[3104] | 1 | subroutine moistadj_generic(ngrid, nlayer, nq, pt, pq, pdq, pplev, pplay, pdtmana, pdqmana, ptimestep, rneb) |
---|
| 2 | |
---|
| 3 | use generic_cloud_common_h |
---|
| 4 | use generic_tracer_index_mod, only: generic_tracer_index |
---|
| 5 | use tracer_h |
---|
| 6 | use ioipsl_getin_p_mod, only: getin_p !-> to get the metallicity |
---|
| 7 | use comcstfi_mod, only: r, cpp, mugaz |
---|
[3279] | 8 | use callkeys_mod, only: moist_convection_inhibition |
---|
[3104] | 9 | |
---|
| 10 | implicit none |
---|
| 11 | |
---|
| 12 | |
---|
| 13 | !===================================================================== |
---|
| 14 | ! |
---|
| 15 | ! Purpose |
---|
| 16 | ! ------- |
---|
| 17 | ! Calculates moist convective adjustment by the method of Manabe. |
---|
| 18 | ! |
---|
| 19 | ! Authors |
---|
| 20 | ! ------- |
---|
| 21 | ! Adapted from the moistadj.F90 routine |
---|
[3276] | 22 | ! for generic condensable species (GCS) tracers |
---|
[3104] | 23 | ! by Noe CLEMENT (2023) |
---|
| 24 | ! |
---|
| 25 | !===================================================================== |
---|
| 26 | |
---|
| 27 | INTEGER,INTENT(IN) :: ngrid, nlayer, nq |
---|
| 28 | |
---|
| 29 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! temperature (K) |
---|
| 30 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! tracer (kg/kg) |
---|
| 31 | REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq) |
---|
| 32 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
| 33 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
---|
| 34 | REAL,INTENT(IN) :: ptimestep ! physics timestep (s) |
---|
| 35 | REAL,INTENT(OUT) :: pdqmana(ngrid,nlayer,nq) ! tracer tendencies (kg/kg.s-1) |
---|
| 36 | REAL,INTENT(OUT) :: pdtmana(ngrid,nlayer) ! temperature increment(K/s) |
---|
| 37 | REAL,INTENT(OUT) :: rneb(ngrid,nlayer) ! cloud fraction |
---|
| 38 | |
---|
| 39 | ! Options : |
---|
| 40 | !real, save :: metallicity ! metallicity of planet |
---|
| 41 | REAL,SAVE :: metallicity = 0.0 |
---|
| 42 | !$OMP THREADPRIVATE(metallicity) |
---|
| 43 | |
---|
| 44 | ! local variables |
---|
| 45 | REAL zt(ngrid,nlayer) ! temperature (K) |
---|
| 46 | REAL zq(ngrid,nlayer) ! humidite specifique (kg/kg) |
---|
| 47 | |
---|
| 48 | REAL d_t(ngrid,nlayer) ! temperature increment |
---|
| 49 | REAL d_q(ngrid,nlayer) ! incrementation pour vapeur d'eau |
---|
| 50 | REAL d_ql(ngrid,nlayer) ! incrementation pour l'eau liquide |
---|
| 51 | |
---|
| 52 | ! REAL t_coup |
---|
| 53 | ! PARAMETER (t_coup=234.0) |
---|
| 54 | REAL seuil_vap |
---|
| 55 | PARAMETER (seuil_vap=1.0E-10) |
---|
| 56 | |
---|
| 57 | ! Local variables |
---|
| 58 | |
---|
| 59 | logical call_ice_vap_generic ! to call only one time the ice/vap pair of a tracer |
