1 | subroutine moistadj_generic(ngrid, nlayer, nq, pt, pq, pdq, pplev, pplay, pdtmana, pdqmana, ptimestep, rneb) |
---|
2 | |
---|
3 | use generic_cloud_common_h |
---|
4 | use generic_tracer_index_mod, only: generic_tracer_index |
---|
5 | use tracer_h |
---|
6 | use ioipsl_getin_p_mod, only: getin_p !-> to get the metallicity |
---|
7 | use comcstfi_mod, only: r, cpp, mugaz |
---|
8 | use callkeys_mod, only: moist_convection_inhibition |
---|
9 | |
---|
10 | implicit none |
---|
11 | |
---|
12 | |
---|
13 | !===================================================================== |
---|
14 | ! |
---|
15 | ! Purpose |
---|
16 | ! ------- |
---|
17 | ! Calculates moist convective adjustment by the method of Manabe. |
---|
18 | ! |
---|
19 | ! Authors |
---|
20 | ! ------- |
---|
21 | ! Adapted from the moistadj.F90 routine |
---|
22 | ! for generic condensable species (GCS) tracers |
---|
23 | ! by Noe CLEMENT (2023) |
---|
24 | ! |
---|
25 | !===================================================================== |
---|
26 | |
---|
27 | INTEGER,INTENT(IN) :: ngrid, nlayer, nq |
---|
28 | |
---|
29 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! temperature (K) |
---|
30 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! tracer (kg/kg) |
---|
31 | REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq) |
---|
32 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
33 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
---|
34 | REAL,INTENT(IN) :: ptimestep ! physics timestep (s) |
---|
35 | REAL,INTENT(OUT) :: pdqmana(ngrid,nlayer,nq) ! tracer tendencies (kg/kg.s-1) |
---|
36 | REAL,INTENT(OUT) :: pdtmana(ngrid,nlayer) ! temperature increment(K/s) |
---|
37 | REAL,INTENT(OUT) :: rneb(ngrid,nlayer) ! cloud fraction |
---|
38 | |
---|
39 | ! Options : |
---|
40 | !real, save :: metallicity ! metallicity of planet |
---|
41 | REAL,SAVE :: metallicity = 0.0 |
---|
42 | !$OMP THREADPRIVATE(metallicity) |
---|
43 | |
---|
44 | ! local variables |
---|
45 | REAL zt(ngrid,nlayer) ! temperature (K) |
---|
46 | REAL zq(ngrid,nlayer) ! humidite specifique (kg/kg) |
---|
47 | |
---|
48 | REAL d_t(ngrid,nlayer) ! temperature increment |
---|
49 | REAL d_q(ngrid,nlayer) ! incrementation pour vapeur d'eau |
---|
50 | REAL d_ql(ngrid,nlayer) ! incrementation pour l'eau liquide |
---|
51 | |
---|
52 | ! REAL t_coup |
---|
53 | ! PARAMETER (t_coup=234.0) |
---|
54 | REAL seuil_vap |
---|
55 | PARAMETER (seuil_vap=1.0E-10) |
---|
56 | |
---|
57 | ! Local variables |
---|
58 | |
---|
59 | logical call_ice_vap_generic ! to call only one time the ice/vap pair of a tracer |
---|
60 | integer igcm_generic_vap, igcm_generic_ice ! index of the vap and ice of generic_tracer |
---|
61 | |
---|
62 | INTEGER i, k, iq, nn |
---|
63 | INTEGER, PARAMETER :: niter = 1 |
---|
64 | INTEGER k1, k1p, k2, k2p |
---|
65 | LOGICAL itest(ngrid) |
---|
66 | REAL delta_q(ngrid, nlayer) |
---|
67 | DOUBLE PRECISION :: cp_new_t(nlayer), v_cptt(ngrid,nlayer) |
---|
68 | REAL cp_delta_t(nlayer) |
