source: trunk/LMDZ.GENERIC/libf/phystd/moistadj.F90 @ 3581

Last change on this file since 3581 was 1384, checked in by emillour, 10 years ago

Generic GCM:

  • Some code cleanup: turning comcstfi.h into module comcstfi_mod.F90

EM

File size: 11.3 KB
Line 
1subroutine moistadj(ngrid, nlayer, nq, pt, pq, pdq, pplev, pplay, pdtmana, pdqmana, ptimestep, rneb)
2
3  use watercommon_h, only: T_h2O_ice_liq, RLVTT, RCPD, RCPV, Psat_water, Lcpdqsat_water
4  USE tracer_h, only: igcm_h2o_vap, igcm_h2o_ice
5  use comcstfi_mod, only: r
6
7  implicit none
8
9
10!=====================================================================
11!     
12!     Purpose
13!     -------
14!     Calculates moist convective adjustment by the method of Manabe.
15!     
16!     Authors
17!     -------
18!     Adapted from the LMDTERRE code by R. Wordsworth (2010)
19!     Original author Z. X. Li (1993)
20!     
21!=====================================================================
22
23      INTEGER,INTENT(IN) :: ngrid, nlayer, nq
24
25      REAL,INTENT(IN) :: pt(ngrid,nlayer) ! temperature (K)
26      REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! tracer (kg/kg)
27      REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq)
28      REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa)
29      REAL,INTENT(IN) :: pplay(ngrid,nlayer)   ! mid-layer pressure (Pa)
30      REAL,INTENT(IN) :: ptimestep ! physics timestep (s)
31      REAL,INTENT(OUT) :: pdqmana(ngrid,nlayer,nq)  ! tracer tendencies (kg/kg.s-1)
32      REAL,INTENT(OUT) :: pdtmana(ngrid,nlayer) ! temperature increment(K/s)
33      REAL,INTENT(OUT) :: rneb(ngrid,nlayer) ! cloud fraction
34
35!     local variables
36      REAL zt(ngrid,nlayer)      ! temperature (K)
37      REAL zq(ngrid,nlayer)      ! humidite specifique (kg/kg)
38
39      REAL d_t(ngrid,nlayer)     ! temperature increment
40      REAL d_q(ngrid,nlayer)     ! incrementation pour vapeur d'eau
41      REAL d_ql(ngrid,nlayer)    ! incrementation pour l'eau liquide
42
43!      REAL t_coup
44!      PARAMETER (t_coup=234.0)
45      REAL seuil_vap
46      PARAMETER (seuil_vap=1.0E-10)
47
48!     Local variables
49      INTEGER i, k, iq, nn
50      INTEGER, PARAMETER :: niter = 1
51      INTEGER k1, k1p, k2, k2p
52      LOGICAL itest(ngrid)
53      REAL delta_q(ngrid, nlayer)
54      DOUBLE PRECISION :: cp_new_t(nlayer), v_cptt(ngrid,nlayer)
55      REAL cp_delta_t(nlayer)
56      DOUBLE PRECISION :: v_cptj(nlayer), v_cptjk1, v_ssig
57      REAL v_p, v_t, v_zqs,v_cptt2,v_pratio,v_dlnpsat
58      REAL zqs(ngrid,nlayer), zdqs(ngrid,nlayer),zpsat(ngrid,nlayer),zdlnpsat(ngrid,nlayer)
59      REAL zq1(ngrid), zq2(ngrid)
60      DOUBLE PRECISION :: gamcpdz(ngrid,2:nlayer)
61      DOUBLE PRECISION :: zdp, zdpm
62
63      REAL zsat ! super-saturation
64      REAL zflo ! flotabilite
65
66      DOUBLE PRECISION :: local_q(ngrid,nlayer),local_t(ngrid,nlayer)
67
68      REAL zdelta, zcor, zcvm5
69
70      REAL dEtot, dqtot, masse ! conservation diagnostics
71      real dL1tot, dL2tot
72
73!     Indices of water vapour and water ice tracers
74      INTEGER,SAVE :: i_h2o=0  ! water vapour
75      INTEGER,SAVE :: i_ice=0  ! water ice
76!$OMP THREADPRIVATE(i_h2o,i_ice)
77
78      LOGICAL,SAVE :: firstcall=.TRUE.
79!$OMP THREADPRIVATE(firstcall)
80
81      IF (firstcall) THEN
82
83         i_h2o=igcm_h2o_vap
84         i_ice=igcm_h2o_ice
85       
86         write(*,*) "rain: i_ice=",i_ice
87         write(*,*) "      i_h2o=",i_h2o
88
89         firstcall = .FALSE.
