| 1 | subroutine moistadj(ngrid, nq, pt, pq, pdq, pplev, pplay, pdtmana, pdqmana, ptimestep, rneb) |
|---|
| 2 | |
|---|
| 3 | use watercommon_h, only: T_h2O_ice_liq, RLVTT, RCPD, RCPV, Psat_water, Lcpdqsat_water |
|---|
| 4 | USE tracer_h |
|---|
| 5 | |
|---|
| 6 | implicit none |
|---|
| 7 | |
|---|
| 8 | |
|---|
| 9 | !===================================================================== |
|---|
| 10 | ! |
|---|
| 11 | ! Purpose |
|---|
| 12 | ! ------- |
|---|
| 13 | ! Calculates moist convective adjustment by the method of Manabe. |
|---|
| 14 | ! |
|---|
| 15 | ! Authors |
|---|
| 16 | ! ------- |
|---|
| 17 | ! Adapted from the LMDTERRE code by R. Wordsworth (2010) |
|---|
| 18 | ! Original author Z. X. Li (1993) |
|---|
| 19 | ! |
|---|
| 20 | !===================================================================== |
|---|
| 21 | |
|---|
| 22 | #include "dimensions.h" |
|---|
| 23 | #include "dimphys.h" |
|---|
| 24 | #include "comcstfi.h" |
|---|
| 25 | |
|---|
| 26 | INTEGER ngrid, nq |
|---|
| 27 | |
|---|
| 28 | REAL pt(ngrid,nlayermx) ! temperature (K) |
|---|
| 29 | REAL pq(ngrid,nlayermx,nq) ! tracer (kg/kg) |
|---|
| 30 | REAL pdq(ngrid,nlayermx,nq) |
|---|
| 31 | |
|---|
| 32 | REAL pdqmana(ngrid,nlayermx,nq) ! tendency of tracers (kg/kg.s-1) |
|---|
| 33 | REAL pdtmana(ngrid,nlayermx) ! temperature increment |
|---|
| 34 | |
|---|
| 35 | ! local variables |
|---|
| 36 | REAL zt(ngrid,nlayermx) ! temperature (K) |
|---|
| 37 | REAL zq(ngrid,nlayermx) ! humidite specifique (kg/kg) |
|---|
| 38 | REAL pplev(ngrid,nlayermx+1) ! pression a inter-couche (Pa) |
|---|
| 39 | REAL pplay(ngrid,nlayermx) ! pression au milieu de couche (Pa) |
|---|
| 40 | |
|---|
| 41 | REAL d_t(ngrid,nlayermx) ! temperature increment |
|---|
| 42 | REAL d_q(ngrid,nlayermx) ! incrementation pour vapeur d'eau |
|---|
| 43 | REAL d_ql(ngrid,nlayermx) ! incrementation pour l'eau liquide |
|---|
| 44 | REAL rneb(ngrid,nlayermx) ! cloud fraction |
|---|
| 45 | REAL ptimestep |
|---|
| 46 | |
|---|
| 47 | ! REAL t_coup |
|---|
| 48 | ! PARAMETER (t_coup=234.0) |
|---|
| 49 | REAL seuil_vap |
|---|
| 50 | PARAMETER (seuil_vap=1.0E-10) |
|---|
| 51 | |
|---|
| 52 | ! Local variables |
|---|
| 53 | INTEGER i, k, iq, nn |
|---|
| 54 | INTEGER, PARAMETER :: niter = 1 |
|---|
| 55 | INTEGER k1, k1p, k2, k2p |
|---|
| 56 | LOGICAL itest(ngrid) |
|---|
| 57 | REAL delta_q(ngrid, nlayermx) |
|---|
| 58 | DOUBLE PRECISION :: cp_new_t(nlayermx), v_cptt(ngrid,nlayermx) |
|---|
| 59 | REAL cp_delta_t(nlayermx) |
|---|
| 60 | DOUBLE PRECISION :: v_cptj(nlayermx), v_cptjk1, v_ssig |
|---|
| 61 | REAL v_p, v_t, v_zqs,v_cptt2,v_pratio,v_dlnpsat |
|---|
| 62 | REAL zqs(ngrid,nlayermx), zdqs(ngrid,nlayermx),zpsat(ngrid,nlayermx),zdlnpsat(ngrid,nlayermx) |
|---|
| 63 | REAL zq1(ngrid), zq2(ngrid) |
|---|
| 64 | DOUBLE PRECISION :: gamcpdz(ngrid,2:nlayermx) |