---|
69 | DOUBLE PRECISION :: v_cptj(nlayer), v_cptjk1, v_ssig |
---|
70 | REAL v_p, v_t, v_zqs,v_cptt2,v_pratio,v_dlnpsat |
---|
71 | REAL zqs(ngrid,nlayer), zdqs(ngrid,nlayer),zpsat(ngrid,nlayer),zdlnpsat(ngrid,nlayer) |
---|
72 | REAL zq1(ngrid), zq2(ngrid) |
---|
73 | DOUBLE PRECISION :: gamcpdz(ngrid,2:nlayer) |
---|
74 | DOUBLE PRECISION :: zdp, zdpm |
---|
75 | |
---|
76 | real q_cri(ngrid,nlayer) ! moist convection inhibition criterion |
---|
77 | |
---|
78 | REAL zsat ! super-saturation |
---|
79 | REAL zflo ! flotabilite |
---|
80 | |
---|
81 | DOUBLE PRECISION :: local_q(ngrid,nlayer),local_t(ngrid,nlayer) |
---|
82 | |
---|
83 | REAL zdelta, zcor, zcvm5 |
---|
84 | |
---|
85 | REAL dEtot, dqtot, masse ! conservation diagnostics |
---|
86 | real dL1tot, dL2tot |
---|
87 | |
---|
88 | ! Indices of generic vapour and ice tracers |
---|
89 | real,save :: RCPD=0.0 |
---|
90 | INTEGER,SAVE :: i_vap_generic=0 ! Generic Condensable Species vapour |
---|
91 | INTEGER,SAVE :: i_ice_generic=0 ! Generic Condensable Species ice |
---|
92 | !$OMP THREADPRIVATE(i_vap_generic,i_ice_generic,RCPD) |
---|
93 | |
---|
94 | LOGICAL,SAVE :: firstcall=.TRUE. |
---|
95 | !$OMP THREADPRIVATE(firstcall) |
---|
96 | |
---|
97 | IF (firstcall) THEN |
---|
98 | |
---|
99 | RCPD = cpp |
---|
100 | |
---|
101 | write(*,*) "value for metallicity? " |
---|
102 | metallicity=0.0 ! default value |
---|
103 | call getin_p("metallicity",metallicity) |
---|
104 | write(*,*) " metallicity = ",metallicity |
---|
105 | |
---|
106 | do iq=1, nq |
---|
107 | call generic_tracer_index(nq,iq,igcm_generic_vap,igcm_generic_ice,call_ice_vap_generic) |
---|
108 | if(call_ice_vap_generic) then ! to call only one time the ice/vap pair of a tracer |
---|
109 | write(*,*) "moistadjustment : taking back the values you have set in 'table_tracers_condensable' for thermodynamics. If you have forgotten one, it will crash." |
---|
110 | m = constants_mass(iq) |
---|
111 | delta_vapH = constants_delta_vapH(iq) |
---|
112 | epsi_generic = constants_epsi_generic(iq) |
---|
113 | RLVTT_generic = constants_RLVTT_generic(iq) |
---|
114 | RCPV_generic = constants_RCPV_generic(iq) |
---|
115 | Tref = constants_Tref(iq) |
---|
116 | |
---|
117 | write(*,*) noms(igcm_generic_vap),", q_cri at ", Tref, "K (in kg/kg): ", ( 1 / (1 - 1/epsi_generic)) * (r * mugaz/1000.) / delta_vapH * Tref |
---|
118 | |
---|
119 | endif |
---|
120 | enddo |
---|
121 | |
---|
122 | i_vap_generic=igcm_generic_vap |
---|
123 | i_ice_generic=igcm_generic_ice |
---|
124 | |
---|
125 | write(*,*) "rain: i_ice_generic=",i_ice_generic |
---|
126 | write(*,*) " i_vap_generic=",i_vap_generic |
---|
127 | |
---|
128 | firstcall = .FALSE. |
---|
129 | ENDIF |
---|
130 | |
---|
131 | ! GCM -----> subroutine variables |
---|
132 | zq(1:ngrid,1:nlayer) = pq(1:ngrid,1:nlayer,i_vap_generic)+ pdq(1:ngrid,1:nlayer,i_vap_generic)*ptimestep |
---|
133 | zt(1:ngrid,1:nlayer) = pt(1:ngrid,1:nlayer) |
---|
134 | pdqmana(1:ngrid,1:nlayer,1:nq)=0.0 |
