[3104] | 1 | subroutine moistadj_generic(ngrid, nlayer, nq, pt, pq, pdq, pplev, pplay, pdtmana, pdqmana, ptimestep, rneb) |
---|
| 2 | |
---|
| 3 | !use watercommon_h, only: T_h2O_ice_liq, RLVTT, RCPD, RCPV, Psat_water, Lcpdqsat_water |
---|
| 4 | !USE tracer_h, only: igcm_h2o_vap, igcm_h2o_ice |
---|
| 5 | use generic_cloud_common_h |
---|
| 6 | use generic_tracer_index_mod, only: generic_tracer_index |
---|
| 7 | use tracer_h |
---|
| 8 | use ioipsl_getin_p_mod, only: getin_p !-> to get the metallicity |
---|
| 9 | use comcstfi_mod, only: r, cpp, mugaz |
---|
| 10 | |
---|
| 11 | implicit none |
---|
| 12 | |
---|
| 13 | |
---|
| 14 | !===================================================================== |
---|
| 15 | ! |
---|
| 16 | ! Purpose |
---|
| 17 | ! ------- |
---|
| 18 | ! Calculates moist convective adjustment by the method of Manabe. |
---|
| 19 | ! |
---|
| 20 | ! Authors |
---|
| 21 | ! ------- |
---|
| 22 | ! Adapted from the moistadj.F90 routine |
---|
| 23 | ! for generic tracers (condensable species) |
---|
| 24 | ! by Noe CLEMENT (2023) |
---|
| 25 | ! |
---|
| 26 | !===================================================================== |
---|
| 27 | |
---|
| 28 | INTEGER,INTENT(IN) :: ngrid, nlayer, nq |
---|
| 29 | |
---|
| 30 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! temperature (K) |
---|
| 31 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! tracer (kg/kg) |
---|
| 32 | REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq) |
---|
| 33 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
| 34 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
---|
| 35 | REAL,INTENT(IN) :: ptimestep ! physics timestep (s) |
---|
| 36 | REAL,INTENT(OUT) :: pdqmana(ngrid,nlayer,nq) ! tracer tendencies (kg/kg.s-1) |
---|
| 37 | REAL,INTENT(OUT) :: pdtmana(ngrid,nlayer) ! temperature increment(K/s) |
---|
| 38 | REAL,INTENT(OUT) :: rneb(ngrid,nlayer) ! cloud fraction |
---|
| 39 | |
---|
| 40 | ! Options : |
---|
| 41 | !real, save :: metallicity ! metallicity of planet |
---|
| 42 | REAL,SAVE :: metallicity = 0.0 |
---|
| 43 | !$OMP THREADPRIVATE(metallicity) |
---|
| 44 | |
---|
| 45 | ! local variables |
---|
| 46 | REAL zt(ngrid,nlayer) ! temperature (K) |
---|
| 47 | REAL zq(ngrid,nlayer) ! humidite specifique (kg/kg) |
---|
| 48 | |
---|
| 49 | REAL d_t(ngrid,nlayer) ! temperature increment |
---|
| 50 | REAL d_q(ngrid,nlayer) ! incrementation pour vapeur d'eau |
---|
| 51 | REAL d_ql(ngrid,nlayer) ! incrementation pour l'eau liquide |
---|
| 52 | |
---|
| 53 | ! REAL t_coup |
---|
| 54 | ! PARAMETER (t_coup=234.0) |
---|
| 55 | REAL seuil_vap |
---|
| 56 | PARAMETER (seuil_vap=1.0E-10) |
---|
| 57 | |
---|
| 58 | ! Local variables |
---|
| 59 | |
---|
| 60 | logical call_ice_vap_generic ! to call only one time the ice/vap pair of a tracer |
---|
| 61 | integer igcm_generic_vap, igcm_generic_ice ! index of the vap and ice of generic_tracer |