|---|
| 65 | DOUBLE PRECISION :: zdp, zdpm |
|---|
| 66 | |
|---|
| 67 | REAL zsat ! super-saturation |
|---|
| 68 | REAL zflo ! flotabilite |
|---|
| 69 | |
|---|
| 70 | DOUBLE PRECISION :: local_q(ngrid,nlayermx),local_t(ngrid,nlayermx) |
|---|
| 71 | |
|---|
| 72 | REAL zdelta, zcor, zcvm5 |
|---|
| 73 | |
|---|
| 74 | REAL dEtot, dqtot, masse ! conservation diagnostics |
|---|
| 75 | real dL1tot, dL2tot |
|---|
| 76 | |
|---|
| 77 | ! Indices of water vapour and water ice tracers |
|---|
| 78 | INTEGER,SAVE :: i_h2o=0 ! water vapour |
|---|
| 79 | INTEGER,SAVE :: i_ice=0 ! water ice |
|---|
| 80 | |
|---|
| 81 | LOGICAL firstcall |
|---|
| 82 | SAVE firstcall |
|---|
| 83 | |
|---|
| 84 | DATA firstcall /.TRUE./ |
|---|
| 85 | |
|---|
| 86 | IF (firstcall) THEN |
|---|
| 87 | |
|---|
| 88 | i_h2o=igcm_h2o_vap |
|---|
| 89 | i_ice=igcm_h2o_ice |
|---|
| 90 | |
|---|
| 91 | write(*,*) "rain: i_ice=",i_ice |
|---|
| 92 | write(*,*) " i_h2o=",i_h2o |
|---|
| 93 | |
|---|
| 94 | firstcall = .FALSE. |
|---|
| 95 | ENDIF |
|---|
| 96 | |
|---|
| 97 | ! GCM -----> subroutine variables |
|---|
| 98 | zq(1:ngrid,1:nlayermx) = pq(1:ngrid,1:nlayermx,i_h2o)+ pdq(1:ngrid,1:nlayermx,i_h2o)*ptimestep |
|---|
| 99 | zt(1:ngrid,1:nlayermx) = pt(1:ngrid,1:nlayermx) |
|---|
| 100 | pdqmana(1:ngrid,1:nlayermx,1:nq)=0.0 |
|---|
| 101 | |
|---|
| 102 | DO k = 1, nlayermx |
|---|
| 103 | DO i = 1, ngrid |
|---|
| 104 | if(zq(i,k).lt.0.)then |
|---|
| 105 | zq(i,k)=0.0 |
|---|
| 106 | endif |
|---|
| 107 | ENDDO |
|---|
| 108 | ENDDO |
|---|
| 109 | |
|---|
| 110 | local_q(1:ngrid,1:nlayermx) = zq(1:ngrid,1:nlayermx) |
|---|
| 111 | local_t(1:ngrid,1:nlayermx) = zt(1:ngrid,1:nlayermx) |
|---|
| 112 | rneb(1:ngrid,1:nlayermx) = 0.0 |
|---|
| 113 | d_ql(1:ngrid,1:nlayermx) = 0.0 |
|---|
| 114 | d_t(1:ngrid,1:nlayermx) = 0.0 |
|---|
| 115 | d_q(1:ngrid,1:nlayermx) = 0.0 |
|---|
| 116 | |
|---|
| 117 | ! Calculate v_cptt |
|---|
| 118 | DO k = 1, nlayermx |
|---|
| 119 | DO i = 1, ngrid |
|---|
| 120 | v_cptt(i,k) = RCPD * local_t(i,k) |
|---|
| 121 | v_t = MAX(local_t(i,k),15.) |
|---|
| 122 | v_p = pplay(i,k) |
|---|
| 123 | |
|---|
| 124 | call Psat_water(v_t,v_p,zpsat(i,k),zqs(i,k)) |
|---|
| 125 | call Lcpdqsat_water(v_t,v_p,zpsat(i,k),zqs(i,k),zdqs(i,k),zdlnpsat(i,k)) |
|---|
| 126 | ENDDO |
|---|
| 127 | ENDDO |
|---|
| 128 | |
|---|
| 129 | ! Calculate Gamma * Cp * dz: (gamma is the critical gradient) |
|---|
| 130 | DO k = 2, nlayermx |
|---|
| 131 | DO i = 1, ngrid |
|---|
| 132 | zdp = pplev(i,k)-pplev(i,k+1) |
|---|
| 133 | zdpm = pplev(i,k-1)-pplev(i,k) |
|---|
| 134 | ! gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp) & |
|---|
| 135 | ! + RLVTT /(zdpm+zdp) * (zqs(i,k-1)*zdpm + zqs(i,k)*zdp) ) & |
|---|
| 136 | ! * (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) ) & |
|---|
| 137 | ! / (1.0+ (zdqs(i,k-1)*zdpm + zdqs(i,k)*zdp)/(zdpm+zdp) ) |