---|
| 60 | integer igcm_generic_vap, igcm_generic_ice ! index of the vap and ice of generic_tracer |
---|
| 61 | |
---|
| 62 | INTEGER i, k, iq, nn |
---|
| 63 | INTEGER, PARAMETER :: niter = 1 |
---|
| 64 | INTEGER k1, k1p, k2, k2p |
---|
| 65 | LOGICAL itest(ngrid) |
---|
| 66 | REAL delta_q(ngrid, nlayer) |
---|
| 67 | DOUBLE PRECISION :: cp_new_t(nlayer), v_cptt(ngrid,nlayer) |
---|
| 68 | REAL cp_delta_t(nlayer) |
---|
| 69 | DOUBLE PRECISION :: v_cptj(nlayer), v_cptjk1, v_ssig |
---|
| 70 | REAL v_p, v_t, v_zqs,v_cptt2,v_pratio,v_dlnpsat |
---|
| 71 | REAL zqs(ngrid,nlayer), zdqs(ngrid,nlayer),zpsat(ngrid,nlayer),zdlnpsat(ngrid,nlayer) |
---|
| 72 | REAL zq1(ngrid), zq2(ngrid) |
---|
| 73 | DOUBLE PRECISION :: gamcpdz(ngrid,2:nlayer) |
---|
| 74 | DOUBLE PRECISION :: zdp, zdpm |
---|
| 75 | |
---|
[3276] | 76 | real q_cri(ngrid,nlayer) ! moist convection inhibition criterion |
---|
[3104] | 77 | |
---|
| 78 | REAL zsat ! super-saturation |
---|
| 79 | REAL zflo ! flotabilite |
---|
| 80 | |
---|
| 81 | DOUBLE PRECISION :: local_q(ngrid,nlayer),local_t(ngrid,nlayer) |
---|
| 82 | |
---|
| 83 | REAL zdelta, zcor, zcvm5 |
---|
| 84 | |
---|
| 85 | REAL dEtot, dqtot, masse ! conservation diagnostics |
---|
| 86 | real dL1tot, dL2tot |
---|
| 87 | |
---|
| 88 | ! Indices of generic vapour and ice tracers |
---|
| 89 | real,save :: RCPD=0.0 |
---|
| 90 | INTEGER,SAVE :: i_vap_generic=0 ! Generic Condensable Species vapour |
---|
| 91 | INTEGER,SAVE :: i_ice_generic=0 ! Generic Condensable Species ice |
---|
| 92 | !$OMP THREADPRIVATE(i_vap_generic,i_ice_generic,RCPD) |
---|
| 93 | |
---|
| 94 | LOGICAL,SAVE :: firstcall=.TRUE. |
---|
| 95 | !$OMP THREADPRIVATE(firstcall) |
---|
| 96 | |
---|
| 97 | IF (firstcall) THEN |
---|
| 98 | |
---|
| 99 | RCPD = cpp |
---|
| 100 | |
---|
| 101 | write(*,*) "value for metallicity? " |
---|
| 102 | metallicity=0.0 ! default value |
---|
| 103 | call getin_p("metallicity",metallicity) |
---|
| 104 | write(*,*) " metallicity = ",metallicity |
---|
| 105 | |
---|
| 106 | do iq=1, nq |
---|
| 107 | call generic_tracer_index(nq,iq,igcm_generic_vap,igcm_generic_ice,call_ice_vap_generic) |
---|
| 108 | if(call_ice_vap_generic) then ! to call only one time the ice/vap pair of a tracer |
---|
| 109 | write(*,*) "moistadjustment : taking back the values you have set in 'table_tracers_condensable' for thermodynamics. If you have forgotten one, it will crash." |
---|
| 110 | m = constants_mass(iq) |
---|
| 111 | delta_vapH = constants_delta_vapH(iq) |
---|
| 112 | epsi_generic = constants_epsi_generic(iq) |
---|
| 113 | RLVTT_generic = constants_RLVTT_generic(iq) |
---|
| 114 | RCPV_generic = constants_RCPV_generic(iq) |
---|
