[1298] | 1 | ! |
---|
| 2 | ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/ocean_slab_mod.F90,v 1.3 2008-02-04 16:24:28 fairhead Exp $ |
---|
| 3 | ! |
---|
| 4 | MODULE ocean_slab_mod |
---|
| 5 | ! |
---|
| 6 | ! This module is used for both surface ocean and sea-ice when using the slab ocean, |
---|
| 7 | ! "ocean=slab". |
---|
| 8 | ! |
---|
| 9 | |
---|
| 10 | |
---|
| 11 | use slab_ice_h |
---|
| 12 | use watercommon_h, only: T_h2O_ice_liq |
---|
| 13 | use surf_heat_transp_mod |
---|
| 14 | implicit none |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | |
---|
| 18 | |
---|
| 19 | |
---|
| 20 | |
---|
| 21 | !LOGICAL, PRIVATE, SAVE :: ok_slab_sic,ok_slab_heaT_h2O_ice_liqBS |
---|
[1315] | 22 | !!$OMP THREADPRIVATE(ok_slab_sic,ok_slab_heaT_h2O_ice_liqBS) |
---|
[1298] | 23 | !INTEGER, PRIVATE, SAVE :: slab_ekman, slab_cadj |
---|
[1315] | 24 | !!$OMP THREADPRIVATE(slab_ekman,slab_cadj) |
---|
[1298] | 25 | INTEGER, PRIVATE, SAVE :: lmt_pas, julien, idayvrai |
---|
| 26 | !$OMP THREADPRIVATE(lmt_pas,julien,idayvrai) |
---|
| 27 | INTEGER, PRIVATE, SAVE :: cpl_pas |
---|
| 28 | !$OMP THREADPRIVATE(cpl_pas) |
---|
| 29 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: tmp_seaice |
---|
| 30 | !$OMP THREADPRIVATE(tmp_seaice) |
---|
| 31 | REAL, ALLOCATABLE, DIMENSION(:,:), PRIVATE, SAVE :: tmp_tslab_loc |
---|
| 32 | !$OMP THREADPRIVATE(tmp_tslab_loc) |
---|
| 33 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: slab_bils |
---|
| 34 | !$OMP THREADPRIVATE(slab_bils) |
---|
| 35 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE , SAVE :: lmt_bils |
---|
| 36 | !$OMP THREADPRIVATE(lmt_bils) |
---|
| 37 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: tmp_pctsrf_slab |
---|
| 38 | !$OMP THREADPRIVATE(tmp_pctsrf_slab) |
---|
| 39 | REAL, ALLOCATABLE, DIMENSION(:,:), PRIVATE, SAVE :: tmp_tslab |
---|
| 40 | !$OMP THREADPRIVATE(tmp_tslab) |
---|
| 41 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: tmp_radsol |
---|
| 42 | !$OMP THREADPRIVATE(tmp_radsol) |
---|
| 43 | REAL, ALLOCATABLE, DIMENSION(:,:), PRIVATE, SAVE :: dt_hdiff |
---|
| 44 | !$OMP THREADPRIVATE(dt_hdiff) |
---|
| 45 | REAL, ALLOCATABLE, DIMENSION(:,:), PRIVATE, SAVE :: dt_ekman |
---|
| 46 | !$OMP THREADPRIVATE(dt_ekman) |
---|
| 47 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: tmp_flux_o, tmp_flux_g |
---|
| 48 | !$OMP THREADPRIVATE(tmp_flux_o,tmp_flux_g) |
---|
| 49 | REAL, ALLOCATABLE, DIMENSION(:), PRIVATE, SAVE :: slabh |
---|
| 50 | !$OMP THREADPRIVATE(slabh) |
---|
| 51 | LOGICAL, PRIVATE, SAVE :: check = .FALSE. |
---|
| 52 | !$OMP THREADPRIVATE(check) |
---|
| 53 | |
---|
| 54 | CONTAINS |
---|
| 55 | ! |
---|
| 56 | !**************************************************************************************** |
---|
| 57 | ! |
---|
| 58 | SUBROUTINE ocean_slab_init(ngrid,dtime, tslab_rst, seaice_rst, pctsrf_rst) |
---|
| 59 | |
---|
| 60 | use slab_ice_h |
---|
| 61 | |
---|
| 62 | |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | ! Input variables |
---|
| 66 | !**************************************************************************************** |
---|
| 67 | |
---|
| 68 | integer,intent(in) :: ngrid ! number of atmospherci columns |
---|
| 69 | REAL, INTENT(IN) :: dtime |
---|
| 70 | ! Variables read from restart file |
---|
| 71 | REAL, DIMENSION(ngrid,noceanmx), INTENT(IN) :: tslab_rst |
---|
| 72 | REAL, DIMENSION(ngrid), INTENT(IN) :: seaice_rst |
---|
| 73 | REAL, DIMENSION(ngrid), INTENT(IN) :: pctsrf_rst |
---|
| 74 | |
---|
| 75 | |
---|
| 76 | ! Local variables |
---|
| 77 | !**************************************************************************************** |
---|
| 78 | INTEGER :: error |
---|
| 79 | CHARACTER (len = 80) :: abort_message |
---|
| 80 | CHARACTER (len = 20) :: modname = 'ocean_slab_intit' |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | print*,'************************' |
---|
| 84 | print*,'SLAB OCEAN est actif, prenez precautions !' |
---|
| 85 | print*,'************************' |
---|
| 86 | |
---|
| 87 | ! Lecture des parametres: |
---|
| 88 | ! CALL getpar('ok_slab_sic',.true.,ok_slab_sic,'glace de mer dans slab') |
---|
| 89 | ! CALL getpar('slab_ekman',0,slab_ekman,'type transport Ekman pour slab (0=rien)') |
---|
| 90 | ! CALL getpar('slab_cadj',1,slab_cadj,'type ajustement conv slab 2 couches') |
