flux_v1(ki)*fsic(ki)*(1.-fsic(ki))/cpl_pas |
---|
| 781 | END DO |
---|
| 782 | ENDIF |
---|
[1298] | 783 | |
---|
[3100] | 784 | ! Initialize ice-ocean flux |
---|
| 785 | slab_bilg(:)=0. |
---|
[1298] | 786 | |
---|
[3100] | 787 | ! Old, explicit scheme for snow & ice conductive fluxes |
---|
| 788 | ! radsol is total surface fluxes (input) : radiative + turbulent |
---|
| 789 | DO i=1,knon |
---|
| 790 | ki=knindex(i) ! For PCM : you can probably replace ki by i |
---|
| 791 | ! ocean-ice turbulent heat flux |
---|
| 792 | ! turbulent velocity = (tau/rho)^1/2 |
---|
| 793 | ustar = MAX(5e-4, SQRT((1.-fsic(ki)) & |
---|
| 794 | * SQRT(flux_u1(ki)**2 + flux_v1(ki)**2) / sea_den)) |
---|
| 795 | f_turb = 0.0057 * sea_den * sea_cap * ustar * (tslab(ki,1) - t_freeze) |
---|
| 796 | ! f_turb >0 and cannot bring tslab below zero |
---|
| 797 | f_turb = MAX(0., MIN(f_turb, & |
---|
| 798 | (tslab(ki,1)-t_freeze) / (cyang*dtime*cpl_pas))) |
---|
[1298] | 799 | |
---|
[3100] | 800 | ! ice conductive flux (pos up) |
---|
| 801 | IF (seaice(ki).GT.0) THEN |
---|
| 802 | f_cond_i = ice_cond*(t_freeze-tice(ki))/seaice(ki) |
---|
| 803 | ELSE |
---|
| 804 | f_cond_i = 0 |
---|
| 805 | END IF |
---|
[1298] | 806 | |
---|
[3100] | 807 | ! If snow layer present, tsurf = tsnow |
---|
| 808 | ! Problem here, as tsurf_in # tsnow ? |
---|
| 809 | IF (snow(ki).GT.snow_min) THEN |
---|
| 810 | ! snow conductive flux (pos up) |
---|
| 811 | f_cond_s=sno_cond*(tice(ki)-tsurf_in(ki))/snow(ki) |
---|
| 812 | ! update ice temperature |
---|
| 813 | tice(ki)=tice(ki) + 2./ice_cap/(snow(ki)+seaice(ki)) & |
---|
| 814 | *(f_cond_i-f_cond_s)*dtime |
---|
| 815 | ! update snow temperature |
---|
| 816 | tsurf_new(ki) = tsurf_in(ki) + 2./ice_cap/snow(ki) & |
---|
| 817 | *(fluxsens(ki)+radsol(ki)+f_cond_s)*dtime |
---|
| 818 | ELSE IF (seaice(ki).GT.0) THEN ! bare ice. tsurf = tice |
---|
| 819 | ! update ice temperature |
---|
| 820 | tice(ki) = tice(ki) + 2./ice_cap/seaice(ki) & |
---|
| 821 | *(fluxsens(ki)+radsol(ki)+f_cond_i)*dtime |
---|
| 822 | tsurf_new(ki) = tice(ki) |
---|
| 823 | END IF |
---|
| 824 | ! bottom flux (used to grow ice from below) |
---|
| 825 | f_bot(ki) = f_turb - f_cond_i |
---|
| 826 | slab_bilg(ki) = -f_turb |
---|
| 827 | END DO |
---|
[1298] | 828 | ! |
---|
[3100] | 829 | !! Surface turbulent fluxes (sens, lat etc) and update surface temp. |
---|
| 830 | ! dif_grnd(:)=0. |
---|
| 831 | ! beta(:) = 1. |
---|
| 832 | ! CALL calcul_fluxs(knon, is_sic, dtime, & |
---|
| 833 | ! tsurf_in, p1lay, cal, beta, cdragh, cdragh, ps, & |
---|
| 834 | ! precip_rain, precip_snow, snow, qsurf, & |
---|
| 835 | ! radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, & |
---|
| 836 | ! f_qsat_oce,AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
| 837 | ! tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
| 838 | ! DO i=1,knon |
---|
| 839 | ! IF (snow(i).LT.snow_min) tice(knindex(i))=tsurf_new(i) |