90      ENDIF
91
92!     GCM -----> subroutine variables
93      zq(1:ngrid,1:nlayer)    = pq(1:ngrid,1:nlayer,i_h2o)+ pdq(1:ngrid,1:nlayer,i_h2o)*ptimestep
94      zt(1:ngrid,1:nlayer)    = pt(1:ngrid,1:nlayer)
95      pdqmana(1:ngrid,1:nlayer,1:nq)=0.0
96
97      DO k = 1, nlayer
98       DO i = 1, ngrid
99         if(zq(i,k).lt.0.)then
100            zq(i,k)=0.0
101         endif
102       ENDDO
103      ENDDO
104     
105      local_q(1:ngrid,1:nlayer) = zq(1:ngrid,1:nlayer)
106      local_t(1:ngrid,1:nlayer) = zt(1:ngrid,1:nlayer)
107      rneb(1:ngrid,1:nlayer) = 0.0
108      d_ql(1:ngrid,1:nlayer) = 0.0
109      d_t(1:ngrid,1:nlayer)  = 0.0
110      d_q(1:ngrid,1:nlayer)  = 0.0
111
112!     Calculate v_cptt
113      DO k = 1, nlayer
114         DO i = 1, ngrid
115            v_cptt(i,k) = RCPD * local_t(i,k)
116            v_t = MAX(local_t(i,k),15.)
117            v_p = pplay(i,k)
118
119            call Psat_water(v_t,v_p,zpsat(i,k),zqs(i,k))
120            call Lcpdqsat_water(v_t,v_p,zpsat(i,k),zqs(i,k),zdqs(i,k),zdlnpsat(i,k))
121         ENDDO
122      ENDDO
123
124!     Calculate Gamma * Cp * dz: (gamma is the critical gradient)
125      DO k = 2, nlayer
126         DO i = 1, ngrid
127            zdp = pplev(i,k)-pplev(i,k+1)
128            zdpm = pplev(i,k-1)-pplev(i,k)
129!            gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)          &
130!                +  RLVTT /(zdpm+zdp) * (zqs(i,k-1)*zdpm + zqs(i,k)*zdp) )                           &
131!               * (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) )                                          &
132!                / (1.0+ (zdqs(i,k-1)*zdpm + zdqs(i,k)*zdp)/(zdpm+zdp) )                   
133! general case where water is not a trace gas (JL13)
134            v_zqs     = (zqs(i,k-1)*zdpm + zqs(i,k)*zdp)/(zdpm+zdp)
135            v_cptt2   = (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)/(zdpm+zdp)
136            v_pratio  = ((1.-zpsat(i,k-1)/pplay(i,k-1))*zdpm + (1.-zpsat(i,k)/pplay(i,k))*zdp)/(zdpm+zdp)
137            v_dlnpsat = (zdlnpsat(i,k-1)*zdpm + zdlnpsat(i,k)*zdp)/(zdpm+zdp)
138            gamcpdz(i,k) = ( (R/RCPD*v_cptt2*(1.- v_zqs) + RLVTT*v_zqs) * (pplay(i,k-1)-pplay(i,k))/pplev(i,k) )  &
139                / (((1.- v_zqs) + v_zqs * RCPV/RCPD)*v_pratio + v_zqs  * v_dlnpsat)               
140         ENDDO
141      ENDDO
142
143!------------------------------------ modification of unstable profile
144      DO 9999 i = 1, ngrid
145
146      itest(i) = .FALSE.
147
148!        print*,'we in the loop'
149!        stop   
150
151      k1 = 0
152      k2 = 1
153
154  810 CONTINUE ! look for k1, the base of the column
155      k2 = k2 + 1
156      IF (k2 .GT. nlayer) GOTO 9999
157      zflo = v_cptt(i,k2-1) - v_cptt(i,k2) - gamcpdz(i,k2)
158      zsat=(local_q(i,k2-1)-zqs(i,k2-1))*(pplev(i,k2-1)-pplev(i,k2))   &
159         +(local_q(i,k2)-zqs(i,k2))*(pplev(i,k2)-pplev(i,k2+1))
160
161      IF ( zflo.LE.0.0 .OR. zsat.LE.0.0 ) GOTO 810
162      k1 = k2 - 1
163      itest(i) = .TRUE.