---|
| 91 | |
---|
| 92 | ! Allocate variables initialize from restart fields |
---|
| 93 | ALLOCATE(tmp_tslab(ngrid,noceanmx), stat = error) |
---|
| 94 | IF (error /= 0) THEN |
---|
| 95 | abort_message='Pb allocation tmp_tslab' |
---|
[1682] | 96 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 97 | ENDIF |
---|
| 98 | tmp_tslab(:,:) = tslab_rst(:,:) |
---|
| 99 | ALLOCATE(tmp_tslab_loc(ngrid,noceanmx), stat = error) |
---|
| 100 | IF (error /= 0) THEN |
---|
| 101 | abort_message='Pb allocation tmp_tslab_loc' |
---|
[1682] | 102 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 103 | ENDIF |
---|
| 104 | tmp_tslab_loc(:,:) = tslab_rst(:,:) |
---|
| 105 | |
---|
| 106 | ALLOCATE(tmp_seaice(ngrid), stat = error) |
---|
| 107 | IF (error /= 0) THEN |
---|
| 108 | abort_message='Pb allocation tmp_seaice' |
---|
[1682] | 109 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 110 | ENDIF |
---|
| 111 | tmp_seaice(:) = seaice_rst(:) |
---|
| 112 | |
---|
| 113 | ALLOCATE(tmp_pctsrf_slab(ngrid), stat = error) |
---|
| 114 | IF (error /= 0) THEN |
---|
| 115 | abort_message='Pb allocation tmp_pctsrf_slab' |
---|
[1682] | 116 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 117 | ENDIF |
---|
| 118 | tmp_pctsrf_slab(:) = pctsrf_rst(:) |
---|
| 119 | |
---|
| 120 | ! Allocate some other variables internal in module mod_oceanslab |
---|
| 121 | ALLOCATE(tmp_radsol(ngrid), stat = error) |
---|
| 122 | IF (error /= 0) THEN |
---|
| 123 | abort_message='Pb allocation tmp_radsol' |
---|
[1682] | 124 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 125 | ENDIF |
---|
| 126 | |
---|
| 127 | ALLOCATE(tmp_flux_o(ngrid), stat = error) |
---|
| 128 | IF (error /= 0) THEN |
---|
| 129 | abort_message='Pb allocation tmp_flux_o' |
---|
[1682] | 130 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 131 | ENDIF |
---|
| 132 | |
---|
| 133 | ALLOCATE(tmp_flux_g(ngrid), stat = error) |
---|
| 134 | IF (error /= 0) THEN |
---|
| 135 | abort_message='Pb allocation tmp_flux_g' |
---|
[1682] | 136 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 137 | ENDIF |
---|
| 138 | |
---|
| 139 | ! a mettre un slab_bils aussi en force !!! |
---|
| 140 | ALLOCATE(slab_bils(ngrid), stat = error) |
---|
| 141 | IF (error /= 0) THEN |
---|
| 142 | abort_message='Pb allocation slab_bils' |
---|
[1682] | 143 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 144 | ENDIF |
---|
| 145 | slab_bils(:) = 0.0 |
---|
| 146 | |
---|
| 147 | ALLOCATE(dt_hdiff(ngrid,noceanmx), stat = error) |
---|
| 148 | IF (error /= 0) THEN |
---|
| 149 | abort_message='Pb allocation dt_hdiff' |
---|
[1682] | 150 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 151 | ENDIF |
---|
| 152 | dt_hdiff = 0.0 |
---|
| 153 | |
---|
| 154 | ALLOCATE(dt_ekman(ngrid,noceanmx), stat = error) |
---|
| 155 | IF (error /= 0) THEN |
---|
| 156 | abort_message='Pb allocation dt_hdiff' |
---|
[1682] | 157 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 158 | ENDIF |
---|
| 159 | dt_ekman = 0.0 |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | ALLOCATE(lmt_bils(ngrid), stat = error) |
---|
| 163 | IF (error /= 0) THEN |
---|
| 164 | abort_message='Pb allocation lmt_bils' |
---|
[1682] | 165 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 166 | ENDIF |
---|
| 167 | lmt_bils(:) = 0.0 |
---|
| 168 | |
---|
| 169 | ALLOCATE(slabh(noceanmx), stat = error) |
---|
| 170 | IF (error /= 0) THEN |
---|
| 171 | abort_message='Pb allocation slabh' |
---|
[1682] | 172 | CALL abort_physic(modname,abort_message,1) |
---|
[1298] | 173 | ENDIF |
---|
| 174 | slabh(1)=50. |
---|
| 175 | IF (noceanmx.GE.2) slabh(2)=150. |
---|
| 176 | IF (noceanmx.GE.3) slabh(3)=2800. |
---|
| 177 | |
---|
| 178 | |
---|
| 179 | ! CALL init_masquv |
---|
| 180 | |
---|
| 181 | |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | END SUBROUTINE ocean_slab_init |
---|
| 185 | ! |
---|
| 186 | !**************************************************************************************** |
---|
| 187 | ! |
---|
| 188 | |
---|
| 189 | ! |
---|
| 190 | !**************************************************************************************** |
---|
| 191 | ! |
---|
| 192 | SUBROUTINE ocean_slab_ice(dtime, & |
---|
| 193 | ngrid, knindex, tsurf, radsol, & |
---|
| 194 | precip_snow, snow, evap, & |
---|