---|
135 | |
---|
136 | DO k = 1, nlayer |
---|
137 | DO i = 1, ngrid |
---|
138 | if(zq(i,k).lt.0.)then |
---|
139 | zq(i,k)=0.0 |
---|
140 | endif |
---|
141 | ENDDO |
---|
142 | ENDDO |
---|
143 | |
---|
144 | local_q(1:ngrid,1:nlayer) = zq(1:ngrid,1:nlayer) |
---|
145 | local_t(1:ngrid,1:nlayer) = zt(1:ngrid,1:nlayer) |
---|
146 | rneb(1:ngrid,1:nlayer) = 0.0 |
---|
147 | d_ql(1:ngrid,1:nlayer) = 0.0 |
---|
148 | d_t(1:ngrid,1:nlayer) = 0.0 |
---|
149 | d_q(1:ngrid,1:nlayer) = 0.0 |
---|
150 | |
---|
151 | ! Calculate v_cptt |
---|
152 | DO k = 1, nlayer |
---|
153 | DO i = 1, ngrid |
---|
154 | v_cptt(i,k) = RCPD * local_t(i,k) |
---|
155 | v_t = MAX(local_t(i,k),15.) |
---|
156 | v_p = pplay(i,k) |
---|
157 | |
---|
158 | call Psat_generic(v_t,v_p,metallicity,zpsat(i,k),zqs(i,k)) |
---|
159 | call Lcpdqsat_generic(v_t,v_p,zpsat(i,k),zqs(i,k),zdqs(i,k),zdlnpsat(i,k)) |
---|
160 | |
---|
161 | ENDDO |
---|
162 | ENDDO |
---|
163 | |
---|
164 | ! Calculate Gamma * Cp * dz: (gamma is the critical gradient) |
---|
165 | DO k = 2, nlayer |
---|
166 | DO i = 1, ngrid |
---|
167 | zdp = pplev(i,k)-pplev(i,k+1) |
---|
168 | zdpm = pplev(i,k-1)-pplev(i,k) |
---|
169 | ! gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp) & |
---|
170 | ! + RLVTT /(zdpm+zdp) * (zqs(i,k-1)*zdpm + zqs(i,k)*zdp) ) & |
---|
171 | !* (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) ) & |
---|
172 | ! / (1.0+ (zdqs(i,k-1)*zdpm + zdqs(i,k)*zdp)/(zdpm+zdp) ) |
---|
173 | ! general case where water is not a trace gas (JL13) |
---|
174 | v_zqs = (zqs(i,k-1)*zdpm + zqs(i,k)*zdp)/(zdpm+zdp) |
---|
175 | v_cptt2 = (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)/(zdpm+zdp) |
---|
176 | v_pratio = ((1.-zpsat(i,k-1)/pplay(i,k-1))*zdpm + (1.-zpsat(i,k)/pplay(i,k))*zdp)/(zdpm+zdp) |
---|
177 | v_dlnpsat = (zdlnpsat(i,k-1)*zdpm + zdlnpsat(i,k)*zdp)/(zdpm+zdp) |
---|
178 | gamcpdz(i,k) = ( (R/RCPD*v_cptt2*(1.- v_zqs) + RLVTT_generic*v_zqs) * (pplay(i,k-1)-pplay(i,k))/pplev(i,k) ) & |
---|
179 | / (((1.- v_zqs) + v_zqs * RCPV_generic/RCPD)*v_pratio + v_zqs * v_dlnpsat) |
---|
180 | ! Note that gamcpdz is defined as positive, so -gamcpdz is the real moist-adiabatic gradient [dT/dz]_ad |
---|
181 | ENDDO |
---|
182 | ENDDO |
---|
183 | |
---|
184 | ! calculate moist convection inhibition criterion |
---|
185 | IF (moist_convection_inhibition .and. (epsi_generic .gt. 1)) THEN ! GCS molecular weight is heavier than dry gas: |
---|
186 | ! inhibition of moist convection if vapor amount exceeds q_cri (Eq. 17 of Leconte et al. 2017) |
---|
187 | write(*,*) 'inhibition of moist convection if vapor amount exceeds a critical mixing ratio (see Leconte et al. 2017)' |
---|
188 | DO k = 1, nlayer |
---|
189 | DO i = 1, ngrid |
---|
190 | q_cri(i,k) = ( 1 / (1 - 1/epsi_generic)) * r * mugaz/1000. / delta_vapH * zt(i,k) |
---|
191 | ENDDO |
---|
192 | ENDDO |
---|
193 | ELSE ! GCS molecular weight is lighter than dry gas |
---|
194 | DO k = 1, nlayer |
---|
195 | DO i = 1, ngrid |