164
165  820 CONTINUE !! look for k2, the top of the column
166      IF (k2 .EQ. nlayer) GOTO 821
167      k2p = k2 + 1
168      zsat=zsat+(pplev(i,k2p)-pplev(i,k2p+1))*(local_q(i,k2p)-zqs(i,k2p))
169      zflo = v_cptt(i,k2p-1) - v_cptt(i,k2p) - gamcpdz(i,k2p)
170
171      IF (zflo.LE.0.0 .OR. zsat.LE.0.0) GOTO 821
172      k2 = k2p
173      GOTO 820
174  821 CONTINUE
175
176!------------------------------------------------------ local adjustment
177  830 CONTINUE ! actual adjustment
178    Do nn=1,niter
179      v_cptj(k1) = 0.0
180      zdp = pplev(i,k1)-pplev(i,k1+1)
181      v_cptjk1 = ( (1.0+zdqs(i,k1))*(v_cptt(i,k1)+v_cptj(k1)) + RLVTT*(local_q(i,k1)-zqs(i,k1)) ) * zdp
182      v_ssig = zdp * (1.0+zdqs(i,k1))
183
184      k1p = k1 + 1
185      DO k = k1p, k2
186         zdp = pplev(i,k)-pplev(i,k+1)
187         v_cptj(k) = v_cptj(k-1) + gamcpdz(i,k)
188         v_cptjk1 = v_cptjk1 + zdp * ( (1.0+zdqs(i, k))*(v_cptt(i,k)+v_cptj(k)) + RLVTT*(local_q(i,k)-zqs(i,k)) )       
189         v_ssig = v_ssig + zdp *(1.0+zdqs(i,k))
190      ENDDO
191
192
193      ! this right here is where the adjustment is done???
194      DO k = k1, k2
195         cp_new_t(k) = v_cptjk1/v_ssig - v_cptj(k)
196         cp_delta_t(k) = cp_new_t(k) - v_cptt(i,k)
197         v_cptt(i,k)=cp_new_t(k)
198         local_q(i,k) = zqs(i,k) + zdqs(i,k)*cp_delta_t(k)/RLVTT
199         local_t(i,k) = cp_new_t(k) / RCPD
200
201         v_t = MAX(local_t(i,k),15.)
202         v_p = pplay(i,k)
203         
204         call Psat_water(v_t,v_p,zpsat(i,k),zqs(i,k))
205         call Lcpdqsat_water(v_t,v_p,zpsat(i,k),zqs(i,k),zdqs(i,k),zdlnpsat(i,k))
206
207      ENDDO
208    Enddo ! nn=1,niter
209
210
211!--------------------------------------------------- sounding downwards
212!              -- we refine the prognostic variables in
213!              -- the layer about to be adjusted
214
215!      DO k = k1, k2
216!         v_cptt(i,k) = RCPD * local_t(i,k)
217!         v_t = local_t(i,k)
218!         v_p = pplay(i,k)
219!       
220!         call Psat_water(v_t,v_p,zpsat,zqs(i,k))
221!         call Lcpdqsat_water(v_t,v_p,zpsat,zqs(i,k),zdqs(i,k))
222!      ENDDO
223
224      DO k = 2, nlayer
225         zdpm = pplev(i,k-1) - pplev(i,k)
226         zdp = pplev(i,k) - pplev(i,k+1)
227!         gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)          &
228!             +  RLVTT /(zdpm+zdp) * (zqs(i,k-1)*zdpm + zqs(i,k)*zdp) )                           &
229!             * (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) )                                          &
230!             / (1.0+ (zdqs(i,k-1)*zdpm + zdqs(i,k)*zdp)/(zdpm+zdp) )                   
231! general case where water is not a trace gas (JL13)
232         v_zqs     = (zqs(i,k-1)*zdpm + zqs(i,k)*zdp)/(zdpm+zdp)
233         v_cptt2   = (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)/(zdpm+zdp)
234         v_pratio  = ((1.-zpsat(i,k-1)/pplay(i,k-1))*zdpm + (1.-zpsat(i,k)/pplay(i,k))*zdp)/(zdpm+zdp)
235         v_dlnpsat = (zdlnpsat(i,k-1)*zdpm + zdlnpsat(i,k)*zdp)/(zdpm+zdp)
236         gamcpdz(i,k) = ( (R/RCPD*v_cptt2*(1.- v_zqs) + RLVTT*v_zqs) * (pplay(i,k-1)-pplay(i,k))/pplev(i,k) )  &
237                / (((1.- v_zqs) + v_zqs * RCPV/RCPD)*v_pratio + v_zqs  * v_dlnpsat)               