| 195 | fluxsens,tsurf_new, pctsrf_sic, & |
---|
| 196 | taux_slab,tauy_slab,icount) |
---|
| 197 | |
---|
| 198 | use slab_ice_h |
---|
[1397] | 199 | use callkeys_mod, only: ok_slab_sic |
---|
[1298] | 200 | |
---|
| 201 | |
---|
| 202 | ! Input arguments |
---|
| 203 | !**************************************************************************************** |
---|
| 204 | INTEGER, INTENT(IN) :: ngrid |
---|
| 205 | INTEGER, DIMENSION(ngrid), INTENT(IN) :: knindex |
---|
| 206 | REAL, INTENT(IN) :: dtime |
---|
| 207 | REAL, DIMENSION(ngrid), INTENT(IN) :: tsurf |
---|
| 208 | REAL, DIMENSION(ngrid), INTENT(IN) :: taux_slab |
---|
| 209 | REAL, DIMENSION(ngrid), INTENT(IN) :: tauy_slab |
---|
| 210 | REAL, DIMENSION(ngrid), INTENT(IN) :: evap, fluxsens |
---|
| 211 | REAL, DIMENSION(ngrid), INTENT(IN) :: precip_snow |
---|
| 212 | REAL, DIMENSION(ngrid), INTENT(IN) :: radsol |
---|
| 213 | INTEGER, INTENT(IN) :: icount |
---|
| 214 | |
---|
| 215 | |
---|
| 216 | !In/Output arguments |
---|
| 217 | !****************************************************************************************l |
---|
| 218 | REAL, DIMENSION(ngrid), INTENT(INOUT) :: snow |
---|
| 219 | |
---|
| 220 | ! REAL, DIMENSION(ngridmx), INTENT(INOUT) :: agesno |
---|
| 221 | |
---|
| 222 | |
---|
| 223 | ! Output arguments |
---|
| 224 | !**************************************************************************************** |
---|
| 225 | ! REAL, DIMENSION(ngridmx), INTENT(OUT) :: alb1_new ! new albedo in visible SW interval |
---|
| 226 | ! REAL, DIMENSION(ngridmx), INTENT(OUT) :: alb2_new ! new albedo in near IR interval |
---|
| 227 | REAL, DIMENSION(ngrid), INTENT(OUT) :: tsurf_new |
---|
| 228 | REAL, DIMENSION(ngrid), INTENT(OUT) :: pctsrf_sic |
---|
| 229 | |
---|
| 230 | ! Local variables |
---|
| 231 | !**************************************************************************************** |
---|
| 232 | INTEGER :: i |
---|
| 233 | REAL, DIMENSION(ngrid) :: cal, beta, dif_grnd, capsol |
---|
| 234 | REAL, DIMENSION(ngrid) :: alb_neig, alb_ice!, tsurf_temp |
---|
| 235 | REAL, DIMENSION(ngrid) :: soilcap, soilflux |
---|
| 236 | REAL, DIMENSION(ngrid) :: zfra |
---|
| 237 | REAL :: snow_evap, fonte |
---|
| 238 | REAL, DIMENSION(ngrid,noceanmx) :: tslab |
---|
| 239 | REAL, DIMENSION(ngrid) :: seaice,tsea_ice ! glace de mer (kg/m2) |
---|
| 240 | REAL, DIMENSION(ngrid) :: pctsrf_new |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | !***************************************************************************** |
---|
| 244 | |
---|
| 245 | |
---|
| 246 | ! Initialization of output variables |
---|
| 247 | ! alb1_new(:) = 0.0 |
---|
| 248 | |
---|
| 249 | !****************************************************************************** |
---|
| 250 | ! F. Codron: 3 cas |
---|
| 251 | ! -Glace interactive, quantité seaice : T glace suit modèle simple |
---|
| 252 | ! -Pas de glace: T oce peut descendre en dessous de 0°C sans geler |
---|
| 253 | !***************************************************************************** |
---|
| 254 | |
---|
| 255 | pctsrf_new(:)=tmp_pctsrf_slab(:) |
---|
| 256 | tmp_radsol(:)=radsol(:) |
---|
| 257 | tmp_flux_o(:)=fluxsens(:) |
---|
| 258 | |
---|
| 259 | DO i = 1, ngrid |
---|
| 260 | tsurf_new(i) = tsurf(knindex(i)) |
---|
| 261 | seaice(i)=tmp_seaice(knindex(i)) |
---|
| 262 | |
---|
| 263 | |
---|
| 264 | |
---|
| 265 | IF (pctsrf_new(knindex(i)) < EPSFRA) THEN |
---|
| 266 | snow(i) = 0.0 |
---|
| 267 | tsurf_new(i) = T_h2O_ice_liq - 1.8 |
---|
| 268 | !IF (soil_model) tsoil(i,:) = T_h2O_ice_liq -1.8 |
---|
| 269 | ENDIF |
---|
| 270 | ENDDO |
---|
| 271 | tmp_flux_g(:) = 0.0 |
---|
| 272 | tsea_ice(:)=T_h2O_ice_liq-1.8 |
---|
| 273 | ! Calculs flux glace/mer et glace/air |
---|
| 274 | IF (ok_slab_sic) THEN |
---|
| 275 | !********************************* |
---|
| 276 | ! Calcul de beta, heat capacity |
---|
| 277 | !********************************* |
---|
| 278 | ! CALL calbeta(dtime, is_sic, knon, snow, qsol, beta, capsol, dif_grnd) |
---|
| 279 | |
---|
| 280 | ! IF ((soil_model)) THEN |
---|
| 281 | |
---|
| 282 | ! ELSE |
---|
| 283 | ! dif_grnd = 1.0 / tau_gl |
---|
| 284 | ! cal = RCPD * calice |
---|
| 285 | ! WHERE (snow > 0.0) cal = RCPD * calsno |
---|
| 286 | ! ENDIF |
---|
| 287 | ! tsurf_temp = tsurf_new |
---|