---|
| 840 | ! END DO |
---|
[1298] | 841 | |
---|
[3100] | 842 | ! Surface, snow-ice and ice-ocean fluxes. |
---|
| 843 | ! Prepare call to calcul_fluxs (cal, beta, radsol, dif_grnd) |
---|
[1298] | 844 | |
---|
[3100] | 845 | ! Surface turbulent fluxes (sens, lat etc) and update surface temp. |
---|
| 846 | ! beta(:) = 1. |
---|
| 847 | ! CALL calcul_fluxs(knon, is_sic, dtime, & |
---|
| 848 | ! tsurf_in, p1lay, cal, beta, cdragh, cdragh, ps, & |
---|
| 849 | ! precip_rain, precip_snow, snow, qsurf, & |
---|
| 850 | ! radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, gustiness, & |
---|
| 851 | ! f_qsat_oce,AcoefH, AcoefQ, BcoefH, BcoefQ, & |
---|
| 852 | ! tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
[1298] | 853 | |
---|
[3100] | 854 | !! Update remaining temperature and fluxes |
---|
| 855 | ! DO i=1,knon |
---|
| 856 | ! ki=knindex(i) |
---|
| 857 | ! ! ocean-ice turbulent heat flux |
---|
| 858 | ! ! turbulent velocity = (tau/rho)^1/2 for low ice cover |
---|
| 859 | ! ! min = 5e-4 for 1cm/s current |
---|
| 860 | ! ustar = MAX(5e-4, SQRT((1.-fsic(ki)) & |
---|
| 861 | ! * SQRT(flux_u1(i)**2 + flux_v1(i)**2) / sea_den)) |
---|
| 862 | ! f_turb = 0.0057 * sea_den * sea_cap * ustar * (tslab(ki,1) - t_freeze) |
---|
| 863 | ! ! ice_ocean fluxes cannot bring tslab below freezing |
---|
| 864 | ! f_turb = MAX(0., MIN(f_turb, slab_bilg(ki) + (tslab(ki,1)-t_freeze) & |
---|
| 865 | ! / (fsic(ki)*cyang*dtime*cpl_pas))) |
---|
| 866 | ! IF (snow(i).GT.snow_min) THEN |
---|
| 867 | ! ! snow conductive flux after calcul_fluxs |
---|
| 868 | ! f_cond_s = sno_cond * (tice(ki)-tsurf_new(i)) / snow(i) |
---|
| 869 | ! ! 1 / heat capacity and conductive timescale |
---|
| 870 | ! uscap = 2. / ice_cap / (snow(i)+seaice(ki)) |
---|
| 871 | ! ustau = uscap * ice_cond / seaice(ki) |
---|
| 872 | ! ! update ice temp |
---|
| 873 | ! tice(ki) = (tice(ki) + dtime*(ustau*t_freeze - uscap*f_cond_s)) & |
---|
| 874 | ! / (1 + dtime*ustau) |
---|
| 875 | ! ELSE ! bare ice |
---|
| 876 | ! tice(ki)=tsurf_new(i) |
---|
| 877 | ! END IF |
---|
| 878 | ! ! ice conductive flux (pos up) |
---|
| 879 | ! f_cond_i = ice_cond * (t_freeze-tice(ki)) / seaice(ki) |
---|
| 880 | ! f_bot(i) = f_turb - f_cond_i |
---|
| 881 | ! slab_bilg(ki) = slab_bilg(ki)-f_turb |
---|
| 882 | ! END DO |
---|
[1298] | 883 | |
---|
[3100] | 884 | ! weight fluxes to ocean by sea ice fraction |
---|
| 885 | slab_bilg(:)=slab_bilg(:)*fsic(:) |
---|
[1298] | 886 | |
---|
[3100] | 887 | !**************************************************************************************** |
---|
| 888 | ! 2) Update snow and ice surface : thickness and fraction |
---|
| 889 | !**************************************************************************************** |
---|
| 890 | DO i=1,knon |
---|
| 891 | ki=knindex(i) |
---|
| 892 | ! snow precip (could be before fluxes above ?) |
---|
| 893 | IF (precip_snow(ki) > 0.) THEN |