238      ENDDO
239
240!     Test to see if we've reached the bottom
241
242      IF (k1 .EQ. 1) GOTO 841 ! yes we have!
243      zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1)
244      zsat=(local_q(i,k1-1)-zqs(i,k1-1))*(pplev(i,k1-1)-pplev(i,k1))   &
245        + (local_q(i,k1)-zqs(i,k1))*(pplev(i,k1)-pplev(i,k1+1))
246      IF (zflo.LE.0.0 .OR. zsat.LE.0.0) GOTO 841 ! yes we have!
247
248  840 CONTINUE
249      k1 = k1 - 1
250      IF (k1 .EQ. 1) GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995)
251      zsat = zsat + (local_q(i,k1-1)-zqs(i,k1-1))               &
252                  *(pplev(i,k1-1)-pplev(i,k1))
253      zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1)
254      IF (zflo.GT.0.0 .AND. zsat.GT.0.0) THEN
255         GOTO 840
256      ELSE
257         GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995)
258      ENDIF
259  841 CONTINUE
260
261      GOTO 810 ! look for other layers higher up
262
263 9999 CONTINUE ! loop over all the points
264
265!-----------------------------------------------------------------------
266! Determine the cloud fraction (hypothese: la nebulosite a lieu
267! a l'endroit ou la vapeur d'eau est diminuee par l'ajustement):
268
269      DO k = 1, nlayer
270      DO i = 1, ngrid
271         IF (itest(i)) THEN
272         delta_q(i,k) = local_q(i,k) - zq(i,k)
273         IF (delta_q(i,k).LT.0.) rneb(i,k)  = 1.0
274         ENDIF
275      ENDDO
276      ENDDO
277
278! Distribuer l'eau condensee en eau liquide nuageuse (hypothese:
279! l'eau liquide est distribuee aux endroits ou la vapeur d'eau
280! diminue et d'une maniere proportionnelle a cet diminution):
281
282      DO i = 1, ngrid
283         IF (itest(i)) THEN
284         zq1(i) = 0.0
285         zq2(i) = 0.0
286         ENDIF
287      ENDDO
288      DO k = 1, nlayer
289      DO i = 1, ngrid
290         IF (itest(i)) THEN
291         zdp = pplev(i,k)-pplev(i,k+1)
292         zq1(i) = zq1(i) - delta_q(i,k) * zdp
293         zq2(i) = zq2(i) - MIN(0.0, delta_q(i,k)) * zdp
294         ENDIF
295      ENDDO
296      ENDDO
297      DO k = 1, nlayer
298      DO i = 1, ngrid
299         IF (itest(i)) THEN
300           IF (zq2(i).NE.0.0) d_ql(i,k) = - MIN(0.0,delta_q(i,k))*zq1(i)/zq2(i)
301         ENDIF
302      ENDDO
303      ENDDO
304
305      DO k = 1, nlayer
306      DO i = 1, ngrid
307          local_q(i, k) = MAX(local_q(i, k), seuil_vap)
308      ENDDO
309      ENDDO
310
311      DO k = 1, nlayer
312      DO i = 1, ngrid
313         d_t(i,k) = local_t(i,k) - zt(i,k)
314         d_q(i,k) = local_q(i,k) - zq(i,k)
315      ENDDO
316      ENDDO
317
318!     now subroutine -----> GCM variables
319      DO k = 1, nlayer
320         DO i = 1, ngrid
321           
322            pdtmana(i,k)       = d_t(i,k)/ptimestep
323            pdqmana(i,k,i_h2o) = d_q(i,k)/ptimestep
324            pdqmana(i,k,i_ice) = d_ql(i,k)/ptimestep
325         
326         ENDDO
327      ENDDO
328
329
330   END
Note: See TracBrowser for help on using the repository browser.