1 | SUBROUTINE newsedim(ngrid,nlay,naersize,ptimestep, |
---|
2 | & pplev,masse,epaisseur,pt,rd,rho,pqi,wq) |
---|
3 | |
---|
4 | use comcstfi_mod, only: r, g |
---|
5 | IMPLICIT NONE |
---|
6 | |
---|
7 | !================================================================== |
---|
8 | ! |
---|
9 | ! Purpose |
---|
10 | ! ------- |
---|
11 | ! Calculates sedimentation of 1 tracer |
---|
12 | ! of radius rd (m) and density rho (kg.m-3) |
---|
13 | ! |
---|
14 | !================================================================== |
---|
15 | |
---|
16 | !----------------------------------------------------------------------- |
---|
17 | ! declarations |
---|
18 | ! ------------ |
---|
19 | |
---|
20 | ! arguments |
---|
21 | ! --------- |
---|
22 | |
---|
23 | integer,intent(in) :: ngrid ! number of atmospheric columns |
---|
24 | integer,intent(in) :: nlay ! number of atmospheric layers |
---|
25 | integer,intent(in) :: naersize ! number of particle sizes (1 or number |
---|
26 | ! of grid boxes) |
---|
27 | real,intent(in) :: ptimestep ! physics time step (s) |
---|
28 | real,intent(in) :: pplev(ngrid,nlay+1) ! inter-layer pressures (Pa) |
---|
29 | real,intent(in) :: pt(ngrid,nlay) ! mid-layer temperatures (K) |
---|
30 | real,intent(in) :: masse (ngrid,nlay) ! atmospheric mass (kg) |
---|
31 | real,intent(in) :: epaisseur (ngrid,nlay) ! thickness of atm. layers (m) |
---|
32 | real,intent(in) :: rd(naersize) ! particle radius (m) |
---|
33 | real,intent(in) :: rho ! particle density (kg.m-3) |
---|
34 | real,intent(inout) :: pqi(ngrid,nlay) ! tracer (e.g. ?/kg) |
---|
35 | real,intent(out) :: wq(ngrid,nlay+1) ! flux of tracer during timestep (?/m-2) |
---|
36 | |
---|
37 | c local: |
---|
38 | c ------ |
---|
39 | |
---|
40 | INTEGER l,ig, k, i |
---|
41 | REAL rfall |
---|
42 | |
---|
43 | LOGICAL,SAVE :: firstcall=.true. |
---|
44 | !$OMP THREADPRIVATE(firstcall) |
---|
45 | |
---|
46 | c Traceurs : |
---|
47 | c ~~~~~~~~ |
---|
48 | real traversee (ngrid,nlay) |
---|
49 | real vstokes(ngrid,nlay) |
---|
50 | real w(ngrid,nlay) |
---|
51 | real ptop, dztop, Ep, Stra |
---|
52 | |
---|
53 | |
---|
54 | c Physical constant |
---|
55 | c ~~~~~~~~~~~~~~~~~ |
---|
56 | c Gas molecular viscosity (N.s.m-2) |
---|
57 | real,parameter :: visc=1.e-5 ! CO2 |
---|
58 | c Effective gas molecular radius (m) |
---|
59 | real,parameter :: molrad=2.2e-10 ! CO2 |
---|
60 | |
---|
61 | c local and saved variable |
---|
62 | real,save :: a,b |
---|
63 | !$OMP THREADPRIVATE(a,b) |
---|
64 | |
---|
65 | c ** un petit test de coherence |
---|
66 | c -------------------------- |
---|
67 | |
---|
68 | |
---|
69 | !print*,'temporary fixed particle rad in newsedim!!' |
---|
70 | |
---|
71 | IF (firstcall) THEN |
---|
72 | firstcall=.false. |
---|
73 | |
---|
74 | |
---|
75 | |
---|
76 | !======================================================================= |
---|
77 | ! Preliminary calculations for sedimenation velocity |
---|
78 | |
---|
79 | ! - Constant to compute stokes speed simple formulae |
---|
80 | ! (Vstokes = b * rho* r**2 avec b= (2/9) * rho * g / visc |
---|
81 | b = 2./9. * g / visc |
---|
82 | |
---|
83 | ! - Constant to compute gas mean free path |
---|
84 | ! l= (T/P)*a, avec a = ( 0.707*8.31/(4*pi*molrad**2 * avogadro)) |
---|
85 | a = 0.707*8.31/(4*3.1416* molrad**2 * 6.023e23) |
---|
86 | |
---|
87 | c - Correction to account for non-spherical shape (Murphy et al. 1990) |
---|
88 | c (correction = 0.85 for irregular particles, 0.5 for disk shaped particles) |
---|
89 | c a = a * 0.85 |
---|
90 | |
---|
91 | |
---|
92 | ENDIF |
---|
93 | |
---|
94 | c----------------------------------------------------------------------- |
---|
95 | c 1. initialisation |
---|
96 | c ----------------- |
---|
97 | |
---|
98 | c Sedimentation velocity (m/s) |
---|
99 | c ~~~~~~~~~~~~~~~~~~~~~~ |
---|
100 | c (stokes law corrected for low pressure by the Cunningham |
---|
101 | c slip-flow correction according to Rossow (Icarus 36, 1-50, 1978) |
---|
102 | |
---|