[3276] | 115 | Tref = constants_Tref(iq) |
---|
| 116 | |
---|
| 117 | write(*,*) noms(igcm_generic_vap),", q_cri at ", Tref, "K (in kg/kg): ", ( 1 / (1 - 1/epsi_generic)) * (r * mugaz/1000.) / delta_vapH * Tref |
---|
| 118 | |
---|
[3104] | 119 | endif |
---|
| 120 | enddo |
---|
| 121 | |
---|
| 122 | i_vap_generic=igcm_generic_vap |
---|
| 123 | i_ice_generic=igcm_generic_ice |
---|
| 124 | |
---|
| 125 | write(*,*) "rain: i_ice_generic=",i_ice_generic |
---|
| 126 | write(*,*) " i_vap_generic=",i_vap_generic |
---|
| 127 | |
---|
| 128 | firstcall = .FALSE. |
---|
| 129 | ENDIF |
---|
| 130 | |
---|
| 131 | ! GCM -----> subroutine variables |
---|
| 132 | zq(1:ngrid,1:nlayer) = pq(1:ngrid,1:nlayer,i_vap_generic)+ pdq(1:ngrid,1:nlayer,i_vap_generic)*ptimestep |
---|
| 133 | zt(1:ngrid,1:nlayer) = pt(1:ngrid,1:nlayer) |
---|
| 134 | pdqmana(1:ngrid,1:nlayer,1:nq)=0.0 |
---|
| 135 | |
---|
| 136 | DO k = 1, nlayer |
---|
| 137 | DO i = 1, ngrid |
---|
| 138 | if(zq(i,k).lt.0.)then |
---|
| 139 | zq(i,k)=0.0 |
---|
| 140 | endif |
---|
| 141 | ENDDO |
---|
| 142 | ENDDO |
---|
| 143 | |
---|
| 144 | local_q(1:ngrid,1:nlayer) = zq(1:ngrid,1:nlayer) |
---|
| 145 | local_t(1:ngrid,1:nlayer) = zt(1:ngrid,1:nlayer) |
---|
| 146 | rneb(1:ngrid,1:nlayer) = 0.0 |
---|
| 147 | d_ql(1:ngrid,1:nlayer) = 0.0 |
---|
| 148 | d_t(1:ngrid,1:nlayer) = 0.0 |
---|
| 149 | d_q(1:ngrid,1:nlayer) = 0.0 |
---|
| 150 | |
---|
| 151 | ! Calculate v_cptt |
---|
| 152 | DO k = 1, nlayer |
---|
| 153 | DO i = 1, ngrid |
---|
| 154 | v_cptt(i,k) = RCPD * local_t(i,k) |
---|
| 155 | v_t = MAX(local_t(i,k),15.) |
---|
| 156 | v_p = pplay(i,k) |
---|
| 157 | |
---|
| 158 | call Psat_generic(v_t,v_p,metallicity,zpsat(i,k),zqs(i,k)) |
---|
| 159 | call Lcpdqsat_generic(v_t,v_p,zpsat(i,k),zqs(i,k),zdqs(i,k),zdlnpsat(i,k)) |
---|
| 160 | |
---|
| 161 | ENDDO |
---|
| 162 | ENDDO |
---|
| 163 | |
---|
| 164 | ! Calculate Gamma * Cp * dz: (gamma is the critical gradient) |
---|
| 165 | DO k = 2, nlayer |
---|
| 166 | DO i = 1, ngrid |
---|
| 167 | zdp = pplev(i,k)-pplev(i,k+1) |
---|
| 168 | zdpm = pplev(i,k-1)-pplev(i,k) |
---|
| 169 | ! gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp) & |
---|
| 170 | ! + RLVTT /(zdpm+zdp) * (zqs(i,k-1)*zdpm + zqs(i,k)*zdp) ) & |
---|
| 171 | !* (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) ) & |
---|
| 172 | ! / (1.0+ (zdqs(i,k-1)*zdpm + zdqs(i,k)*zdp)/(zdpm+zdp) ) |
---|
| 173 | ! general case where water is not a trace gas (JL13) |
---|
| 174 | v_zqs = (zqs(i,k-1)*zdpm + zqs(i,k)*zdp)/(zdpm+zdp) |
---|
| 175 | v_cptt2 = (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)/(zdpm+zdp) |
---|
| 176 | v_pratio = ((1.-zpsat(i,k-1)/pplay(i,k-1))*zdpm + (1.-zpsat(i,k)/pplay(i,k))*zdp)/(zdpm+zdp) |