---|
196 | q_cri(i,k) = 2. ! vapor amount will never exceed q_cri, q_cri call becomes transparent in the next lines |
---|
197 | ENDDO |
---|
198 | ENDDO |
---|
199 | ENDIF |
---|
200 | |
---|
201 | |
---|
202 | !------------------------------------ defining the bottom (k1) and the top (k2) of the moist-convective column |
---|
203 | DO 9999 i = 1, ngrid |
---|
204 | |
---|
205 | itest(i) = .FALSE. |
---|
206 | |
---|
207 | ! print*,'we in the loop' |
---|
208 | ! stop |
---|
209 | |
---|
210 | k1 = 0 |
---|
211 | k2 = 1 |
---|
212 | |
---|
213 | 810 CONTINUE ! look for k1, the base of the column |
---|
214 | k2 = k2 + 1 |
---|
215 | IF (k2 .GT. nlayer) GOTO 9999 |
---|
216 | zflo = v_cptt(i,k2-1) - v_cptt(i,k2) - gamcpdz(i,k2) |
---|
217 | zsat=(local_q(i,k2-1)-zqs(i,k2-1))*(pplev(i,k2-1)-pplev(i,k2)) & |
---|
218 | +(local_q(i,k2)-zqs(i,k2))*(pplev(i,k2)-pplev(i,k2+1)) |
---|
219 | |
---|
220 | ! if: (gradient is not steeper than moist-adiabat) or (level is not saturated) or (moist convection is inhibited because criterion is satisfied) |
---|
221 | ! then: no moist convection (GO TO 810) |
---|
222 | IF ( zflo.LE.0.0 .OR. zsat.LE.0.0 .OR. local_q(i,k2-1).GT.q_cri(i,k2-1)) GOTO 810 |
---|
223 | k1 = k2 - 1 |
---|
224 | itest(i) = .TRUE. |
---|
225 | |
---|
226 | 820 CONTINUE !! look for k2, the top of the column |
---|
227 | IF (k2 .EQ. nlayer) GOTO 821 |
---|
228 | k2p = k2 + 1 |
---|
229 | zsat=zsat+(pplev(i,k2p)-pplev(i,k2p+1))*(local_q(i,k2p)-zqs(i,k2p)) |
---|
230 | zflo = v_cptt(i,k2p-1) - v_cptt(i,k2p) - gamcpdz(i,k2p) |
---|
231 | |
---|
232 | IF (zflo.LE.0.0 .OR. zsat.LE.0.0 .OR. local_q(i,k2p).GT.q_cri(i,k2p)) GOTO 821 |
---|
233 | k2 = k2p |
---|
234 | GOTO 820 |
---|
235 | 821 CONTINUE |
---|
236 | |
---|
237 | !------------------------------------------------------ local adjustment of the moist-convective column between k1 and k2 |
---|
238 | 830 CONTINUE ! actual adjustment |
---|
239 | Do nn=1,niter |
---|
240 | v_cptj(k1) = 0.0 |
---|
241 | zdp = pplev(i,k1)-pplev(i,k1+1) |
---|
242 | v_cptjk1 = ( (1.0+zdqs(i,k1))*(v_cptt(i,k1)+v_cptj(k1)) + RLVTT_generic*(local_q(i,k1)-zqs(i,k1)) ) * zdp |
---|
243 | v_ssig = zdp * (1.0+zdqs(i,k1)) |
---|
244 | |
---|
245 | k1p = k1 + 1 |
---|
246 | DO k = k1p, k2 |
---|
247 | zdp = pplev(i,k)-pplev(i,k+1) |
---|
248 | v_cptj(k) = v_cptj(k-1) + gamcpdz(i,k) |
---|
249 | v_cptjk1 = v_cptjk1 + zdp * ( (1.0+zdqs(i, k))*(v_cptt(i,k)+v_cptj(k)) + RLVTT_generic*(local_q(i,k)-zqs(i,k)) ) |
---|
250 | v_ssig = v_ssig + zdp *(1.0+zdqs(i,k)) |
---|
251 | ENDDO |
---|
252 | |
---|
253 | |
---|
254 | ! this right here is where the adjustment is done??? |
---|
255 | DO k = k1, k2 |
---|
256 | cp_new_t(k) = v_cptjk1/v_ssig - v_cptj(k) |
---|
257 | cp_delta_t(k) = cp_new_t(k) - v_cptt(i,k) |
---|
258 | v_cptt(i,k)=cp_new_t(k) |
---|
259 | local_q(i,k) = zqs(i,k) + zdqs(i,k)*cp_delta_t(k)/RLVTT_generic |
---|
260 | local_t(i,k) = cp_new_t(k) / RCPD |
---|
261 | |
---|
262 | v_t = MAX(local_t(i,k),15.) |
---|
