source: trunk/LMDZ.GENERIC/libf/phystd/moistadj.F90 @ 778

Last change on this file since 778 was 773, checked in by jleconte, 13 years ago

05/09/2012 == JL

  • Correction of the calculation of the solar longitude in tlocked case.

-Can now handle any prograde resonance with nres=omega_rot/omega_orb.
-Sun now goes westward for the standard 2:1 case, as expected.

  • In the gray case, the separation between kappa_IR and VI is now set by

wave number, independently of the usual IR/VISIBLE calculation separation.
i.e. kappa_IR can be used in the calculation of the downward stellar flux

if the wavenumber in the band is low enough and vice versa.

  • In ave_stelspec, stellar flux averaging has been generalized to incorporate

very red/blue stellar spectra (great care must however be taken of the band
limit used for the corralated k distributions).

-Brown dwarf spectra from Allard et al. have been added.
-Any Black body temperature can now be used.


File size: 10.2 KB
Line 
1subroutine moistadj(pt, pq, pdq, pplev, pplay, pdtmana, pdqmana, ptimestep, rneb)
2
3  use watercommon_h, only: T_h2O_ice_liq, RLVTT, RCPD, Psat_water, Lcpdqsat_water
4
5  implicit none
6
7
8!=====================================================================
9!     
10!     Purpose
11!     -------
12!     Calculates moist convective adjustment by the method of Manabe.
13!     
14!     Authors
15!     -------
16!     Adapted from the LMDTERRE code by R. Wordsworth (2010)
17!     Original author Z. X. Li (1993)
18!     
19!=====================================================================
20
21#include "dimensions.h"
22#include "dimphys.h"
23#include "tracer.h"
24#include "comcstfi.h"
25
26      REAL pt(ngridmx,nlayermx)            ! temperature (K)
27      REAL pq(ngridmx,nlayermx,nqmx)       ! tracer (kg/kg)
28      REAL pdq(ngridmx,nlayermx,nqmx)
29
30      REAL pdqmana(ngridmx,nlayermx,nqmx)  ! tendency of tracers (kg/kg.s-1)
31      REAL pdtmana(ngridmx,nlayermx)       ! temperature increment
32
33!     local variables
34      REAL zt(ngridmx,nlayermx)      ! temperature (K)
35      REAL zq(ngridmx,nlayermx)      ! humidite specifique (kg/kg)
36      REAL pplev(ngridmx,nlayermx+1) ! pression a inter-couche (Pa)
37      REAL pplay(ngridmx,nlayermx)   ! pression au milieu de couche (Pa)
38
39      REAL d_t(ngridmx,nlayermx)     ! temperature increment
40      REAL d_q(ngridmx,nlayermx)     ! incrementation pour vapeur d'eau
41      REAL d_ql(ngridmx,nlayermx)    ! incrementation pour l'eau liquide
42      REAL rneb(ngridmx,nlayermx) ! cloud fraction
43      REAL ptimestep
44
45!      REAL t_coup
46!      PARAMETER (t_coup=234.0)
47      REAL seuil_vap
48      PARAMETER (seuil_vap=1.0E-10)
49
50!     Local variables
51      INTEGER i, k, iq, nn
52      INTEGER, PARAMETER :: niter = 1
53      INTEGER k1, k1p, k2, k2p
54      LOGICAL itest(ngridmx)
55      REAL delta_q(ngridmx, nlayermx)
56      REAL cp_new_t(nlayermx)
57      REAL cp_delta_t(nlayermx)
58      REAL v_cptj(nlayermx), v_cptjk1, v_ssig
59      REAL v_cptt(ngridmx,nlayermx), v_p, v_t, zpsat