---|
| 62 | |
---|
| 63 | INTEGER i, k, iq, nn |
---|
| 64 | INTEGER, PARAMETER :: niter = 1 |
---|
| 65 | INTEGER k1, k1p, k2, k2p |
---|
| 66 | LOGICAL itest(ngrid) |
---|
| 67 | REAL delta_q(ngrid, nlayer) |
---|
| 68 | DOUBLE PRECISION :: cp_new_t(nlayer), v_cptt(ngrid,nlayer) |
---|
| 69 | REAL cp_delta_t(nlayer) |
---|
| 70 | DOUBLE PRECISION :: v_cptj(nlayer), v_cptjk1, v_ssig |
---|
| 71 | REAL v_p, v_t, v_zqs,v_cptt2,v_pratio,v_dlnpsat |
---|
| 72 | REAL zqs(ngrid,nlayer), zdqs(ngrid,nlayer),zpsat(ngrid,nlayer),zdlnpsat(ngrid,nlayer) |
---|
| 73 | REAL zq1(ngrid), zq2(ngrid) |
---|
| 74 | DOUBLE PRECISION :: gamcpdz(ngrid,2:nlayer) |
---|
| 75 | DOUBLE PRECISION :: zdp, zdpm |
---|
| 76 | |
---|
| 77 | real q_cri(ngrid,nlayer) |
---|
| 78 | |
---|
| 79 | REAL zsat ! super-saturation |
---|
| 80 | REAL zflo ! flotabilite |
---|
| 81 | |
---|
| 82 | DOUBLE PRECISION :: local_q(ngrid,nlayer),local_t(ngrid,nlayer) |
---|
| 83 | |
---|
| 84 | REAL zdelta, zcor, zcvm5 |
---|
| 85 | |
---|
| 86 | REAL dEtot, dqtot, masse ! conservation diagnostics |
---|
| 87 | real dL1tot, dL2tot |
---|
| 88 | |
---|
| 89 | ! Indices of generic vapour and ice tracers |
---|
| 90 | real,save :: RCPD=0.0 |
---|
| 91 | INTEGER,SAVE :: i_vap_generic=0 ! Generic Condensable Species vapour |
---|
| 92 | INTEGER,SAVE :: i_ice_generic=0 ! Generic Condensable Species ice |
---|
| 93 | !$OMP THREADPRIVATE(i_vap_generic,i_ice_generic,RCPD) |
---|
| 94 | |
---|
| 95 | LOGICAL,SAVE :: firstcall=.TRUE. |
---|
| 96 | !$OMP THREADPRIVATE(firstcall) |
---|
| 97 | |
---|
| 98 | IF (firstcall) THEN |
---|
| 99 | |
---|
| 100 | RCPD = cpp |
---|
| 101 | ! RCPV = 1.88e3 ! specific heat capacity of water vapor at 350K ! MUST BE CHANGED !!! |
---|
| 102 | ! 1.709e3 for methane - should be added in table_tracers_condensable (datagcm) |
---|
| 103 | |
---|
| 104 | write(*,*) "value for metallicity? " |
---|
| 105 | metallicity=0.0 ! default value |
---|
| 106 | call getin_p("metallicity",metallicity) |
---|
| 107 | write(*,*) " metallicity = ",metallicity |
---|
| 108 | |
---|
| 109 | do iq=1, nq |
---|
| 110 | call generic_tracer_index(nq,iq,igcm_generic_vap,igcm_generic_ice,call_ice_vap_generic) |
---|
| 111 | if(call_ice_vap_generic) then ! to call only one time the ice/vap pair of a tracer |
---|
| 112 | write(*,*) "moistadjustment : taking back the values you have set in 'table_tracers_condensable' for thermodynamics. If you have forgotten one, it will crash." |
---|
| 113 | m = constants_mass(iq) |
---|
| 114 | delta_vapH = constants_delta_vapH(iq) |
---|
| 115 | epsi_generic = constants_epsi_generic(iq) |
---|
| 116 | RLVTT_generic = constants_RLVTT_generic(iq) |
---|
| 117 | RCPV_generic = constants_RCPV_generic(iq) |
---|
| 118 | endif |
---|
| 119 | enddo |
---|
| 120 | |
---|
| 121 | i_vap_generic=igcm_generic_vap |
---|