| 288 | ! beta = 1.0 |
---|
| 289 | |
---|
| 290 | |
---|
| 291 | ! ********************************************** |
---|
| 292 | ! Evolution avec glace interactive: |
---|
| 293 | ! ************************************* |
---|
| 294 | ! tsurf_new=tsurf_temp |
---|
| 295 | DO i = 1, ngrid |
---|
| 296 | IF (pctsrf_new(knindex(i)) .GT. epsfra) THEN |
---|
| 297 | ! ************************************* |
---|
| 298 | ! + Calcul Flux entre glace et océan |
---|
| 299 | ! ************************************* |
---|
| 300 | tmp_flux_g(knindex(i))=(tsurf_new(i)-(T_h2O_ice_liq-1.8)) & |
---|
| 301 | * ice_cond*ice_den/seaice(i) |
---|
| 302 | |
---|
| 303 | ! **************************************** |
---|
| 304 | ! + Calcul nouvelle température de la glace |
---|
| 305 | ! **************************************** |
---|
| 306 | tsurf_new(i)=tsurf_new(i)+2*(radsol(i)+fluxsens(i) & |
---|
| 307 | -tmp_flux_g(knindex(i))) & |
---|
| 308 | /(ice_cap*seaice(i))*dtime |
---|
| 309 | |
---|
| 310 | ! *************************************** |
---|
| 311 | ! + Precip and evaporation of snow and ice |
---|
| 312 | ! *************************************** |
---|
| 313 | ! Add precip |
---|
| 314 | IF (precip_snow(i).GT.0.) THEN |
---|
| 315 | snow(i)=snow(i)+precip_snow(i)*dtime |
---|
| 316 | ENDIF |
---|
| 317 | ! Evaporation |
---|
| 318 | snow_evap=0. |
---|
| 319 | IF (evap(i).GT.0.) THEN |
---|
| 320 | snow_evap = MIN (snow(i) / dtime, evap(i)) |
---|
| 321 | snow(i) = snow(i) - snow_evap*dtime |
---|
| 322 | snow(i) = MAX(0.0, snow(i)) |
---|
| 323 | seaice(i)=MAX(0.0,seaice(i)-(evap(i)-snow_evap)*dtime) |
---|
| 324 | ENDIF |
---|
| 325 | |
---|
| 326 | ! ***************************************** |
---|
| 327 | ! + Fonte neige & glace par le haut |
---|
| 328 | ! ***************************************** |
---|
| 329 | ! Snow melt |
---|
| 330 | IF ((snow(i) > epsfra) .AND. (tsurf_new(i) >= T_h2O_ice_liq)) THEN |
---|
| 331 | fonte=MIN(MAX((tsurf_new(i)-T_h2O_ice_liq)*seaice(i) & |
---|
| 332 | /2.*ice_cap/ice_lat,0.0),snow(i)) |
---|
| 333 | snow(i) = MAX(0.,(snow(i)-fonte)) |
---|
| 334 | tsurf_new(i)=tsurf_new(i)-fonte*2*ice_lat/(seaice(i)*ice_cap) |
---|
| 335 | ENDIF |
---|
| 336 | snow(i)=MIN(snow(i),3000.) |
---|
| 337 | ! Ice melt |
---|
| 338 | IF ((seaice(i) > epsfra) .AND. (tsurf_new(i) >= T_h2O_ice_liq)) THEN |
---|
| 339 | fonte=seaice(i)*ice_cap*(tsurf_new(i)-T_h2O_ice_liq) & |
---|
| 340 | /(2*ice_lat+ice_cap*1.8) |
---|
| 341 | CALL icemelt(fonte,pctsrf_new(knindex(i)),seaice(i)) |
---|
| 342 | tmp_flux_g(knindex(i))=tmp_flux_g(knindex(i)) & |
---|
| 343 | +fonte*ice_lat/dtime |
---|
| 344 | tsurf_new(i)=T_h2O_ice_liq |
---|
| 345 | ENDIF |
---|
| 346 | tmp_seaice(knindex(i))=seaice(i) |
---|
| 347 | ENDIF!(pctsrf_new(knindex(i)) .GT. epsfra) |
---|
| 348 | tsea_ice(knindex(i))=tsurf_new(i) |
---|
| 349 | |
---|
| 350 | ENDDO |
---|
| 351 | ENDIF |
---|
| 352 | ! ****************************************** |
---|
| 353 | ! CALL interfoce: |
---|
| 354 | ! cumul/calcul nouvelle T_h2O_ice_liqce |
---|
| 355 | ! fonte/formation de glace en dessous |
---|
| 356 | ! ****************************************** |
---|
| 357 | tslab = tmp_tslab |
---|
| 358 | |
---|
| 359 | CALL interfoce_slab(ngrid, dtime, & |
---|
| 360 | tmp_radsol, tmp_flux_o, tmp_flux_g, tmp_pctsrf_slab, & |
---|
| 361 | tslab, tsea_ice, pctsrf_new,taux_slab,tauy_slab,icount) |
---|
| 362 | |
---|
| 363 | tmp_pctsrf_slab(:)=pctsrf_new(:) |
---|
| 364 | ! tmp_pctsrf_slab(:,is_oce)=1.0-tmp_pctsrf_slab(:) & |
---|
| 365 | ! -tmp_pctsrf_slab(:,is_lic)-tmp_pctsrf_slab(:,is_ter) |
---|
| 366 | |
---|
| 367 | DO i=1, ngrid |
---|
| 368 | tmp_tslab(knindex(i),:)=tslab(knindex(i),:) |
---|
| 369 | seaice(i)=tmp_seaice(knindex(i)) |
---|
| 370 | tsurf_new(i)=tsea_ice(knindex(i)) |
---|
| 371 | |
---|
| 372 | ENDDO |
---|
| 373 | |
---|
| 374 | ! **************************** |
---|
| 375 | ! calcul new albedo |
---|
| 376 | ! **************************** |
---|
| 377 | ! Albedo neige |
---|
| 378 | ! CALL albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)) |
---|
| 379 | ! WHERE (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. |
---|
| 380 | ! Fraction neige (hauteur critique 45kg/m2~15cm) |
---|
| 381 | ! zfra(1:knon) = MAX(0.0,MIN(1.0,snow(1:knon)/45.0)) |
---|
| 382 | ! Albedo glace |