60      REAL zqs(ngridmx,nlayermx), zdqs(ngridmx,nlayermx)
61      REAL zq1(ngridmx), zq2(ngridmx)
62      REAL gamcpdz(ngridmx,2:nlayermx)
63      REAL zdp, zdpm
64
65      REAL zsat ! super-saturation
66      REAL zflo ! flotabilite
67
68      REAL local_q(ngridmx,nlayermx),local_t(ngridmx,nlayermx)
69
70      REAL zdelta, zcor, zcvm5
71
72      REAL dEtot, dqtot, masse ! conservation diagnostics
73      real dL1tot, dL2tot
74
75!     Indices of water vapour and water ice tracers
76      INTEGER,SAVE :: i_h2o=0  ! water vapour
77      INTEGER,SAVE :: i_ice=0  ! water ice
78
79      LOGICAL firstcall
80      SAVE firstcall
81
82      DATA firstcall /.TRUE./
83
84      IF (firstcall) THEN
85
86         i_h2o=igcm_h2o_vap
87         i_ice=igcm_h2o_ice
88       
89         write(*,*) "rain: i_ice=",i_ice
90         write(*,*) "      i_h2o=",i_h2o
91
92         firstcall = .FALSE.
93      ENDIF
94
95!     GCM -----> subroutine variables
96      zq(1:ngridmx,1:nlayermx)    = pq(1:ngridmx,1:nlayermx,i_h2o)+ pdq(1:ngridmx,1:nlayermx,i_h2o)*ptimestep
97      zt(1:ngridmx,1:nlayermx)    = pt(1:ngridmx,1:nlayermx)
98      pdqmana(1:ngridmx,1:nlayermx,1:nqmx)=0.0
99
100      DO k = 1, nlayermx
101       DO i = 1, ngridmx
102         if(zq(i,k).lt.0.)then
103            zq(i,k)=0.0
104         endif
105       ENDDO
106      ENDDO
107     
108      local_q(1:ngridmx,1:nlayermx) = zq(1:ngridmx,1:nlayermx)
109      local_t(1:ngridmx,1:nlayermx) = zt(1:ngridmx,1:nlayermx)
110      rneb(1:ngridmx,1:nlayermx) = 0.0
111      d_ql(1:ngridmx,1:nlayermx) = 0.0
112      d_t(1:ngridmx,1:nlayermx)  = 0.0
113      d_q(1:ngridmx,1:nlayermx)  = 0.0
114
115!     Calculate v_cptt
116      DO k = 1, nlayermx
117         DO i = 1, ngridmx
118            v_cptt(i,k) = RCPD * local_t(i,k)
119            v_t = MAX(local_t(i,k),15.)
120            v_p = pplay(i,k)
121
122            call Psat_water(v_t,v_p,zpsat,zqs(i,k))
123            call Lcpdqsat_water(v_t,v_p,zpsat,zqs(i,k),zdqs(i,k))
124         ENDDO
125      ENDDO
126
127!     Calculate Gamma * Cp * dz: (gamma is the critical gradient)
128      DO k = 2, nlayermx
129         DO i = 1, ngridmx
130            zdp = pplev(i,k)-pplev(i,k+1)
131            zdpm = pplev(i,k-1)-pplev(i,k)
132            gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)          &
133                +  RLVTT /(zdpm+zdp) * (zqs(i,k-1)*zdpm + zqs(i,k)*zdp) )                           &
134                * (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) )                                          &
135                / (1.0+ (zdqs(i,k-1)*zdpm + zdqs(i,k)*zdp)/(zdpm+zdp) )                   
136         ENDDO
137      ENDDO
138
139!------------------------------------ modification of unstable profile
140      DO 9999 i = 1, ngridmx
141      itest(i) = .FALSE.
142
143!        print*,'we in the loop'
144!        stop   
145
146      k1 = 0
147      k2 = 1
148
149  810 CONTINUE ! look for k1, the base of the column
150      k2 = k2 + 1
151      IF (k2 .GT. nlayermx) GOTO 9999
152      zflo = v_cptt(i,k2-1) - v_cptt(i,k2) - gamcpdz(i,k2)
153      zsat=(local_q(i,k2-1)-zqs(i,k2-1))*(pplev(i,k2-1)-pplev(i,k2))   &