| 122 | i_ice_generic=igcm_generic_ice |
---|
| 123 | |
---|
| 124 | write(*,*) "rain: i_ice_generic=",i_ice_generic |
---|
| 125 | write(*,*) " i_vap_generic=",i_vap_generic |
---|
| 126 | |
---|
| 127 | firstcall = .FALSE. |
---|
| 128 | ENDIF |
---|
| 129 | |
---|
| 130 | ! GCM -----> subroutine variables |
---|
| 131 | zq(1:ngrid,1:nlayer) = pq(1:ngrid,1:nlayer,i_vap_generic)+ pdq(1:ngrid,1:nlayer,i_vap_generic)*ptimestep |
---|
| 132 | zt(1:ngrid,1:nlayer) = pt(1:ngrid,1:nlayer) |
---|
| 133 | pdqmana(1:ngrid,1:nlayer,1:nq)=0.0 |
---|
| 134 | |
---|
| 135 | DO k = 1, nlayer |
---|
| 136 | DO i = 1, ngrid |
---|
| 137 | if(zq(i,k).lt.0.)then |
---|
| 138 | zq(i,k)=0.0 |
---|
| 139 | endif |
---|
| 140 | ENDDO |
---|
| 141 | ENDDO |
---|
| 142 | |
---|
| 143 | local_q(1:ngrid,1:nlayer) = zq(1:ngrid,1:nlayer) |
---|
| 144 | local_t(1:ngrid,1:nlayer) = zt(1:ngrid,1:nlayer) |
---|
| 145 | rneb(1:ngrid,1:nlayer) = 0.0 |
---|
| 146 | d_ql(1:ngrid,1:nlayer) = 0.0 |
---|
| 147 | d_t(1:ngrid,1:nlayer) = 0.0 |
---|
| 148 | d_q(1:ngrid,1:nlayer) = 0.0 |
---|
| 149 | |
---|
| 150 | ! Calculate v_cptt |
---|
| 151 | DO k = 1, nlayer |
---|
| 152 | DO i = 1, ngrid |
---|
| 153 | v_cptt(i,k) = RCPD * local_t(i,k) |
---|
| 154 | v_t = MAX(local_t(i,k),15.) |
---|
| 155 | v_p = pplay(i,k) |
---|
| 156 | |
---|
| 157 | call Psat_generic(v_t,v_p,metallicity,zpsat(i,k),zqs(i,k)) |
---|
| 158 | call Lcpdqsat_generic(v_t,v_p,zpsat(i,k),zqs(i,k),zdqs(i,k),zdlnpsat(i,k)) |
---|
| 159 | |
---|
| 160 | !call Psat_water(v_t,v_p,zpsat(i,k),zqs(i,k)) |
---|
| 161 | !call Lcpdqsat_water(v_t,v_p,zpsat(i,k),zqs(i,k),zdqs(i,k),zdlnpsat(i,k)) |
---|
| 162 | ENDDO |
---|
| 163 | ENDDO |
---|
| 164 | |
---|
| 165 | ! Calculate Gamma * Cp * dz: (gamma is the critical gradient) |
---|
| 166 | DO k = 2, nlayer |
---|
| 167 | DO i = 1, ngrid |
---|
| 168 | zdp = pplev(i,k)-pplev(i,k+1) |
---|
| 169 | zdpm = pplev(i,k-1)-pplev(i,k) |
---|
| 170 | ! gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp) & |
---|
| 171 | ! + RLVTT /(zdpm+zdp) * (zqs(i,k-1)*zdpm + zqs(i,k)*zdp) ) & |
---|
| 172 | !* (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) ) & |
---|
| 173 | ! / (1.0+ (zdqs(i,k-1)*zdpm + zdqs(i,k)*zdp)/(zdpm+zdp) ) |
---|
| 174 | ! general case where water is not a trace gas (JL13) |
---|
| 175 | v_zqs = (zqs(i,k-1)*zdpm + zqs(i,k)*zdp)/(zdpm+zdp) |
---|
| 176 | v_cptt2 = (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)/(zdpm+zdp) |
---|
| 177 | v_pratio = ((1.-zpsat(i,k-1)/pplay(i,k-1))*zdpm + (1.-zpsat(i,k)/pplay(i,k))*zdp)/(zdpm+zdp) |
---|
| 178 | v_dlnpsat = (zdlnpsat(i,k-1)*zdpm + zdlnpsat(i,k)*zdp)/(zdpm+zdp) |
---|
| 179 | gamcpdz(i,k) = ( (R/RCPD*v_cptt2*(1.- v_zqs) + RLVTT_generic*v_zqs) * (pplay(i,k-1)-pplay(i,k))/pplev(i,k) ) & |
---|
| 180 | / (((1.- v_zqs) + v_zqs * RCPV_generic/RCPD)*v_pratio + v_zqs * v_dlnpsat) |
---|
| 181 | ENDDO |