---|
| 383 | ! IF (ok_slab_sicOBS) THEN |
---|
| 384 | ! alb_ice=0.6 |
---|
| 385 | ! ELSE |
---|
| 386 | ! alb_ice(1:knon)=alb_ice_max-(alb_ice_max-alb_ice_min) & |
---|
| 387 | ! *exp(-seaice(1:knon)/h_alb_ice) |
---|
| 388 | ! ENDIF |
---|
| 389 | !Albedo final |
---|
| 390 | ! alb1_new(1 : knon) = alb_neig(1 : knon) *zfra(1:knon) + & |
---|
| 391 | ! alb_ice * (1.0-zfra(1:knon)) |
---|
| 392 | ! alb2_new(:) = alb1_new(:) |
---|
| 393 | |
---|
| 394 | |
---|
| 395 | ! ******************************** |
---|
| 396 | ! Return the fraction of sea-ice |
---|
| 397 | ! ******************************** |
---|
| 398 | pctsrf_sic(:) = tmp_pctsrf_slab(:) |
---|
| 399 | |
---|
| 400 | |
---|
| 401 | END SUBROUTINE ocean_slab_ice |
---|
| 402 | |
---|
| 403 | |
---|
| 404 | ! |
---|
| 405 | !*************************************************************************** |
---|
| 406 | ! |
---|
| 407 | SUBROUTINE interfoce_slab(ngrid, dtime, & |
---|
| 408 | radsol, fluxo, fluxg, pctsrf, & |
---|
| 409 | tslab, tsea_ice, pctsrf_slab, & |
---|
| 410 | taux_slab, tauy_slab,icount) |
---|
| 411 | ! |
---|
| 412 | ! Cette routine calcule la temperature d'un slab ocean, la glace de mer |
---|
| 413 | ! et les pourcentages de la maille couverte par l'ocean libre et/ou |
---|
| 414 | ! la glace de mer pour un "slab" ocean de 50m |
---|
| 415 | ! |
---|
| 416 | ! Conception: Laurent Li |
---|
| 417 | ! Re-ecriture + adaptation LMDZ4: I. Musat |
---|
| 418 | ! Transport, nouveau modèle glace, 2 couches: F.Codron |
---|
| 419 | ! |
---|
| 420 | ! input: |
---|
| 421 | ! klon nombre T_h2O_ice_liqtal de points de grille |
---|
| 422 | ! itap numero du pas de temps |
---|
| 423 | ! dtime pas de temps de la physique (en s) |
---|
| 424 | ! ijour jour dans l'annee en cours |
---|
| 425 | ! radsol rayonnement net au sol (LW + SW) |
---|
| 426 | ! fluxo flux turbulent (sensible + latent) sur les mailles oceaniques |
---|
| 427 | ! fluxg flux de conduction entre la surface de la glace de mer et l'ocean |
---|
| 428 | ! pctsrf tableau des pourcentages de surface de chaque maille |
---|
| 429 | ! output: |
---|
| 430 | ! tslab temperature de l'ocean libre |
---|
| 431 | ! tsea_ice temperature de la glace (surface) |
---|
| 432 | ! pctsrf_slab "pourcentages" (valeurs entre 0. et 1.) surfaces issus du slab |
---|
| 433 | |
---|
| 434 | use slab_ice_h |
---|
[1397] | 435 | use callkeys_mod, only: ok_slab_sic,ok_slab_heat_transp |
---|
[1298] | 436 | |
---|
| 437 | ! Input arguments |
---|
| 438 | !**************************************************************************************** |
---|
| 439 | INTEGER, INTENT(IN) :: ngrid,icount |
---|
| 440 | ! INTEGER, INTENT(IN) :: itap |
---|
| 441 | REAL, INTENT(IN) :: dtime ! not used |
---|
| 442 | ! INTEGER, INTENT(IN) :: ijour |
---|
| 443 | REAL, DIMENSION(ngrid), INTENT(IN) :: radsol |
---|
| 444 | REAL, DIMENSION(ngrid), INTENT(IN) :: fluxo |
---|
| 445 | REAL, DIMENSION(ngrid), INTENT(IN) :: fluxg |
---|
| 446 | REAL, DIMENSION(ngrid), INTENT(IN) :: pctsrf |
---|
| 447 | REAL, DIMENSION(ngrid), INTENT(IN) :: taux_slab |
---|
| 448 | REAL, DIMENSION(ngrid), INTENT(IN) :: tauy_slab |
---|
| 449 | |
---|
| 450 | ! Output arguments |
---|
| 451 | !**************************************************************************************** |
---|
| 452 | REAL, DIMENSION(ngrid,noceanmx), INTENT(OUT) :: tslab |
---|
| 453 | REAL, DIMENSION(ngrid), INTENT(INOUT) :: pctsrf_slab |
---|
| 454 | REAL, DIMENSION(ngrid), INTENT(INOUT) :: tsea_ice |
---|
| 455 | |
---|
| 456 | ! Local variables |
---|
| 457 | !**************************************************************************************** |
---|
| 458 | REAL :: fonte,t_cadj |
---|
| 459 | INTEGER :: i,k,kt,kb |
---|
| 460 | REAL :: zz, za, zb |
---|
| 461 | REAL :: cyang ! capacite calorifique slab J/(m2 K) |
---|
| 462 | REAL, PARAMETER :: tau_conv=432000. ! temps ajust conv (5 jours) |
---|
| 463 | REAL, DIMENSION(ngrid,noceanmx) :: dtdiff_loc,dtekman_loc |
---|
| 464 | |
---|
| 465 | |
---|
| 466 | |
---|
| 467 | !*************************************************** |
---|
| 468 | ! Capacite calorifique de la couche de surface |
---|
| 469 | cyang=capcalocean!slabh(1)*4.228e+06 |
---|
| 470 | cpl_pas=1!4*iradia |
---|
| 471 | |
---|
| 472 | ! |
---|