263 | v_p = pplay(i,k) |
---|
264 | |
---|
265 | call Psat_generic(v_t,v_p,metallicity,zpsat(i,k),zqs(i,k)) |
---|
266 | call Lcpdqsat_generic(v_t,v_p,zpsat(i,k),zqs(i,k),zdqs(i,k),zdlnpsat(i,k)) |
---|
267 | |
---|
268 | ENDDO |
---|
269 | Enddo ! nn=1,niter |
---|
270 | |
---|
271 | |
---|
272 | !--------------------------------------------------- sounding downwards |
---|
273 | ! -- we refine the prognostic variables in |
---|
274 | ! -- the layer about to be adjusted |
---|
275 | |
---|
276 | ! DO k = k1, k2 |
---|
277 | ! v_cptt(i,k) = RCPD * local_t(i,k) |
---|
278 | ! v_t = local_t(i,k) |
---|
279 | ! v_p = pplay(i,k) |
---|
280 | ! |
---|
281 | ! call Psat_water(v_t,v_p,zpsat,zqs(i,k)) |
---|
282 | ! call Lcpdqsat_water(v_t,v_p,zpsat,zqs(i,k),zdqs(i,k)) |
---|
283 | ! ENDDO |
---|
284 | |
---|
285 | DO k = 2, nlayer |
---|
286 | zdpm = pplev(i,k-1) - pplev(i,k) |
---|
287 | zdp = pplev(i,k) - pplev(i,k+1) |
---|
288 | ! gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp) & |
---|
289 | ! + RLVTT /(zdpm+zdp) * (zqs(i,k-1)*zdpm + zqs(i,k)*zdp) ) & |
---|
290 | ! * (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) ) & |
---|
291 | ! / (1.0+ (zdqs(i,k-1)*zdpm + zdqs(i,k)*zdp)/(zdpm+zdp) ) |
---|
292 | ! general case where water is not a trace gas (JL13) |
---|
293 | v_zqs = (zqs(i,k-1)*zdpm + zqs(i,k)*zdp)/(zdpm+zdp) |
---|
294 | v_cptt2 = (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)/(zdpm+zdp) |
---|
295 | v_pratio = ((1.-zpsat(i,k-1)/pplay(i,k-1))*zdpm + (1.-zpsat(i,k)/pplay(i,k))*zdp)/(zdpm+zdp) |
---|
296 | v_dlnpsat = (zdlnpsat(i,k-1)*zdpm + zdlnpsat(i,k)*zdp)/(zdpm+zdp) |
---|
297 | gamcpdz(i,k) = ( (R/RCPD*v_cptt2*(1.- v_zqs) + RLVTT_generic*v_zqs) * (pplay(i,k-1)-pplay(i,k))/pplev(i,k) ) & |
---|
298 | / (((1.- v_zqs) + v_zqs * RCPV_generic/RCPD)*v_pratio + v_zqs * v_dlnpsat) |
---|
299 | ENDDO |
---|
300 | |
---|
301 | ! Test to see if we've reached the bottom |
---|
302 | |
---|
303 | IF (k1 .EQ. 1) GOTO 841 ! yes we have! the bottom of moist-convective column is the bottom of the model |
---|
304 | |
---|
305 | zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1) |
---|
306 | zsat=(local_q(i,k1-1)-zqs(i,k1-1))*(pplev(i,k1-1)-pplev(i,k1)) & |
---|
307 | + (local_q(i,k1)-zqs(i,k1))*(pplev(i,k1)-pplev(i,k1+1)) |
---|
308 | |
---|
309 | IF (zflo.LE.0.0 .OR. zsat.LE.0.0 .OR. local_q(i,k1-1).GT.q_cri(i,k1-1)) GOTO 841 ! yes we have! |
---|
310 | ! the bottom of the moist-convective column is no more convective: GOTO 841 |
---|
311 | |
---|
312 | 840 CONTINUE |
---|
313 | k1 = k1 - 1 |
---|
314 | IF (k1 .EQ. 1) GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
---|
315 | ! bottom of moist-convective column is bottom of the model but is still convective: GOTO 830 |
---|
316 | zsat = zsat + (local_q(i,k1-1)-zqs(i,k1-1)) & |
---|
317 | *(pplev(i,k1-1)-pplev(i,k1)) |
---|
318 | zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1) |
---|
319 | IF (zflo.GT.0.0 .AND. zsat.GT.0.0 .AND. local_q(i,k1-1).LT.q_cri(i,k1-1)) THEN |