---|
| 894 | snow(ki) = snow(ki)+precip_snow(ki)*dtime*(1.-snow_wfact*(1.-fsic(ki))) |
---|
| 895 | END IF |
---|
| 896 | ! snow and ice sublimation |
---|
| 897 | IF (evap(ki) > 0.) THEN |
---|
| 898 | snow_evap = MIN (snow(ki) / dtime, evap(ki)) |
---|
| 899 | snow(ki) = snow(ki) - snow_evap * dtime |
---|
| 900 | snow(ki) = MAX(0.0, snow(ki)) |
---|
| 901 | seaice(ki) = MAX(0.0,seaice(ki)-(evap(ki)-snow_evap)*dtime) |
---|
| 902 | ENDIF |
---|
| 903 | ! Melt / Freeze snow from above if Tsurf>0 |
---|
| 904 | IF (tsurf_new(ki).GT.t_melt) THEN |
---|
| 905 | ! energy available for melting snow (in kg of melted snow /m2) |
---|
| 906 | e_melt = MIN(MAX(snow(ki)*(tsurf_new(ki)-t_melt)*ice_cap/2. & |
---|
| 907 | /(ice_lat+ice_cap/2.*(t_melt-tice(ki))),0.0),snow(ki)) |
---|
| 908 | ! remove snow |
---|
| 909 | IF (snow(ki).GT.e_melt) THEN |
---|
| 910 | snow(ki)=snow(ki)-e_melt |
---|
| 911 | tsurf_new(ki)=t_melt |
---|
| 912 | ELSE ! all snow is melted |
---|
| 913 | ! add remaining heat flux to ice |
---|
| 914 | e_melt=e_melt-snow(ki) |
---|
| 915 | snow(ki)=0.0 |
---|
| 916 | tice(ki)=tice(ki)+e_melt*ice_lat*2./(ice_cap*seaice(ki)) |
---|
| 917 | tsurf_new(ki)=tice(ki) |
---|
| 918 | END IF |
---|
| 919 | END IF |
---|
| 920 | ! Bottom melt / grow |
---|
| 921 | ! bottom freeze if bottom flux (cond + oce-ice) <0 |
---|
| 922 | IF (f_bot(ki).LT.0) THEN |
---|
| 923 | ! larger fraction of bottom growth |
---|
| 924 | frac_mf=MIN(1.,MAX(0.,(seaice(ki)-h_ice_thick) & |
---|
| 925 | / (h_ice_max-h_ice_thick))) |
---|
| 926 | ! quantity of new ice (formed at mean ice temp) |
---|
| 927 | e_melt= -f_bot(ki) * dtime * fsic(ki) & |
---|
| 928 | / (ice_lat+ice_cap/2.*(t_freeze-tice(ki))) |
---|
| 929 | ! first increase height to h_thick |
---|
| 930 | dhsic=MAX(0.,MIN(h_ice_thick-seaice(ki),e_melt/fsic(ki))) |
---|
| 931 | seaice(ki)=dhsic+seaice(ki) |
---|
| 932 | e_melt=e_melt-fsic(ki)*dhsic |
---|
| 933 | IF (e_melt.GT.0.) THEN |
---|
| 934 | ! frac_mf fraction used for lateral increase |
---|
| 935 | dfsic=MIN(ice_frac_max-fsic(ki),e_melt*frac_mf/seaice(ki)) |
---|
| 936 | fsic(ki)=fsic(ki)+dfsic |
---|
| 937 | e_melt=e_melt-dfsic*seaice(ki) |
---|
| 938 | ! rest used to increase height |
---|
| 939 | seaice(ki)=MIN(h_ice_max,seaice(ki)+e_melt/fsic(ki)) |
---|
| 940 | END IF |
---|
| 941 | ELSE |
---|
| 942 | ! melt from below if bottom flux >0 |
---|
| 943 | ! larger fraction of lateral melt from warm ocean |
---|
| 944 | frac_mf=MIN(1.,MAX(0.,(seaice(ki)-h_ice_thin) & |
---|
| 945 | / (h_ice_thick-h_ice_thin))) |
---|
| 946 | ! bring ice to freezing and melt from below |
---|
| 947 | ! quantity of melted ice |
---|
| 948 | e_melt= f_bot(ki) * dtime * fsic(ki) & |
---|
| 949 | / (ice_lat+ice_cap/2.*(tice(ki)-t_freeze)) |
---|
| 950 | ! first decrease height to h_thick |
---|
| 951 | IF (fsic(ki).GT.0) THEN |
---|
| 952 | dhsic=MAX(0.,MIN(seaice(ki)-h_ice_thick,e_melt/fsic(ki))) |