---|
| 177 | v_dlnpsat = (zdlnpsat(i,k-1)*zdpm + zdlnpsat(i,k)*zdp)/(zdpm+zdp) |
---|
| 178 | gamcpdz(i,k) = ( (R/RCPD*v_cptt2*(1.- v_zqs) + RLVTT_generic*v_zqs) * (pplay(i,k-1)-pplay(i,k))/pplev(i,k) ) & |
---|
| 179 | / (((1.- v_zqs) + v_zqs * RCPV_generic/RCPD)*v_pratio + v_zqs * v_dlnpsat) |
---|
[3276] | 180 | ! Note that gamcpdz is defined as positive, so -gamcpdz is the real moist-adiabatic gradient [dT/dz]_ad |
---|
[3104] | 181 | ENDDO |
---|
| 182 | ENDDO |
---|
| 183 | |
---|
[3276] | 184 | ! calculate moist convection inhibition criterion |
---|
[3279] | 185 | IF (moist_convection_inhibition .and. (epsi_generic .gt. 1)) THEN ! GCS molecular weight is heavier than dry gas: |
---|
[3276] | 186 | ! inhibition of moist convection if vapor amount exceeds q_cri (Eq. 17 of Leconte et al. 2017) |
---|
[3279] | 187 | write(*,*) 'inhibition of moist convection if vapor amount exceeds a critical mixing ratio (see Leconte et al. 2017)' |
---|
[3276] | 188 | DO k = 1, nlayer |
---|
| 189 | DO i = 1, ngrid |
---|
| 190 | q_cri(i,k) = ( 1 / (1 - 1/epsi_generic)) * r * mugaz/1000. / delta_vapH * zt(i,k) |
---|
| 191 | ENDDO |
---|
[3104] | 192 | ENDDO |
---|
[3276] | 193 | ELSE ! GCS molecular weight is lighter than dry gas |
---|
| 194 | DO k = 1, nlayer |
---|
| 195 | DO i = 1, ngrid |
---|
| 196 | q_cri(i,k) = 2. ! vapor amount will never exceed q_cri, q_cri call becomes transparent in the next lines |
---|
| 197 | ENDDO |
---|
| 198 | ENDDO |
---|
| 199 | ENDIF |
---|
[3104] | 200 | |
---|
| 201 | |
---|
[3276] | 202 | !------------------------------------ defining the bottom (k1) and the top (k2) of the moist-convective column |
---|
[3104] | 203 | DO 9999 i = 1, ngrid |
---|
| 204 | |
---|
| 205 | itest(i) = .FALSE. |
---|
| 206 | |
---|
| 207 | ! print*,'we in the loop' |
---|
| 208 | ! stop |
---|
| 209 | |
---|
| 210 | k1 = 0 |
---|
| 211 | k2 = 1 |
---|
| 212 | |
---|
| 213 | 810 CONTINUE ! look for k1, the base of the column |
---|
| 214 | k2 = k2 + 1 |
---|
| 215 | IF (k2 .GT. nlayer) GOTO 9999 |
---|
| 216 | zflo = v_cptt(i,k2-1) - v_cptt(i,k2) - gamcpdz(i,k2) |
---|
| 217 | zsat=(local_q(i,k2-1)-zqs(i,k2-1))*(pplev(i,k2-1)-pplev(i,k2)) & |
---|
| 218 | +(local_q(i,k2)-zqs(i,k2))*(pplev(i,k2)-pplev(i,k2+1)) |
---|
| 219 | |
---|
[3276] | 220 | ! if: (gradient is not steeper than moist-adiabat) or (level is not saturated) or (moist convection is inhibited because criterion is satisfied) |
---|
| 221 | ! then: no moist convection (GO TO 810) |
---|
[3104] | 222 | IF ( zflo.LE.0.0 .OR. zsat.LE.0.0 .OR. local_q(i,k2-1).GT.q_cri(i,k2-1)) GOTO 810 |
---|
| 223 | k1 = k2 - 1 |
---|
| 224 | itest(i) = .TRUE. |
---|
| 225 | |
---|