154         +(local_q(i,k2)-zqs(i,k2))*(pplev(i,k2)-pplev(i,k2+1))
155
156      IF ( zflo.LE.0.0 .OR. zsat.LE.0.0 ) GOTO 810
157      k1 = k2 - 1
158      itest(i) = .TRUE.
159
160  820 CONTINUE !! look for k2, the top of the column
161      IF (k2 .EQ. nlayermx) GOTO 821
162      k2p = k2 + 1
163      zsat=zsat+(pplev(i,k2p)-pplev(i,k2p+1))*(local_q(i,k2p)-zqs(i,k2p))
164      zflo = v_cptt(i,k2p-1) - v_cptt(i,k2p) - gamcpdz(i,k2p)
165
166      IF (zflo.LE.0.0 .OR. zsat.LE.0.0) GOTO 821
167      k2 = k2p
168      GOTO 820
169  821 CONTINUE
170
171!------------------------------------------------------ local adjustment
172  830 CONTINUE ! actual adjustment
173    Do nn=1,niter
174      v_cptj(k1) = 0.0
175      zdp = pplev(i,k1)-pplev(i,k1+1)
176      v_cptjk1 = ( (1.0+zdqs(i,k1))*(v_cptt(i,k1)+v_cptj(k1)) + RLVTT*(local_q(i,k1)-zqs(i,k1)) ) * zdp
177      v_ssig = zdp * (1.0+zdqs(i,k1))
178
179      k1p = k1 + 1
180      DO k = k1p, k2
181         zdp = pplev(i,k)-pplev(i,k+1)
182         v_cptj(k) = v_cptj(k-1) + gamcpdz(i,k)
183         v_cptjk1 = v_cptjk1 + zdp * ( (1.0+zdqs(i, k))*(v_cptt(i,k)+v_cptj(k)) + RLVTT*(local_q(i,k)-zqs(i,k)) )       
184         v_ssig = v_ssig + zdp *(1.0+zdqs(i,k))
185      ENDDO
186
187
188      ! this right here is where the adjustment is done???
189      DO k = k1, k2
190         cp_new_t(k) = v_cptjk1/v_ssig - v_cptj(k)
191         cp_delta_t(k) = cp_new_t(k) - v_cptt(i,k)
192         v_cptt(i,k)=cp_new_t(k)
193         local_q(i,k) = zqs(i,k) + zdqs(i,k)*cp_delta_t(k)/RLVTT
194         local_t(i,k) = cp_new_t(k) / RCPD
195
196         v_t = MAX(local_t(i,k),15.)
197         v_p = pplay(i,k)
198         
199         call Psat_water(v_t,v_p,zpsat,zqs(i,k))
200         call Lcpdqsat_water(v_t,v_p,zpsat,zqs(i,k),zdqs(i,k))
201
202
203
204!          print*,'i,k,zqs,cpdT=',i,k,zqs(i,k),cp_delta_t(k)
205      ENDDO
206    Enddo ! nn=1,niter
207
208
209!--------------------------------------------------- sounding downwards
210!              -- we refine the prognostic variables in
211!              -- the layer about to be adjusted
212
213!      DO k = k1, k2
214!         v_cptt(i,k) = RCPD * local_t(i,k)
215!         v_t = local_t(i,k)
216!         v_p = pplay(i,k)
217!       
218!         call Psat_water(v_t,v_p,zpsat,zqs(i,k))
219!         call Lcpdqsat_water(v_t,v_p,zpsat,zqs(i,k),zdqs(i,k))
220!      ENDDO
221
222      DO k = 2, nlayermx
223         zdpm = pplev(i,k-1) - pplev(i,k)
224         zdp = pplev(i,k) - pplev(i,k+1)
225         gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)             &
226                +  RLVTT /(zdpm+zdp) * (zqs(i,k-1)*zdpm + zqs(i,k)*zdp) )                           &
227                * (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) )                                          &
228                / (1.0+ (zdqs(i,k-1)*zdpm + zdqs(i,k)*zdp)/(zdpm+zdp) )                   
229      ENDDO
230
231!     Test to see if we've reached the bottom
232
233      IF (k1 .EQ. 1) GOTO 841 ! yes we have!
234      zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1)