---|
| 953 | ELSE |
---|
| 954 | dhsic=0 |
---|
| 955 | ENDIF |
---|
| 956 | seaice(ki)=seaice(ki)-dhsic |
---|
| 957 | e_melt=e_melt-fsic(ki)*dhsic |
---|
| 958 | IF (e_melt.GT.0) THEN |
---|
| 959 | ! frac_mf fraction used for height decrease |
---|
| 960 | dhsic=MAX(0.,MIN(seaice(ki)-h_ice_min,e_melt*frac_mf/fsic(ki))) |
---|
| 961 | seaice(ki)=seaice(ki)-dhsic |
---|
| 962 | e_melt=e_melt-fsic(ki)*dhsic |
---|
| 963 | ! rest used to decrease fraction (up to 0!) |
---|
| 964 | dfsic=MIN(fsic(ki),e_melt/seaice(ki)) |
---|
| 965 | ! keep remaining in ocean if everything melted |
---|
| 966 | e_melt=e_melt-dfsic*seaice(ki) |
---|
| 967 | slab_bilg(ki) = slab_bilg(ki) + e_melt*ice_lat/dtime |
---|
| 968 | ELSE |
---|
| 969 | dfsic=0 |
---|
| 970 | END IF |
---|
| 971 | fsic(ki)=fsic(ki)-dfsic |
---|
| 972 | END IF |
---|
| 973 | ! melt ice from above if Tice>0 |
---|
| 974 | IF (tice(ki).GT.t_melt) THEN |
---|
| 975 | ! quantity of ice melted (kg/m2) |
---|
| 976 | e_melt=MAX(seaice(ki)*(tice(ki)-t_melt)*ice_cap/2. & |
---|
| 977 | /(ice_lat+ice_cap/2.*(t_melt-t_freeze)),0.0) |
---|
| 978 | ! melt from above, height only |
---|
| 979 | dhsic=MIN(seaice(ki)-h_ice_min,e_melt) |
---|
| 980 | e_melt=e_melt-dhsic |
---|
| 981 | IF (e_melt.GT.0) THEN |
---|
| 982 | ! lateral melt if ice too thin |
---|
| 983 | dfsic=MAX(fsic(ki)-ice_frac_min,e_melt/h_ice_min*fsic(ki)) |
---|
| 984 | ! if all melted add remaining heat to ocean |
---|
| 985 | e_melt=MAX(0.,e_melt*fsic(ki)-dfsic*h_ice_min) |
---|
| 986 | slab_bilg(ki) = slab_bilg(ki) + e_melt*ice_lat/dtime |
---|
| 987 | ! update height and fraction |
---|
| 988 | fsic(ki)=fsic(ki)-dfsic |
---|
| 989 | END IF |
---|
| 990 | seaice(ki)=seaice(ki)-dhsic |
---|
| 991 | ! surface temperature at melting point |
---|
| 992 | tice(ki)=t_melt |
---|
| 993 | tsurf_new(ki)=t_melt |
---|
| 994 | END IF |
---|
| 995 | ! convert snow to ice if below floating line |
---|
| 996 | h_test=(seaice(ki)+snow(ki))*ice_den-seaice(ki)*sea_den |
---|
| 997 | IF ((h_test.GT.0.).AND.(seaice(ki).GT.h_ice_min)) THEN !snow under water |
---|
| 998 | ! extra snow converted to ice (with added frozen sea water) |
---|
| 999 | dhsic=h_test/(sea_den-ice_den+sno_den) |
---|
| 1000 | seaice(ki)=seaice(ki)+dhsic |
---|
| 1001 | snow(ki)=snow(ki)-dhsic*sno_den/ice_den |
---|
| 1002 | ! available energy (freeze sea water + bring to tice) |
---|
| 1003 | e_melt=dhsic*(1.-sno_den/ice_den)*(ice_lat+ & |
---|
| 1004 | ice_cap/2.*(t_freeze-tice(ki))) |
---|
| 1005 | ! update ice temperature |
---|
| 1006 | tice(ki)=tice(ki)+2.*e_melt/ice_cap/(snow(ki)+seaice(ki)) |
---|
| 1007 | END IF |
---|
| 1008 | END DO |
---|
[1298] | 1009 | |
---|
[3100] | 1010 | !******************************************************************************* |
---|
| 1011 | ! 3) cumulate ice-ocean fluxes, update tslab, lateral grow |
---|
| 1012 | !***********************************************o******************************* |