---|
| 182 | ENDDO |
---|
| 183 | |
---|
| 184 | ! calculates moist convection inhibition criterion |
---|
| 185 | DO k = 1, nlayer |
---|
| 186 | DO i = 1, ngrid |
---|
| 187 | q_cri(i,k) = ( 1 / (1 - 1/epsi_generic)) * r * mugaz/1000. / delta_vapH * zt(i,k) |
---|
| 188 | ENDDO |
---|
| 189 | ENDDO |
---|
| 190 | |
---|
| 191 | write(*,*) "q_cri at 80K : ", ( 1 / (1 - 1/epsi_generic)) * (r * mugaz/1000.) / delta_vapH * 80 |
---|
| 192 | |
---|
| 193 | !------------------------------------ modification of unstable profile |
---|
| 194 | DO 9999 i = 1, ngrid |
---|
| 195 | |
---|
| 196 | itest(i) = .FALSE. |
---|
| 197 | |
---|
| 198 | ! print*,'we in the loop' |
---|
| 199 | ! stop |
---|
| 200 | |
---|
| 201 | k1 = 0 |
---|
| 202 | k2 = 1 |
---|
| 203 | |
---|
| 204 | 810 CONTINUE ! look for k1, the base of the column |
---|
| 205 | k2 = k2 + 1 |
---|
| 206 | IF (k2 .GT. nlayer) GOTO 9999 |
---|
| 207 | zflo = v_cptt(i,k2-1) - v_cptt(i,k2) - gamcpdz(i,k2) |
---|
| 208 | zsat=(local_q(i,k2-1)-zqs(i,k2-1))*(pplev(i,k2-1)-pplev(i,k2)) & |
---|
| 209 | +(local_q(i,k2)-zqs(i,k2))*(pplev(i,k2)-pplev(i,k2+1)) |
---|
| 210 | |
---|
| 211 | IF ( zflo.LE.0.0 .OR. zsat.LE.0.0 .OR. local_q(i,k2-1).GT.q_cri(i,k2-1)) GOTO 810 |
---|
| 212 | k1 = k2 - 1 |
---|
| 213 | itest(i) = .TRUE. |
---|
| 214 | |
---|
| 215 | 820 CONTINUE !! look for k2, the top of the column |
---|
| 216 | IF (k2 .EQ. nlayer) GOTO 821 |
---|
| 217 | k2p = k2 + 1 |
---|
| 218 | zsat=zsat+(pplev(i,k2p)-pplev(i,k2p+1))*(local_q(i,k2p)-zqs(i,k2p)) |
---|
| 219 | zflo = v_cptt(i,k2p-1) - v_cptt(i,k2p) - gamcpdz(i,k2p) |
---|
| 220 | |
---|
| 221 | IF (zflo.LE.0.0 .OR. zsat.LE.0.0 .OR. local_q(i,k2p).GT.q_cri(i,k2p)) GOTO 821 |
---|
| 222 | k2 = k2p |
---|
| 223 | GOTO 820 |
---|
| 224 | 821 CONTINUE |
---|
| 225 | |
---|
| 226 | !------------------------------------------------------ local adjustment |
---|
| 227 | 830 CONTINUE ! actual adjustment |
---|
| 228 | Do nn=1,niter |
---|
| 229 | v_cptj(k1) = 0.0 |
---|
| 230 | zdp = pplev(i,k1)-pplev(i,k1+1) |
---|
| 231 | v_cptjk1 = ( (1.0+zdqs(i,k1))*(v_cptt(i,k1)+v_cptj(k1)) + RLVTT_generic*(local_q(i,k1)-zqs(i,k1)) ) * zdp |
---|
| 232 | v_ssig = zdp * (1.0+zdqs(i,k1)) |
---|
| 233 | |
---|
| 234 | k1p = k1 + 1 |
---|
| 235 | DO k = k1p, k2 |
---|
| 236 | zdp = pplev(i,k)-pplev(i,k+1) |
---|
| 237 | v_cptj(k) = v_cptj(k-1) + gamcpdz(i,k) |
---|
| 238 | v_cptjk1 = v_cptjk1 + zdp * ( (1.0+zdqs(i, k))*(v_cptt(i,k)+v_cptj(k)) + RLVTT_generic*(local_q(i,k)-zqs(i,k)) ) |
---|
| 239 | v_ssig = v_ssig + zdp *(1.0+zdqs(i,k)) |
---|
| 240 | ENDDO |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | ! this right here is where the adjustment is done??? |
---|
| 244 | DO k = k1, k2 |
---|
| 245 | cp_new_t(k) = v_cptjk1/v_ssig - v_cptj(k) |
---|
| 246 | cp_delta_t(k) = cp_new_t(k) - v_cptt(i,k) |
---|
| 247 | v_cptt(i,k)=cp_new_t(k) |
---|