| 226 | 820 CONTINUE !! look for k2, the top of the column |
---|
| 227 | IF (k2 .EQ. nlayer) GOTO 821 |
---|
| 228 | k2p = k2 + 1 |
---|
| 229 | zsat=zsat+(pplev(i,k2p)-pplev(i,k2p+1))*(local_q(i,k2p)-zqs(i,k2p)) |
---|
| 230 | zflo = v_cptt(i,k2p-1) - v_cptt(i,k2p) - gamcpdz(i,k2p) |
---|
| 231 | |
---|
| 232 | IF (zflo.LE.0.0 .OR. zsat.LE.0.0 .OR. local_q(i,k2p).GT.q_cri(i,k2p)) GOTO 821 |
---|
| 233 | k2 = k2p |
---|
| 234 | GOTO 820 |
---|
| 235 | 821 CONTINUE |
---|
| 236 | |
---|
[3276] | 237 | !------------------------------------------------------ local adjustment of the moist-convective column between k1 and k2 |
---|
[3104] | 238 | 830 CONTINUE ! actual adjustment |
---|
| 239 | Do nn=1,niter |
---|
| 240 | v_cptj(k1) = 0.0 |
---|
| 241 | zdp = pplev(i,k1)-pplev(i,k1+1) |
---|
| 242 | v_cptjk1 = ( (1.0+zdqs(i,k1))*(v_cptt(i,k1)+v_cptj(k1)) + RLVTT_generic*(local_q(i,k1)-zqs(i,k1)) ) * zdp |
---|
| 243 | v_ssig = zdp * (1.0+zdqs(i,k1)) |
---|
| 244 | |
---|
| 245 | k1p = k1 + 1 |
---|
| 246 | DO k = k1p, k2 |
---|
| 247 | zdp = pplev(i,k)-pplev(i,k+1) |
---|
| 248 | v_cptj(k) = v_cptj(k-1) + gamcpdz(i,k) |
---|
| 249 | v_cptjk1 = v_cptjk1 + zdp * ( (1.0+zdqs(i, k))*(v_cptt(i,k)+v_cptj(k)) + RLVTT_generic*(local_q(i,k)-zqs(i,k)) ) |
---|
| 250 | v_ssig = v_ssig + zdp *(1.0+zdqs(i,k)) |
---|
| 251 | ENDDO |
---|
| 252 | |
---|
| 253 | |
---|
| 254 | ! this right here is where the adjustment is done??? |
---|
| 255 | DO k = k1, k2 |
---|
| 256 | cp_new_t(k) = v_cptjk1/v_ssig - v_cptj(k) |
---|
| 257 | cp_delta_t(k) = cp_new_t(k) - v_cptt(i,k) |
---|
| 258 | v_cptt(i,k)=cp_new_t(k) |
---|
| 259 | local_q(i,k) = zqs(i,k) + zdqs(i,k)*cp_delta_t(k)/RLVTT_generic |
---|
| 260 | local_t(i,k) = cp_new_t(k) / RCPD |
---|
| 261 | |
---|
| 262 | v_t = MAX(local_t(i,k),15.) |
---|
| 263 | v_p = pplay(i,k) |
---|
| 264 | |
---|
| 265 | call Psat_generic(v_t,v_p,metallicity,zpsat(i,k),zqs(i,k)) |
---|
| 266 | call Lcpdqsat_generic(v_t,v_p,zpsat(i,k),zqs(i,k),zdqs(i,k),zdlnpsat(i,k)) |
---|
| 267 | |
---|
| 268 | ENDDO |
---|
| 269 | Enddo ! nn=1,niter |
---|
| 270 | |
---|
| 271 | |
---|
| 272 | !--------------------------------------------------- sounding downwards |
---|
| 273 | ! -- we refine the prognostic variables in |
---|
| 274 | ! -- the layer about to be adjusted |
---|
| 275 | |
---|
| 276 | ! DO k = k1, k2 |
---|
| 277 | ! v_cptt(i,k) = RCPD * local_t(i,k) |
---|
| 278 | ! v_t = local_t(i,k) |
---|
| 279 | ! v_p = pplay(i,k) |
---|
| 280 | ! |
---|
| 281 | ! call Psat_water(v_t,v_p,zpsat,zqs(i,k)) |
---|
| 282 | ! call Lcpdqsat_water(v_t,v_p,zpsat,zqs(i,k),zdqs(i,k)) |
---|
| 283 | ! ENDDO |
---|
| 284 | |
---|
| 285 | DO k = 2, nlayer |
---|
| 286 | zdpm = pplev(i,k-1) - pplev(i,k) |
---|