| 473 | ! lecture du bilan au sol lmt_bils issu d'une simulation forcee en debut de journee |
---|
| 474 | !! julien = MOD(ijour,360) |
---|
| 475 | !! IF (ok_slab_heaT_h2O_ice_liqBS .and. (MOD(itap,lmt_pas) .EQ. 1)) THEN |
---|
| 476 | !! ! 1er pas de temps de la journee |
---|
| 477 | !! idayvrai = ijour |
---|
| 478 | !! CALL condsurf(julien,idayvrai, lmt_bils) |
---|
| 479 | !! ENDIF |
---|
| 480 | |
---|
| 481 | ! ---------------------------------------------- |
---|
| 482 | ! A chaque pas de temps: cumul flux de chaleur |
---|
| 483 | ! ---------------------------------------------- |
---|
| 484 | ! bilan du flux de chaleur dans l'ocean : |
---|
| 485 | ! |
---|
| 486 | DO i = 1, ngrid |
---|
| 487 | za = radsol(i) + fluxo(i) |
---|
| 488 | zb = fluxg(i) |
---|
| 489 | ! IF(((1-pctsrf(i)).GT.epsfra).OR. & |
---|
| 490 | ! (pctsrf(i).GT.epsfra)) THEN |
---|
| 491 | slab_bils(i)=slab_bils(i)+(za*(1-pctsrf(i)) & |
---|
| 492 | +zb*pctsrf(i))/ cpl_pas |
---|
| 493 | ! ENDIF |
---|
| 494 | |
---|
| 495 | ENDDO !klon |
---|
| 496 | |
---|
| 497 | ! --------------------------------------------- |
---|
| 498 | ! T_h2O_ice_liqus les cpl_pas: update de tslab et seaice |
---|
| 499 | ! --------------------------------------------- |
---|
| 500 | |
---|
| 501 | IF (mod(icount-1,cpl_pas).eq.0) THEN !fin de journee |
---|
| 502 | ! |
---|
| 503 | ! --------------------------------------------- |
---|
| 504 | ! Transport de chaleur par circulation |
---|
| 505 | ! Decoupage par pas de temps pour stabilite numérique |
---|
| 506 | ! (diffusion, schema centre pour advection) |
---|
| 507 | ! --------------------------------------------- |
---|
| 508 | dt_hdiff(:,:)=0. |
---|
| 509 | dt_ekman(:,:)=0. |
---|
| 510 | |
---|
| 511 | IF (ok_slab_heat_transp) THEN |
---|
| 512 | ! DO i=1,cpl_pas |
---|
| 513 | ! Transport diffusif |
---|
| 514 | ! IF (ok_soil_hdiff) THEN |
---|
[1308] | 515 | CALL divgrad_phy(ngrid,noceanmx,tmp_tslab_loc,dtdiff_loc) |
---|
[1298] | 516 | dtdiff_loc=dtdiff_loc*soil_hdiff*50./SUM(slabh)!*100. |
---|
| 517 | ! dtdiff_loc(:,1)=dtdiff_loc(:,1)*soil_hdiff*50./SUM(slabh)*0.8 |
---|
| 518 | ! dtdiff_loc(:,2)=dtdiff_loc(:,2)*soil_hdiff*50./SUM(slabh)*0.2 |
---|
| 519 | dt_hdiff=dt_hdiff+dtdiff_loc |
---|
| 520 | tmp_tslab_loc=tmp_tslab_loc+dtdiff_loc*dtime |
---|
| 521 | ! END IF |
---|
| 522 | |
---|
| 523 | ! Calcul de transport par Ekman |
---|
| 524 | |
---|
[1308] | 525 | CALL slab_ekman2(ngrid,taux_slab,tauy_slab,tslab,dtekman_loc) |
---|
[1298] | 526 | |
---|
| 527 | |
---|
| 528 | ! END SELECT |
---|
| 529 | ! IF (slab_ekman.GT.0) THEN |
---|
| 530 | do k=1,noceanmx |
---|
| 531 | dtekman_loc(:,k)=dtekman_loc(:,k)/(slabh(k)*1000.)!*0. |
---|
| 532 | enddo |
---|
| 533 | dt_ekman(:,:)=dt_ekman(:,:)+dtekman_loc(:,:) |
---|
| 534 | tmp_tslab_loc=tmp_tslab_loc+dtekman_loc*dtime |
---|
| 535 | ! ENDIF |
---|
| 536 | ! ENDDO ! time splitting 1,cpl_pas |
---|
| 537 | ! IF (slab_ekman.GT.0) THEN |
---|
| 538 | ! taux_slab(:)=0. |
---|
| 539 | ! tauy_slab(:)=0. |
---|
| 540 | ! ENDIF |
---|
| 541 | |
---|
| 542 | ! print*, 'slab_bils=',slab_bils(1) |
---|
| 543 | |
---|
| 544 | |
---|
| 545 | ENDIF!(ok_slab_heat_transp) |
---|
| 546 | |
---|
| 547 | DO i = 1, ngrid |
---|
| 548 | ! IF (((1-pctsrf(i)).GT.epsfra).OR. & |
---|
| 549 | ! (pctsrf(i).GT.epsfra)) THEN |
---|
| 550 | ! --------------------------------------------- |
---|
| 551 | ! Ajout des flux de chaleur dans l'océan |
---|
| 552 | ! --------------------------------------- |
---|
| 553 | |
---|
| 554 | !print*, 'T_h2O_ice_liqcean1=',tmp_tslab_loc(i,1) |
---|
| 555 | tmp_tslab_loc(i,1) = tmp_tslab_loc(i,1) + & |
---|
| 556 | slab_bils(i)/cyang*dtime*cpl_pas |
---|
| 557 | |
---|
| 558 | !print*, 'capcalocean=',capcalocean |
---|
| 559 | !print*, 'cyang=',cyang |
---|
| 560 | !print*, 'dT_h2O_ice_liqcean=',slab_bils(i)/cyang*dtime |
---|
| 561 | !print*, 'T_h2O_ice_liqcean2=',tmp_tslab_loc(i,1) |
---|
| 562 | |
---|
| 563 | |
---|
| 564 | ! on remet l'accumulation a 0 |
---|
| 565 | slab_bils(i) = 0. |
---|
| 566 | ! --------------------------------------------- |
---|
| 567 | ! Glace interactive |
---|
| 568 | ! --------------------------------------------- |
---|
| 569 | IF (ok_slab_sic) THEN |
---|
| 570 | ! Fondre la glace si température > 0. |
---|
| 571 | ! ----------------------------------- |
---|