103 | do l=1,nlay |
---|
104 | do ig=1, ngrid |
---|
105 | if (naersize.eq.1) then |
---|
106 | rfall=rd(1) |
---|
107 | else |
---|
108 | i=ngrid*(l-1)+ig |
---|
109 | rfall=rd(i) ! how can this be correct!!? |
---|
110 | endif |
---|
111 | |
---|
112 | vstokes(ig,l) = b * rho * rfall**2 * |
---|
113 | & (1 + 1.333* ( a*pt(ig,l)/pplev(ig,l) )/rfall) |
---|
114 | |
---|
115 | c Layer crossing time (s) : |
---|
116 | traversee(ig,l)= epaisseur(ig,l)/vstokes(ig,l) |
---|
117 | end do |
---|
118 | end do |
---|
119 | |
---|
120 | |
---|
121 | c Calcul de la masse d'atmosphere correspondant a q transferee |
---|
122 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
123 | c (e.g. on recherche le niveau en dessous de laquelle le traceur |
---|
124 | c va traverser le niveau intercouche l : "dztop" est sa hauteur |
---|
125 | c au dessus de l (m), "ptop" est sa pression (Pa)) |
---|
126 | do l=1,nlay |
---|
127 | do ig=1, ngrid |
---|
128 | |
---|
129 | dztop = vstokes(ig,l)* ptimestep |
---|
130 | Ep=0 |
---|
131 | k=0 |
---|
132 | w(ig,l) = 0. !! JF+AS ajout initialisation (LK MARS) |
---|
133 | c ************************************************************** |
---|
134 | c Simple Method |
---|
135 | cc w(ig,l) = |
---|
136 | cc & (1- exp(-dztop*g/(r*pt(ig,l))))*pplev(ig,l) / g |
---|
137 | cc write(*,*) 'OK simple method l,w =', l, w(ig,l) |
---|
138 | cc write(*,*) 'OK simple method dztop =', dztop |
---|
139 | w(ig,l) = 1. - exp(-dztop*g/(r*pt(ig,l))) |
---|
140 | !!! Diagnostic: JF. Fix: AS. Date: 05/11 |
---|
141 | !!! Probleme arrondi avec la quantite ci-dessus |
---|
142 | !!! ---> vaut 0 pour -dztop*g/(r*pt(ig,l)) trop petit |
---|
143 | !!! ---> dans ce cas on utilise le developpement limite ! |
---|
144 | !!! ---> exp(-x) = 1 - x lorsque x --> 0 avec une erreur de x^2 / 2 |
---|
145 | |
---|
146 | IF ( w(ig,l) .eq. 0. ) THEN |
---|
147 | w(ig,l) = ( dztop*g/(r*pt(ig,l)) ) * pplev(ig,l) / g |
---|
148 | ELSE |
---|
149 | w(ig,l) = w(ig,l) * pplev(ig,l) / g |
---|
150 | ENDIF |
---|
151 | ! LK borrowed simple method from Mars model (AS/JF) |
---|
152 | |
---|
153 | !************************************************************** |
---|
154 | cccc Complex method : |
---|
155 | if (dztop.gt.epaisseur(ig,l)) then |
---|
156 | cccc Cas ou on "epuise" la couche l : On calcule le flux |
---|
157 | cccc Venant de dessus en tenant compte de la variation de Vstokes |
---|
158 | |
---|
159 | Ep= epaisseur(ig,l) |
---|
160 | Stra= traversee(ig,l) |
---|
161 | do while(dztop.gt.Ep.and.l+k+1.le.nlay) |
---|
162 | k=k+1 |
---|
163 | dztop= Ep + vstokes(ig,l+k)*(ptimestep -Stra) |
---|
164 | Ep = Ep + epaisseur(ig,l+k) |
---|
165 | Stra = Stra + traversee(ig,l+k) |
---|
166 | enddo |
---|
167 | Ep = Ep - epaisseur(ig,l+k) |
---|
168 | ! ptop=pplev(ig,l+k)*exp(-(dztop-Ep)*g/(r*pt(ig,l+k))) |
---|
169 | ptop=exp(-(dztop-Ep)*g/(r*pt(ig,l+k))) |
---|
170 | IF ( ptop .eq. 1. ) THEN |
---|
171 | !PRINT*, 'newsedim: exposant trop petit ', ig, l |
---|
172 | ptop=pplev(ig,l+k) * ( 1. - (dztop-Ep)*g/(r*pt(ig,l+k))) |
---|
173 | ELSE |
---|
174 | ptop=pplev(ig,l+k) * ptop |
---|
175 | ENDIF |
---|
176 | |
---|
177 | w(ig,l) = (pplev(ig,l) - ptop)/g |
---|
178 | |
---|
179 | endif !!! complex method |
---|
180 | c |
---|
181 | cc write(*,*) 'OK new method l,w =', l, w(ig,l) |
---|
182 | cc write(*,*) 'OK new method dztop =', dztop |
---|
183 | cc if(l.eq.7)write(*,*)'l=7,k,pplev,Ptop',pplev(ig,l),Ptop |
---|
184 | cc if(l.eq.7)write(*,*)'l=7,dztop,Ep',dztop,Ep |
---|
185 | cc if(l.eq.6)write(*,*)'l=6,k, w',k, w(1,l) |
---|
186 | cc if(l.eq.7)write(*,*)'l=7,k, w',k, w(1,l) |
---|
187 | cc if(l.eq.8)write(*,*)'l=8,k, w',k, w(1,l) |
---|
188 | c ************************************************************** |
---|
189 | |
---|
190 | end do |
---|
191 | end do |
---|
192 | |
---|
193 | call vlz_fi(ngrid,nlay,pqi,2.,masse,w,wq) |
---|
194 | c write(*,*) ' newsed: wq(6), wq(7), q(6)', |
---|
195 | c & wq(1,6),wq(1,7),pqi(1,6) |
---|
196 | |
---|
197 | END |
---|