| 287 | zdp = pplev(i,k) - pplev(i,k+1) |
---|
| 288 | ! gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp) & |
---|
| 289 | ! + RLVTT /(zdpm+zdp) * (zqs(i,k-1)*zdpm + zqs(i,k)*zdp) ) & |
---|
| 290 | ! * (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) ) & |
---|
| 291 | ! / (1.0+ (zdqs(i,k-1)*zdpm + zdqs(i,k)*zdp)/(zdpm+zdp) ) |
---|
| 292 | ! general case where water is not a trace gas (JL13) |
---|
| 293 | v_zqs = (zqs(i,k-1)*zdpm + zqs(i,k)*zdp)/(zdpm+zdp) |
---|
| 294 | v_cptt2 = (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)/(zdpm+zdp) |
---|
| 295 | v_pratio = ((1.-zpsat(i,k-1)/pplay(i,k-1))*zdpm + (1.-zpsat(i,k)/pplay(i,k))*zdp)/(zdpm+zdp) |
---|
| 296 | v_dlnpsat = (zdlnpsat(i,k-1)*zdpm + zdlnpsat(i,k)*zdp)/(zdpm+zdp) |
---|
| 297 | gamcpdz(i,k) = ( (R/RCPD*v_cptt2*(1.- v_zqs) + RLVTT_generic*v_zqs) * (pplay(i,k-1)-pplay(i,k))/pplev(i,k) ) & |
---|
| 298 | / (((1.- v_zqs) + v_zqs * RCPV_generic/RCPD)*v_pratio + v_zqs * v_dlnpsat) |
---|
| 299 | ENDDO |
---|
| 300 | |
---|
| 301 | ! Test to see if we've reached the bottom |
---|
| 302 | |
---|
[3276] | 303 | IF (k1 .EQ. 1) GOTO 841 ! yes we have! the bottom of moist-convective column is the bottom of the model |
---|
| 304 | |
---|
[3104] | 305 | zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1) |
---|
| 306 | zsat=(local_q(i,k1-1)-zqs(i,k1-1))*(pplev(i,k1-1)-pplev(i,k1)) & |
---|
| 307 | + (local_q(i,k1)-zqs(i,k1))*(pplev(i,k1)-pplev(i,k1+1)) |
---|
| 308 | |
---|
[3276] | 309 | IF (zflo.LE.0.0 .OR. zsat.LE.0.0 .OR. local_q(i,k1-1).GT.q_cri(i,k1-1)) GOTO 841 ! yes we have! |
---|
| 310 | ! the bottom of the moist-convective column is no more convective: GOTO 841 |
---|
| 311 | |
---|
[3104] | 312 | 840 CONTINUE |
---|
| 313 | k1 = k1 - 1 |
---|
| 314 | IF (k1 .EQ. 1) GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
---|
[3276] | 315 | ! bottom of moist-convective column is bottom of the model but is still convective: GOTO 830 |
---|
[3104] | 316 | zsat = zsat + (local_q(i,k1-1)-zqs(i,k1-1)) & |
---|
| 317 | *(pplev(i,k1-1)-pplev(i,k1)) |
---|
| 318 | zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1) |
---|
[3276] | 319 | IF (zflo.GT.0.0 .AND. zsat.GT.0.0 .AND. local_q(i,k1-1).LT.q_cri(i,k1-1)) THEN |
---|
| 320 | ! the bottom of the moist-convective column is still convective |
---|
| 321 | ! we continue to search for the non-convective bottom |
---|
[3104] | 322 | GOTO 840 |
---|
| 323 | ELSE |
---|
[3276] | 324 | ! the bottom of the moist-convective column is no more convective now, |
---|
| 325 | ! but, since the bottom of moist-convective column has changed, we must do again the adjustment |
---|
[3104] | 326 | GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
---|
| 327 | ENDIF |
---|