---|
| 1013 | !cumul fluxes. |
---|
| 1014 | bilg_cum(:)=bilg_cum(:)+slab_bilg(:) |
---|
| 1015 | IF (MOD(itime,cpl_pas).EQ.0) THEN ! time to update tslab |
---|
| 1016 | ! Add cumulated surface fluxes |
---|
| 1017 | tslab(:,1)=tslab(:,1)+bilg_cum(:)*cyang*dtime |
---|
| 1018 | bilg_cum(:)=0. |
---|
| 1019 | ! If slab temperature below freezing, new lateral growth |
---|
| 1020 | DO i=1,knon |
---|
| 1021 | ki=knindex(i) |
---|
| 1022 | IF (tslab(ki,1).LT.t_freeze) THEN ! create more ice |
---|
| 1023 | ! quantity of new ice formed over open ocean |
---|
| 1024 | ! (formed at mean ice temperature) |
---|
| 1025 | e_freeze=(t_freeze-tslab(ki,1))/cyang & |
---|
| 1026 | /(ice_lat+ice_cap/2.*(t_freeze-tice(ki))) |
---|
| 1027 | ! new ice height and fraction |
---|
| 1028 | h_new=MAX(h_ice_thin,MIN(h_ice_new,seaice(ki))) ! new height |
---|
| 1029 | ! h_new=MIN(h_ice_new,seaice(ki)) |
---|
| 1030 | dfsic=MIN(ice_frac_max-fsic(ki) & |
---|
| 1031 | ,MAX(ice_frac_min,e_freeze/h_new)) |
---|
| 1032 | ! update average sea ice height |
---|
| 1033 | seaice(ki)=(seaice(ki)*fsic(ki)+e_freeze) & |
---|
| 1034 | / (dfsic+fsic(ki)) |
---|
| 1035 | ! update snow thickness |
---|
| 1036 | snow(ki) = snow(ki) * fsic(ki) / (dfsic+fsic(ki)) |
---|
| 1037 | ! update tslab to freezing |
---|
| 1038 | tslab(ki,1)=t_freeze |
---|
| 1039 | ! update sea ice fraction |
---|
| 1040 | fsic(ki)=fsic(ki)+dfsic |
---|
| 1041 | END IF ! tslab below freezing |
---|
| 1042 | END DO |
---|
| 1043 | END IF ! coupling time |
---|
[1298] | 1044 | |
---|
[3100] | 1045 | !**************************************************************************************** |
---|
| 1046 | ! 4) Compute sea-ice and snow albedo |
---|
| 1047 | !**************************************************************************************** |
---|
| 1048 | ! Removed all albedo stuff as it is computed through hydrol in the Generic model |
---|
| 1049 | ! ------ End Albedo ---------- |
---|
[1298] | 1050 | |
---|
[3100] | 1051 | !tests remaining ice fraction |
---|
| 1052 | WHERE ((fsic.LT.ice_frac_min).OR.(seaice.LT.h_ice_min)) |
---|
| 1053 | tslab(:,1)=tslab(:,1)-fsic*seaice*ice_lat*cyang |
---|
| 1054 | tice=t_melt |
---|
| 1055 | fsic=0. |
---|
| 1056 | seaice=0. |
---|
| 1057 | END WHERE |
---|
[1298] | 1058 | |
---|
[3100] | 1059 | END SUBROUTINE ocean_slab_ice |
---|
[1298] | 1060 | ! |
---|
| 1061 | !**************************************************************************************** |
---|
| 1062 | ! |
---|
[3100] | 1063 | SUBROUTINE ocean_slab_final |
---|
[1298] | 1064 | |
---|
| 1065 | !**************************************************************************************** |
---|
[3100] | 1066 | ! Deallocate module variables |
---|
[1298] | 1067 | !**************************************************************************************** |
---|
[3100] | 1068 | IF (ALLOCATED(tslab)) DEALLOCATE(tslab) |