|---|
| 138 | ! general case where water is not a trace gas (JL13) |
|---|
| 139 | v_zqs = (zqs(i,k-1)*zdpm + zqs(i,k)*zdp)/(zdpm+zdp) |
|---|
| 140 | v_cptt2 = (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)/(zdpm+zdp) |
|---|
| 141 | v_pratio = ((1.-zpsat(i,k-1)/pplay(i,k-1))*zdpm + (1.-zpsat(i,k)/pplay(i,k))*zdp)/(zdpm+zdp) |
|---|
| 142 | v_dlnpsat = (zdlnpsat(i,k-1)*zdpm + zdlnpsat(i,k)*zdp)/(zdpm+zdp) |
|---|
| 143 | gamcpdz(i,k) = ( (R/RCPD*v_cptt2*(1.- v_zqs) + RLVTT*v_zqs) * (pplay(i,k-1)-pplay(i,k))/pplev(i,k) ) & |
|---|
| 144 | / (((1.- v_zqs) + v_zqs * RCPV/RCPD)*v_pratio + v_zqs * v_dlnpsat) |
|---|
| 145 | ENDDO |
|---|
| 146 | ENDDO |
|---|
| 147 | |
|---|
| 148 | !------------------------------------ modification of unstable profile |
|---|
| 149 | DO 9999 i = 1, ngrid |
|---|
| 150 | |
|---|
| 151 | itest(i) = .FALSE. |
|---|
| 152 | |
|---|
| 153 | ! print*,'we in the loop' |
|---|
| 154 | ! stop |
|---|
| 155 | |
|---|
| 156 | k1 = 0 |
|---|
| 157 | k2 = 1 |
|---|
| 158 | |
|---|
| 159 | 810 CONTINUE ! look for k1, the base of the column |
|---|
| 160 | k2 = k2 + 1 |
|---|
| 161 | IF (k2 .GT. nlayermx) GOTO 9999 |
|---|
| 162 | zflo = v_cptt(i,k2-1) - v_cptt(i,k2) - gamcpdz(i,k2) |
|---|
| 163 | zsat=(local_q(i,k2-1)-zqs(i,k2-1))*(pplev(i,k2-1)-pplev(i,k2)) & |
|---|
| 164 | +(local_q(i,k2)-zqs(i,k2))*(pplev(i,k2)-pplev(i,k2+1)) |
|---|
| 165 | |
|---|
| 166 | IF ( zflo.LE.0.0 .OR. zsat.LE.0.0 ) GOTO 810 |
|---|
| 167 | k1 = k2 - 1 |
|---|
| 168 | itest(i) = .TRUE. |
|---|
| 169 | |
|---|
| 170 | 820 CONTINUE !! look for k2, the top of the column |
|---|
| 171 | IF (k2 .EQ. nlayermx) GOTO 821 |
|---|
| 172 | k2p = k2 + 1 |
|---|
| 173 | zsat=zsat+(pplev(i,k2p)-pplev(i,k2p+1))*(local_q(i,k2p)-zqs(i,k2p)) |
|---|
| 174 | zflo = v_cptt(i,k2p-1) - v_cptt(i,k2p) - gamcpdz(i,k2p) |
|---|
| 175 | |
|---|
| 176 | IF (zflo.LE.0.0 .OR. zsat.LE.0.0) GOTO 821 |
|---|
| 177 | k2 = k2p |
|---|
| 178 | GOTO 820 |
|---|
| 179 | 821 CONTINUE |
|---|
| 180 | |
|---|
| 181 | !------------------------------------------------------ local adjustment |
|---|
| 182 | 830 CONTINUE ! actual adjustment |
|---|
| 183 | Do nn=1,niter |
|---|
| 184 | v_cptj(k1) = 0.0 |
|---|
| 185 | zdp = pplev(i,k1)-pplev(i,k1+1) |
|---|
| 186 | v_cptjk1 = ( (1.0+zdqs(i,k1))*(v_cptt(i,k1)+v_cptj(k1)) + RLVTT*(local_q(i,k1)-zqs(i,k1)) ) * zdp |
|---|
| 187 | v_ssig = zdp * (1.0+zdqs(i,k1)) |
|---|
| 188 | |
|---|
| 189 | k1p = k1 + 1 |
|---|
| 190 | DO k = k1p, k2 |
|---|
| 191 | zdp = pplev(i,k)-pplev(i,k+1) |
|---|
| 192 | v_cptj(k) = v_cptj(k-1) + gamcpdz(i,k) |
|---|
| 193 | v_cptjk1 = v_cptjk1 + zdp * ( (1.0+zdqs(i, k))*(v_cptt(i,k)+v_cptj(k)) + RLVTT*(local_q(i,k)-zqs(i,k)) ) |
|---|
| 194 | v_ssig = v_ssig + zdp *(1.0+zdqs(i,k)) |
|---|
| 195 | ENDDO |
|---|
| 196 | |
|---|
| 197 | |
|---|