| 328 | 841 CONTINUE |
---|
| 329 | |
---|
| 330 | GOTO 810 ! look for other layers higher up |
---|
[3276] | 331 | ! because there could be other moist-convective columns higher up (but separated from the one we have just calculated before) |
---|
[3104] | 332 | |
---|
| 333 | 9999 CONTINUE ! loop over all the points |
---|
| 334 | |
---|
| 335 | !----------------------------------------------------------------------- |
---|
[3276] | 336 | ! Determine the cloud fraction (hypothesis: nebulosity occurs |
---|
| 337 | ! where GCS vapor is reduced by adjustment): |
---|
[3104] | 338 | |
---|
| 339 | DO k = 1, nlayer |
---|
| 340 | DO i = 1, ngrid |
---|
| 341 | IF (itest(i)) THEN |
---|
| 342 | delta_q(i,k) = local_q(i,k) - zq(i,k) |
---|
| 343 | IF (delta_q(i,k).LT.0.) rneb(i,k) = 1.0 |
---|
| 344 | ENDIF |
---|
| 345 | ENDDO |
---|
| 346 | ENDDO |
---|
| 347 | |
---|
[3276] | 348 | ! Distribute GCS condensates into cloudy liquid/solid condensates (hypothesis: |
---|
| 349 | ! liquid/solid condensates are distributed to areas where GCS vapor |
---|
| 350 | ! decreases and are distributed in proportion to this decrease): |
---|
[3104] | 351 | DO i = 1, ngrid |
---|
| 352 | IF (itest(i)) THEN |
---|
| 353 | zq1(i) = 0.0 |
---|
| 354 | zq2(i) = 0.0 |
---|
| 355 | ENDIF |
---|
| 356 | ENDDO |
---|
| 357 | DO k = 1, nlayer |
---|
| 358 | DO i = 1, ngrid |
---|
| 359 | IF (itest(i)) THEN |
---|
| 360 | zdp = pplev(i,k)-pplev(i,k+1) |
---|
| 361 | zq1(i) = zq1(i) - delta_q(i,k) * zdp |
---|
| 362 | zq2(i) = zq2(i) - MIN(0.0, delta_q(i,k)) * zdp |
---|
| 363 | ENDIF |
---|
| 364 | ENDDO |
---|
| 365 | ENDDO |
---|
| 366 | DO k = 1, nlayer |
---|
| 367 | DO i = 1, ngrid |
---|
| 368 | IF (itest(i)) THEN |
---|
| 369 | IF (zq2(i).NE.0.0) d_ql(i,k) = - MIN(0.0,delta_q(i,k))*zq1(i)/zq2(i) |
---|
| 370 | ENDIF |
---|
| 371 | ENDDO |
---|
| 372 | ENDDO |
---|
| 373 | |
---|
| 374 | DO k = 1, nlayer |
---|
| 375 | DO i = 1, ngrid |
---|
| 376 | local_q(i, k) = MAX(local_q(i, k), seuil_vap) |
---|
| 377 | ENDDO |
---|
| 378 | ENDDO |
---|
| 379 | |
---|
| 380 | DO k = 1, nlayer |
---|
| 381 | DO i = 1, ngrid |
---|
| 382 | d_t(i,k) = local_t(i,k) - zt(i,k) |
---|
| 383 | d_q(i,k) = local_q(i,k) - zq(i,k) |
---|
| 384 | ENDDO |
---|
| 385 | ENDDO |
---|
| 386 | |
---|
[3276] | 387 | ! now subroutine -----> GCM variables |
---|
[3104] | 388 | DO k = 1, nlayer |
---|
| 389 | DO i = 1, ngrid |
---|
| 390 | |
---|
| 391 | pdtmana(i,k) = d_t(i,k)/ptimestep |
---|
| 392 | pdqmana(i,k,i_vap_generic) = d_q(i,k)/ptimestep |
---|
| 393 | pdqmana(i,k,i_ice_generic) = d_ql(i,k)/ptimestep |
---|
| 394 | |
---|
| 395 | ENDDO |
---|
| 396 | ENDDO |
---|
| 397 | |
---|
[3276] | 398 | end subroutine moistadj_generic |
---|