| 248 | local_q(i,k) = zqs(i,k) + zdqs(i,k)*cp_delta_t(k)/RLVTT_generic |
---|
| 249 | local_t(i,k) = cp_new_t(k) / RCPD |
---|
| 250 | |
---|
| 251 | v_t = MAX(local_t(i,k),15.) |
---|
| 252 | v_p = pplay(i,k) |
---|
| 253 | |
---|
| 254 | call Psat_generic(v_t,v_p,metallicity,zpsat(i,k),zqs(i,k)) |
---|
| 255 | call Lcpdqsat_generic(v_t,v_p,zpsat(i,k),zqs(i,k),zdqs(i,k),zdlnpsat(i,k)) |
---|
| 256 | |
---|
| 257 | !call Psat_water(v_t,v_p,zpsat(i,k),zqs(i,k)) |
---|
| 258 | !call Lcpdqsat_water(v_t,v_p,zpsat(i,k),zqs(i,k),zdqs(i,k),zdlnpsat(i,k)) |
---|
| 259 | |
---|
| 260 | ENDDO |
---|
| 261 | Enddo ! nn=1,niter |
---|
| 262 | |
---|
| 263 | |
---|
| 264 | !--------------------------------------------------- sounding downwards |
---|
| 265 | ! -- we refine the prognostic variables in |
---|
| 266 | ! -- the layer about to be adjusted |
---|
| 267 | |
---|
| 268 | ! DO k = k1, k2 |
---|
| 269 | ! v_cptt(i,k) = RCPD * local_t(i,k) |
---|
| 270 | ! v_t = local_t(i,k) |
---|
| 271 | ! v_p = pplay(i,k) |
---|
| 272 | ! |
---|
| 273 | ! call Psat_water(v_t,v_p,zpsat,zqs(i,k)) |
---|
| 274 | ! call Lcpdqsat_water(v_t,v_p,zpsat,zqs(i,k),zdqs(i,k)) |
---|
| 275 | ! ENDDO |
---|
| 276 | |
---|
| 277 | DO k = 2, nlayer |
---|
| 278 | zdpm = pplev(i,k-1) - pplev(i,k) |
---|
| 279 | zdp = pplev(i,k) - pplev(i,k+1) |
---|
| 280 | ! gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp) & |
---|
| 281 | ! + RLVTT /(zdpm+zdp) * (zqs(i,k-1)*zdpm + zqs(i,k)*zdp) ) & |
---|
| 282 | ! * (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) ) & |
---|
| 283 | ! / (1.0+ (zdqs(i,k-1)*zdpm + zdqs(i,k)*zdp)/(zdpm+zdp) ) |
---|
| 284 | ! general case where water is not a trace gas (JL13) |
---|
| 285 | v_zqs = (zqs(i,k-1)*zdpm + zqs(i,k)*zdp)/(zdpm+zdp) |
---|
| 286 | v_cptt2 = (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)/(zdpm+zdp) |
---|
| 287 | v_pratio = ((1.-zpsat(i,k-1)/pplay(i,k-1))*zdpm + (1.-zpsat(i,k)/pplay(i,k))*zdp)/(zdpm+zdp) |
---|
| 288 | v_dlnpsat = (zdlnpsat(i,k-1)*zdpm + zdlnpsat(i,k)*zdp)/(zdpm+zdp) |
---|
| 289 | gamcpdz(i,k) = ( (R/RCPD*v_cptt2*(1.- v_zqs) + RLVTT_generic*v_zqs) * (pplay(i,k-1)-pplay(i,k))/pplev(i,k) ) & |
---|
| 290 | / (((1.- v_zqs) + v_zqs * RCPV_generic/RCPD)*v_pratio + v_zqs * v_dlnpsat) |
---|
| 291 | ENDDO |
---|
| 292 | |
---|
| 293 | ! Test to see if we've reached the bottom |
---|
| 294 | |
---|
| 295 | IF (k1 .EQ. 1) GOTO 841 ! yes we have! |
---|
| 296 | zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1) |
---|
| 297 | zsat=(local_q(i,k1-1)-zqs(i,k1-1))*(pplev(i,k1-1)-pplev(i,k1)) & |
---|
| 298 | + (local_q(i,k1)-zqs(i,k1))*(pplev(i,k1)-pplev(i,k1+1)) |
---|
| 299 | IF (zflo.LE.0.0 .OR. zsat.LE.0.0) GOTO 841 ! yes we have! |
---|
| 300 | |
---|
| 301 | 840 CONTINUE |
---|
| 302 | k1 = k1 - 1 |
---|
| 303 | IF (k1 .EQ. 1) GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
---|