---|
| 1069 | IF (ALLOCATED(fsic)) DEALLOCATE(fsic) |
---|
| 1070 | IF (ALLOCATED(tice)) DEALLOCATE(tice) |
---|
| 1071 | IF (ALLOCATED(seaice)) DEALLOCATE(seaice) |
---|
| 1072 | IF (ALLOCATED(slab_bilg)) DEALLOCATE(slab_bilg) |
---|
| 1073 | IF (ALLOCATED(bilg_cum)) DEALLOCATE(bilg_cum) |
---|
| 1074 | IF (ALLOCATED(bils_cum)) DEALLOCATE(bils_cum) |
---|
| 1075 | IF (ALLOCATED(taux_cum)) DEALLOCATE(taux_cum) |
---|
| 1076 | IF (ALLOCATED(tauy_cum)) DEALLOCATE(tauy_cum) |
---|
| 1077 | IF (ALLOCATED(dt_ekman)) DEALLOCATE(dt_ekman) |
---|
| 1078 | IF (ALLOCATED(dt_hdiff)) DEALLOCATE(dt_hdiff) |
---|
| 1079 | IF (ALLOCATED(dt_gm)) DEALLOCATE(dt_gm) |
---|
| 1080 | ! IF (ALLOCATED(dt_qflux)) DEALLOCATE(dt_qflux) |
---|
| 1081 | ! IF (ALLOCATED(dt_qflux_sic)) DEALLOCATE(dt_qflux_sic) |
---|
[1298] | 1082 | |
---|
| 1083 | END SUBROUTINE ocean_slab_final |
---|
| 1084 | ! |
---|
| 1085 | !**************************************************************************************** |
---|
| 1086 | ! |
---|
[3100] | 1087 | SUBROUTINE ocean_slab_get_vars(ngrid,tslab_loc, seaice_loc, flux_g_loc, & |
---|
[1298] | 1088 | dt_hdiff_loc,dt_ekman_loc) |
---|
[3100] | 1089 | |
---|
[1298] | 1090 | ! "Get some variables from module ocean_slab_mod" |
---|
| 1091 | |
---|
| 1092 | INTEGER, INTENT(IN) :: ngrid |
---|
[3100] | 1093 | REAL, DIMENSION(ngrid,nslay), INTENT(OUT) :: tslab_loc |
---|
[1298] | 1094 | REAL, DIMENSION(ngrid), INTENT(OUT) :: seaice_loc |
---|
| 1095 | REAL, DIMENSION(ngrid), INTENT(OUT) :: flux_g_loc |
---|
[3100] | 1096 | REAL, DIMENSION(ngrid,nslay), INTENT(OUT) :: dt_hdiff_loc ! [in W/m2] |
---|
| 1097 | REAL, DIMENSION(ngrid,nslay), INTENT(OUT) :: dt_ekman_loc ! [in W/m2] |
---|
[1298] | 1098 | INTEGER :: i |
---|
| 1099 | |
---|
| 1100 | |
---|
| 1101 | ! Set the output variables |
---|
[3100] | 1102 | tslab_loc(:,:) = 0. |
---|
| 1103 | dt_hdiff_loc(:,:)=0. |
---|
| 1104 | dt_ekman_loc(:,:)=0. |
---|
| 1105 | tslab_loc(:,:) = tslab(:,:) |
---|
| 1106 | seaice_loc(:) = seaice(:) |
---|
| 1107 | flux_g_loc(:) = slab_bilg(:) |
---|
[1298] | 1108 | |
---|
[3100] | 1109 | !! dt_hdiff_loc(:,i) = dt_hdiff(:,i)*slabh(i)*1000.*4228. !Convert en W/m2 |
---|
| 1110 | !! dt_ekman_loc(:,i) = dt_ekman(:,i)*slabh(i)*1000.*4228. |
---|
| 1111 | |
---|
| 1112 | IF (slab_hdiff) THEN |
---|
| 1113 | DO i=1,nslay |
---|
| 1114 | dt_hdiff_loc(:,i) = dt_hdiff(:,i) |
---|
| 1115 | ENDDO |
---|
| 1116 | ENDIF |
---|
| 1117 | IF (slab_ekman) THEN |
---|
| 1118 | DO i=1,nslay |
---|
| 1119 | dt_ekman_loc(:,i) = dt_ekman(:,i) |
---|
| 1120 | ENDDO |
---|
| 1121 | ENDIF |
---|
| 1122 | |
---|
| 1123 | |
---|
| 1124 | |
---|
[1298] | 1125 | END SUBROUTINE ocean_slab_get_vars |
---|
| 1126 | ! |
---|
| 1127 | !**************************************************************************************** |
---|
| 1128 | ! |
---|
[3100] | 1129 | |
---|
[1298] | 1130 | END MODULE ocean_slab_mod |
---|