| 572 | IF ((tmp_tslab_loc(i,1).GT.T_h2O_ice_liq-1.8) .AND. (tmp_seaice(i).GT.0.0)) THEN |
---|
| 573 | fonte=(tmp_tslab_loc(i,1)-T_h2O_ice_liq+1.8)*cyang & |
---|
| 574 | /(ice_lat+ice_cap/2*(T_h2O_ice_liq-1.8-tsea_ice(i))) |
---|
| 575 | CALL icemelt(fonte,pctsrf_slab(i),tmp_seaice(i)) |
---|
| 576 | tmp_tslab_loc(i,1)=T_h2O_ice_liq-1.8+fonte*ice_lat/cyang |
---|
| 577 | ENDIF |
---|
| 578 | ! fabriquer de la glace si congelation atteinte: |
---|
| 579 | ! ---------------------------------------------- |
---|
| 580 | IF (tmp_tslab_loc(i,1).LT.(T_h2O_ice_liq-1.8)) THEN |
---|
| 581 | |
---|
| 582 | IF (tmp_seaice(i).LT.h_ice_min) THEN |
---|
| 583 | ! Creation glace nouvelle |
---|
| 584 | ! IF (pctsrf_slab(i).LT.(epsfra)) THEN |
---|
| 585 | fonte=(T_h2O_ice_liq-1.8-tmp_tslab_loc(i,1))*cyang/ice_lat |
---|
| 586 | IF (fonte.GT.h_ice_min*ice_frac_min) THEN |
---|
| 587 | tmp_seaice(i)=MIN(h_ice_thin,fonte/ice_frac_min) |
---|
| 588 | tmp_seaice(i)=MAX(tmp_seaice(i),fonte/ice_frac_max) |
---|
| 589 | ! IF (fonte.GT.0) THEN |
---|
| 590 | ! tmp_seaice(i)=fonte |
---|
| 591 | tsea_ice(i)=T_h2O_ice_liq-1.8 |
---|
| 592 | pctsrf_slab(i)=(1-pctsrf_slab(i))*fonte/tmp_seaice(i) |
---|
| 593 | ! pctsrf_slab(i)=1. |
---|
| 594 | tmp_tslab_loc(i,1)=T_h2O_ice_liq-1.8 |
---|
| 595 | ENDIF |
---|
| 596 | ELSE |
---|
| 597 | ! glace déjà présente |
---|
| 598 | ! Augmenter epaisseur |
---|
| 599 | fonte=(T_h2O_ice_liq-1.8-tmp_tslab_loc(i,1))*cyang & |
---|
| 600 | /(ice_lat+ice_cap/2*(T_h2O_ice_liq-1.8-tsea_ice(i))) |
---|
| 601 | zz=tmp_seaice(i) |
---|
| 602 | tmp_seaice(i)=MAX(zz,MIN(h_ice_thick,fonte+zz)) |
---|
| 603 | ! Augmenter couverture (oce libre et h>h_thick) |
---|
| 604 | za=1-pctsrf_slab(i) |
---|
| 605 | zb=pctsrf_slab(i) |
---|
| 606 | fonte=fonte*za+MAX(0.0,fonte+zz-tmp_seaice(i))*zb |
---|
| 607 | pctsrf_slab(i)=MIN(zb+fonte/tmp_seaice(i), & |
---|
| 608 | (za+zb)*ice_frac_max) |
---|
| 609 | fonte=MAX(0.0,fonte-(pctsrf_slab(i)-zb)*tmp_seaice(i)) |
---|
| 610 | ! Augmenter epaisseur si couverture complete |
---|
| 611 | tmp_seaice(i)=tmp_seaice(i)+fonte/pctsrf_slab(i) |
---|
| 612 | tmp_tslab_loc(i,1) = T_h2O_ice_liq-1.8 |
---|
| 613 | ENDIF ! presence glace |
---|
| 614 | ENDIF !congelation |
---|
| 615 | ! vérifier limites de hauteur de glace |
---|
| 616 | IF(tmp_seaice(i).GT.h_ice_min) THEN |
---|
| 617 | tmp_seaice(i) = MIN(tmp_seaice(i),h_ice_max) |
---|
| 618 | ELSE |
---|
| 619 | tmp_seaice(i) = 0. |
---|
| 620 | pctsrf_slab(i)=0. |
---|
| 621 | ENDIF! (tmp_seaice(i).GT.h_ice_min) |
---|
| 622 | |
---|
| 623 | ENDIF !(ok_slab_sic) Glace interactive |
---|
| 624 | ! ---------------------------------- |
---|
| 625 | ! Ajustement convectif si > 1 layers |
---|
| 626 | ! ---------------------------------- |
---|
| 627 | |
---|
| 628 | IF ((noceanmx.GT.1)) THEN |
---|
| 629 | DO kt=1,noceanmx-1 |
---|
| 630 | kb=kt |
---|
| 631 | DO k=kt+1,noceanmx !look for instability |
---|
| 632 | IF (tmp_tslab_loc(i,k).GT.tmp_tslab_loc(i,kt)) THEN |
---|
| 633 | kb=k |
---|
| 634 | ENDIF |
---|
| 635 | ENDDO |
---|
| 636 | IF (kb.GT.kt) THEN !ajust conv |
---|
| 637 | ! IF (slab_cadj.EQ.1) THEN |
---|
| 638 | ! : t_cadj=SUM(tmp_tslab_loc(i,kt:kb)*slabh(kt:kb))/SUM(slabh(kt:kb)) |
---|
| 639 | ! DO k=kt,kb |
---|
| 640 | ! tmp_tslab_loc(i,k)=t_cadj |
---|
| 641 | ! ENDDO |
---|
| 642 | ! ELSEIF (slab_cadj.EQ.2) THEN |
---|
| 643 | t_cadj=(tmp_tslab_loc(i,kb)-tmp_tslab_loc(i,kt))*dtime/tau_conv*cpl_pas |
---|
| 644 | tmp_tslab_loc(i,kt)=tmp_tslab_loc(i,kt)+t_cadj |
---|
| 645 | tmp_tslab_loc(i,kb)=tmp_tslab_loc(i,kb)-t_cadj*slabh(kt)/slabh(kb) |
---|
| 646 | !ENDIF |
---|
| 647 | ENDIF |
---|
| 648 | ENDDO |
---|
| 649 | ENDIF !ajust 2 layers |
---|
| 650 | ! ENDIF !pctsrf |
---|
| 651 | ENDDO !klon |
---|
| 652 | |
---|
| 653 | ! On met a jour la temperature et la glace |
---|
| 654 | tslab = tmp_tslab_loc |
---|
| 655 | |
---|
| 656 | |
---|
| 657 | ENDIF !(mod(icount-1,cpl_pas).eq.0) |
---|
| 658 | |
---|
| 659 | END SUBROUTINE interfoce_slab |
---|
| 660 | ! |
---|
| 661 | !****************************************************************************** |
---|
| 662 | SUBROUTINE icemelt(fonte,pctsrf,seaice) |
---|
| 663 | |
---|
| 664 | use slab_ice_h |
---|
| 665 | |
---|
| 666 | |
---|
| 667 | |
---|
| 668 | REAL, INTENT(INOUT) :: pctsrf |
---|
| 669 | REAL , INTENT(INOUT) ::fonte,seaice !kg/m2 |