| 304 | zsat = zsat + (local_q(i,k1-1)-zqs(i,k1-1)) & |
---|
| 305 | *(pplev(i,k1-1)-pplev(i,k1)) |
---|
| 306 | zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1) |
---|
| 307 | IF (zflo.GT.0.0 .AND. zsat.GT.0.0) THEN |
---|
| 308 | GOTO 840 |
---|
| 309 | ELSE |
---|
| 310 | GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
---|
| 311 | ENDIF |
---|
| 312 | 841 CONTINUE |
---|
| 313 | |
---|
| 314 | GOTO 810 ! look for other layers higher up |
---|
| 315 | |
---|
| 316 | 9999 CONTINUE ! loop over all the points |
---|
| 317 | |
---|
| 318 | !----------------------------------------------------------------------- |
---|
| 319 | ! Determine the cloud fraction (hypothese: la nebulosite a lieu |
---|
| 320 | ! a l'endroit ou la vapeur d'eau est diminuee par l'ajustement): |
---|
| 321 | |
---|
| 322 | DO k = 1, nlayer |
---|
| 323 | DO i = 1, ngrid |
---|
| 324 | IF (itest(i)) THEN |
---|
| 325 | delta_q(i,k) = local_q(i,k) - zq(i,k) |
---|
| 326 | IF (delta_q(i,k).LT.0.) rneb(i,k) = 1.0 |
---|
| 327 | ENDIF |
---|
| 328 | ENDDO |
---|
| 329 | ENDDO |
---|
| 330 | |
---|
| 331 | ! Distribuer l'eau condensee en eau liquide nuageuse (hypothese: |
---|
| 332 | ! l'eau liquide est distribuee aux endroits ou la vapeur d'eau |
---|
| 333 | ! diminue et d'une maniere proportionnelle a cet diminution): |
---|
| 334 | DO i = 1, ngrid |
---|
| 335 | IF (itest(i)) THEN |
---|
| 336 | zq1(i) = 0.0 |
---|
| 337 | zq2(i) = 0.0 |
---|
| 338 | ENDIF |
---|
| 339 | ENDDO |
---|
| 340 | DO k = 1, nlayer |
---|
| 341 | DO i = 1, ngrid |
---|
| 342 | IF (itest(i)) THEN |
---|
| 343 | zdp = pplev(i,k)-pplev(i,k+1) |
---|
| 344 | zq1(i) = zq1(i) - delta_q(i,k) * zdp |
---|
| 345 | zq2(i) = zq2(i) - MIN(0.0, delta_q(i,k)) * zdp |
---|
| 346 | ENDIF |
---|
| 347 | ENDDO |
---|
| 348 | ENDDO |
---|
| 349 | DO k = 1, nlayer |
---|
| 350 | DO i = 1, ngrid |
---|
| 351 | IF (itest(i)) THEN |
---|
| 352 | IF (zq2(i).NE.0.0) d_ql(i,k) = - MIN(0.0,delta_q(i,k))*zq1(i)/zq2(i) |
---|
| 353 | ENDIF |
---|
| 354 | ENDDO |
---|
| 355 | ENDDO |
---|
| 356 | |
---|
| 357 | DO k = 1, nlayer |
---|
| 358 | DO i = 1, ngrid |
---|
| 359 | local_q(i, k) = MAX(local_q(i, k), seuil_vap) |
---|
| 360 | ENDDO |
---|
| 361 | ENDDO |
---|
| 362 | |
---|
| 363 | DO k = 1, nlayer |
---|
| 364 | DO i = 1, ngrid |
---|
| 365 | d_t(i,k) = local_t(i,k) - zt(i,k) |
---|
| 366 | d_q(i,k) = local_q(i,k) - zq(i,k) |
---|
| 367 | ENDDO |
---|
| 368 | ENDDO |
---|
| 369 | |
---|
| 370 | ! now subroutine -----> GCM variables |
---|
| 371 | DO k = 1, nlayer |
---|
| 372 | DO i = 1, ngrid |
---|
| 373 | |
---|
| 374 | pdtmana(i,k) = d_t(i,k)/ptimestep |
---|
| 375 | pdqmana(i,k,i_vap_generic) = d_q(i,k)/ptimestep |
---|
| 376 | pdqmana(i,k,i_ice_generic) = d_ql(i,k)/ptimestep |
---|
| 377 | |
---|
| 378 | ENDDO |
---|
| 379 | ENDDO |
---|
| 380 | |
---|
| 381 | end subroutine moistadj_generic |
---|