235      zsat=(local_q(i,k1-1)-zqs(i,k1-1))*(pplev(i,k1-1)-pplev(i,k1))   &
236        + (local_q(i,k1)-zqs(i,k1))*(pplev(i,k1)-pplev(i,k1+1))
237      IF (zflo.LE.0.0 .OR. zsat.LE.0.0) GOTO 841 ! yes we have!
238
239  840 CONTINUE
240      k1 = k1 - 1
241      IF (k1 .EQ. 1) GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995)
242      zsat = zsat + (local_q(i,k1-1)-zqs(i,k1-1))               &
243                  *(pplev(i,k1-1)-pplev(i,k1))
244      zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1)
245      IF (zflo.GT.0.0 .AND. zsat.GT.0.0) THEN
246         GOTO 840
247      ELSE
248         GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995)
249      ENDIF
250  841 CONTINUE
251
252      GOTO 810 ! look for other layers higher up
253
254 9999 CONTINUE ! loop over all the points
255
256!      print*,'k1=',k1
257!      print*,'k2=',k2
258
259!      print*,'local_t=',local_t
260!      print*,'v_cptt=',v_cptt
261!      print*,'gamcpdz=',gamcpdz
262
263!-----------------------------------------------------------------------
264! Determine the cloud fraction (hypothese: la nebulosite a lieu
265! a l'endroit ou la vapeur d'eau est diminuee par l'ajustement):
266
267      DO k = 1, nlayermx
268      DO i = 1, ngridmx
269         IF (itest(i)) THEN
270         delta_q(i,k) = local_q(i,k) - zq(i,k)
271         IF (delta_q(i,k).LT.0.) rneb(i,k)  = 1.0
272         ENDIF
273      ENDDO
274      ENDDO
275
276! Distribuer l'eau condensee en eau liquide nuageuse (hypothese:
277! l'eau liquide est distribuee aux endroits ou la vapeur d'eau
278! diminue et d'une maniere proportionnelle a cet diminution):
279
280      DO i = 1, ngridmx
281         IF (itest(i)) THEN
282         zq1(i) = 0.0
283         zq2(i) = 0.0
284         ENDIF
285      ENDDO
286      DO k = 1, nlayermx
287      DO i = 1, ngridmx
288         IF (itest(i)) THEN
289         zdp = pplev(i,k)-pplev(i,k+1)
290         zq1(i) = zq1(i) - delta_q(i,k) * zdp
291         zq2(i) = zq2(i) - MIN(0.0, delta_q(i,k)) * zdp
292         ENDIF
293      ENDDO
294      ENDDO
295      DO k = 1, nlayermx
296      DO i = 1, ngridmx
297         IF (itest(i)) THEN
298           IF (zq2(i).NE.0.0) d_ql(i,k) = - MIN(0.0,delta_q(i,k))*zq1(i)/zq2(i)
299         ENDIF
300      ENDDO
301      ENDDO
302
303!      print*,'local_q BEFORE=',local_q
304
305      DO k = 1, nlayermx
306      DO i = 1, ngridmx
307          local_q(i, k) = MAX(local_q(i, k), seuil_vap)
308      ENDDO
309      ENDDO
310
311      DO k = 1, nlayermx
312      DO i = 1, ngridmx
313         d_t(i,k) = local_t(i,k) - zt(i,k)
314         d_q(i,k) = local_q(i,k) - zq(i,k)
315      ENDDO
316      ENDDO
317
318!     now subroutine -----> GCM variables
319      DO k = 1, nlayermx
320         DO i = 1, ngridmx
321           
322            pdtmana(i,k)       = d_t(i,k)/ptimestep
323            pdqmana(i,k,i_h2o) = d_q(i,k)/ptimestep
324            pdqmana(i,k,i_ice) = d_ql(i,k)/ptimestep
325         
326         ENDDO
327      ENDDO
328
329
330      RETURN
331   END
Note: See TracBrowser for help on using the repository browser.