---|
| 670 | REAL :: hh !auxilliary |
---|
| 671 | REAL :: ff !auxilliary |
---|
| 672 | |
---|
| 673 | |
---|
| 674 | ! ice gt h_ice_thick: decrease thickness up T_h2O_ice_liq h_ice_thick |
---|
| 675 | IF (seaice.GT.h_ice_thick) THEN |
---|
| 676 | hh=seaice |
---|
| 677 | ! ff=fonte |
---|
| 678 | seaice=max(h_ice_thick,hh-fonte) |
---|
| 679 | fonte=max(0.0,fonte+h_ice_thick-hh) |
---|
| 680 | |
---|
| 681 | ! seaice=max(0.,hh-fonte) |
---|
| 682 | ! fonte=max(0.0,fonte-(seaice-hh)) |
---|
| 683 | ! IF (seaice.LT.epsfra) THEN |
---|
| 684 | ! pctsrf=0. |
---|
| 685 | ! seaice=0. |
---|
| 686 | ! fonte=ff-hh |
---|
| 687 | ! ENDIF |
---|
| 688 | |
---|
| 689 | ENDIF |
---|
| 690 | ! ice gt h_ice_thin: partially decrease thickness |
---|
| 691 | IF ((seaice.GE.h_ice_thin).AND.(fonte.GT.0.0)) THEN |
---|
| 692 | hh=seaice |
---|
| 693 | seaice=MAX(hh-0.6*fonte,h_ice_thin) |
---|
| 694 | fonte=MAX(0.0,fonte-hh+seaice) |
---|
| 695 | ENDIF |
---|
| 696 | ! use rest T_h2O_ice_liq decrease area |
---|
| 697 | hh=pctsrf |
---|
| 698 | pctsrf=MIN(hh,MAX(0.0,hh-fonte/seaice)) |
---|
| 699 | fonte=MAX(0.0,fonte-(hh-pctsrf)*seaice) |
---|
| 700 | |
---|
| 701 | END SUBROUTINE icemelt |
---|
| 702 | |
---|
| 703 | !**************************************************************************************** |
---|
| 704 | ! |
---|
| 705 | SUBROUTINE ocean_slab_final!(tslab_rst, seaice_rst) |
---|
| 706 | |
---|
| 707 | ! This subroutine will send T_h2O_ice_liq phyredem the variables concerning the slab |
---|
| 708 | ! ocean that should be written T_h2O_ice_liq restart file. |
---|
| 709 | |
---|
| 710 | !**************************************************************************************** |
---|
| 711 | |
---|
| 712 | ! REAL, DIMENSION(ngridmx,noceanmx), INTENT(OUT) :: tslab_rst |
---|
| 713 | ! REAL, DIMENSION(ngridmx), INTENT(OUT) :: seaice_rst |
---|
| 714 | |
---|
| 715 | !**************************************************************************************** |
---|
| 716 | ! Set the output variables |
---|
| 717 | ! tslab_rst(:,:) = tmp_tslab(:,:) |
---|
| 718 | ! tslab_rst(:) = tmp_tslab_loc(:) |
---|
| 719 | ! seaice_rst(:) = tmp_seaice(:) |
---|
| 720 | |
---|
| 721 | ! Deallocation of all variables in module |
---|
| 722 | DEALLOCATE(tmp_tslab, tmp_tslab_loc, tmp_pctsrf_slab) |
---|
| 723 | DEALLOCATE(tmp_seaice, tmp_radsol, tmp_flux_o, tmp_flux_g) |
---|
| 724 | DEALLOCATE(slab_bils, lmt_bils) |
---|
| 725 | DEALLOCATE(dt_hdiff) |
---|
| 726 | |
---|
| 727 | END SUBROUTINE ocean_slab_final |
---|
| 728 | ! |
---|
| 729 | !**************************************************************************************** |
---|
| 730 | ! |
---|
| 731 | SUBROUTINE ocean_slab_get_vars(ngrid,tslab_loc, seaice_loc, flux_o_loc, flux_g_loc, & |
---|
| 732 | dt_hdiff_loc,dt_ekman_loc) |
---|
| 733 | |
---|
| 734 | ! "Get some variables from module ocean_slab_mod" |
---|
| 735 | ! This subroutine prints variables T_h2O_ice_liq a external routine |
---|
| 736 | |
---|
| 737 | INTEGER, INTENT(IN) :: ngrid |
---|
| 738 | REAL, DIMENSION(ngrid,noceanmx), INTENT(OUT) :: tslab_loc |
---|
| 739 | REAL, DIMENSION(ngrid), INTENT(OUT) :: seaice_loc |
---|
| 740 | REAL, DIMENSION(ngrid), INTENT(OUT) :: flux_o_loc |
---|
| 741 | REAL, DIMENSION(ngrid), INTENT(OUT) :: flux_g_loc |
---|
| 742 | REAL, DIMENSION(ngrid,noceanmx), INTENT(OUT) :: dt_hdiff_loc |
---|
| 743 | REAL, DIMENSION(ngrid,noceanmx), INTENT(OUT) :: dt_ekman_loc |
---|
| 744 | INTEGER :: i |
---|
| 745 | |
---|
| 746 | |
---|
| 747 | ! Set the output variables |
---|
| 748 | tslab_loc=0. |
---|
| 749 | dt_hdiff_loc=0. |
---|
| 750 | dt_ekman_loc=0. |
---|
| 751 | tslab_loc = tmp_tslab |
---|
| 752 | seaice_loc(:) = tmp_seaice(:) |
---|
| 753 | flux_o_loc(:) = tmp_flux_o(:) |
---|
| 754 | flux_g_loc(:) = tmp_flux_g(:) |
---|
| 755 | DO i=1,noceanmx |
---|
| 756 | dt_hdiff_loc(:,i) = dt_hdiff(:,i)*slabh(i)*1000.*4228. !Convert en W/m2 |
---|
| 757 | dt_ekman_loc(:,i) = dt_ekman(:,i)*slabh(i)*1000.*4228. |
---|
| 758 | ENDDO |
---|
| 759 | |
---|
| 760 | |
---|
| 761 | |
---|
| 762 | END SUBROUTINE ocean_slab_get_vars |
---|
| 763 | ! |
---|
| 764 | !**************************************************************************************** |
---|
| 765 | ! |
---|
| 766 | END MODULE ocean_slab_mod |
---|