---|
320 | ! the bottom of the moist-convective column is still convective |
---|
321 | ! we continue to search for the non-convective bottom |
---|
322 | GOTO 840 |
---|
323 | ELSE |
---|
324 | ! the bottom of the moist-convective column is no more convective now, |
---|
325 | ! but, since the bottom of moist-convective column has changed, we must do again the adjustment |
---|
326 | GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
---|
327 | ENDIF |
---|
328 | 841 CONTINUE |
---|
329 | |
---|
330 | GOTO 810 ! look for other layers higher up |
---|
331 | ! because there could be other moist-convective columns higher up (but separated from the one we have just calculated before) |
---|
332 | |
---|
333 | 9999 CONTINUE ! loop over all the points |
---|
334 | |
---|
335 | !----------------------------------------------------------------------- |
---|
336 | ! Determine the cloud fraction (hypothesis: nebulosity occurs |
---|
337 | ! where GCS vapor is reduced by adjustment): |
---|
338 | |
---|
339 | DO k = 1, nlayer |
---|
340 | DO i = 1, ngrid |
---|
341 | IF (itest(i)) THEN |
---|
342 | delta_q(i,k) = local_q(i,k) - zq(i,k) |
---|
343 | IF (delta_q(i,k).LT.0.) rneb(i,k) = 1.0 |
---|
344 | ENDIF |
---|
345 | ENDDO |
---|
346 | ENDDO |
---|
347 | |
---|
348 | ! Distribute GCS condensates into cloudy liquid/solid condensates (hypothesis: |
---|
349 | ! liquid/solid condensates are distributed to areas where GCS vapor |
---|
350 | ! decreases and are distributed in proportion to this decrease): |
---|
351 | DO i = 1, ngrid |
---|
352 | IF (itest(i)) THEN |
---|
353 | zq1(i) = 0.0 |
---|
354 | zq2(i) = 0.0 |
---|
355 | ENDIF |
---|
356 | ENDDO |
---|
357 | DO k = 1, nlayer |
---|
358 | DO i = 1, ngrid |
---|
359 | IF (itest(i)) THEN |
---|
360 | zdp = pplev(i,k)-pplev(i,k+1) |
---|
361 | zq1(i) = zq1(i) - delta_q(i,k) * zdp |
---|
362 | zq2(i) = zq2(i) - MIN(0.0, delta_q(i,k)) * zdp |
---|
363 | ENDIF |
---|
364 | ENDDO |
---|
365 | ENDDO |
---|
366 | DO k = 1, nlayer |
---|
367 | DO i = 1, ngrid |
---|
368 | IF (itest(i)) THEN |
---|
369 | IF (zq2(i).NE.0.0) d_ql(i,k) = - MIN(0.0,delta_q(i,k))*zq1(i)/zq2(i) |
---|
370 | ENDIF |
---|
371 | ENDDO |
---|
372 | ENDDO |
---|
373 | |
---|
374 | DO k = 1, nlayer |
---|
375 | DO i = 1, ngrid |
---|
376 | local_q(i, k) = MAX(local_q(i, k), seuil_vap) |
---|
377 | ENDDO |
---|
378 | ENDDO |
---|
379 | |
---|
380 | DO k = 1, nlayer |
---|
381 | DO i = 1, ngrid |
---|
382 | d_t(i,k) = local_t(i,k) - zt(i,k) |
---|
383 | d_q(i,k) = local_q(i,k) - zq(i,k) |
---|
384 | ENDDO |
---|
385 | ENDDO |
---|
386 | |
---|
387 | ! now subroutine -----> GCM variables |
---|
388 | DO k = 1, nlayer |
---|
389 | DO i = 1, ngrid |
---|
390 | |
---|
391 | pdtmana(i,k) = d_t(i,k)/ptimestep |
---|
392 | pdqmana(i,k,i_vap_generic) = d_q(i,k)/ptimestep |
---|
393 | pdqmana(i,k,i_ice_generic) = d_ql(i,k)/ptimestep |
---|
394 | |
---|
395 | ENDDO |
---|
396 | ENDDO |
---|
397 | |
---|
398 | end subroutine moistadj_generic |
---|