| 198 | ! this right here is where the adjustment is done??? |
|---|
| 199 | DO k = k1, k2 |
|---|
| 200 | cp_new_t(k) = v_cptjk1/v_ssig - v_cptj(k) |
|---|
| 201 | cp_delta_t(k) = cp_new_t(k) - v_cptt(i,k) |
|---|
| 202 | v_cptt(i,k)=cp_new_t(k) |
|---|
| 203 | local_q(i,k) = zqs(i,k) + zdqs(i,k)*cp_delta_t(k)/RLVTT |
|---|
| 204 | local_t(i,k) = cp_new_t(k) / RCPD |
|---|
| 205 | |
|---|
| 206 | v_t = MAX(local_t(i,k),15.) |
|---|
| 207 | v_p = pplay(i,k) |
|---|
| 208 | |
|---|
| 209 | call Psat_water(v_t,v_p,zpsat(i,k),zqs(i,k)) |
|---|
| 210 | call Lcpdqsat_water(v_t,v_p,zpsat(i,k),zqs(i,k),zdqs(i,k),zdlnpsat(i,k)) |
|---|
| 211 | |
|---|
| 212 | ENDDO |
|---|
| 213 | Enddo ! nn=1,niter |
|---|
| 214 | |
|---|
| 215 | |
|---|
| 216 | !--------------------------------------------------- sounding downwards |
|---|
| 217 | ! -- we refine the prognostic variables in |
|---|
| 218 | ! -- the layer about to be adjusted |
|---|
| 219 | |
|---|
| 220 | ! DO k = k1, k2 |
|---|
| 221 | ! v_cptt(i,k) = RCPD * local_t(i,k) |
|---|
| 222 | ! v_t = local_t(i,k) |
|---|
| 223 | ! v_p = pplay(i,k) |
|---|
| 224 | ! |
|---|
| 225 | ! call Psat_water(v_t,v_p,zpsat,zqs(i,k)) |
|---|
| 226 | ! call Lcpdqsat_water(v_t,v_p,zpsat,zqs(i,k),zdqs(i,k)) |
|---|
| 227 | ! ENDDO |
|---|
| 228 | |
|---|
| 229 | DO k = 2, nlayermx |
|---|
| 230 | zdpm = pplev(i,k-1) - pplev(i,k) |
|---|
| 231 | zdp = pplev(i,k) - pplev(i,k+1) |
|---|
| 232 | ! gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp) & |
|---|
| 233 | ! + RLVTT /(zdpm+zdp) * (zqs(i,k-1)*zdpm + zqs(i,k)*zdp) ) & |
|---|
| 234 | ! * (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) ) & |
|---|
| 235 | ! / (1.0+ (zdqs(i,k-1)*zdpm + zdqs(i,k)*zdp)/(zdpm+zdp) ) |
|---|
| 236 | ! general case where water is not a trace gas (JL13) |
|---|
| 237 | v_zqs = (zqs(i,k-1)*zdpm + zqs(i,k)*zdp)/(zdpm+zdp) |
|---|
| 238 | v_cptt2 = (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp)/(zdpm+zdp) |
|---|
| 239 | v_pratio = ((1.-zpsat(i,k-1)/pplay(i,k-1))*zdpm + (1.-zpsat(i,k)/pplay(i,k))*zdp)/(zdpm+zdp) |
|---|
| 240 | v_dlnpsat = (zdlnpsat(i,k-1)*zdpm + zdlnpsat(i,k)*zdp)/(zdpm+zdp) |
|---|
| 241 | gamcpdz(i,k) = ( (R/RCPD*v_cptt2*(1.- v_zqs) + RLVTT*v_zqs) * (pplay(i,k-1)-pplay(i,k))/pplev(i,k) ) & |
|---|
| 242 | / (((1.- v_zqs) + v_zqs * RCPV/RCPD)*v_pratio + v_zqs * v_dlnpsat) |
|---|
| 243 | ENDDO |
|---|
| 244 | |
|---|
| 245 | ! Test to see if we've reached the bottom |
|---|
| 246 | |
|---|
| 247 | IF (k1 .EQ. 1) GOTO 841 ! yes we have! |
|---|
| 248 | zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1) |
|---|
| 249 | zsat=(local_q(i,k1-1)-zqs(i,k1-1))*(pplev(i,k1-1)-pplev(i,k1)) & |
|---|
| 250 | + (local_q(i,k1)-zqs(i,k1))*(pplev(i,k1)-pplev(i,k1+1)) |
|---|
| 251 | IF (zflo.LE.0.0 .OR. zsat.LE.0.0) GOTO 841 ! yes we have! |
|---|
| 252 | |
|---|
| 253 | 840 CONTINUE |
|---|
| 254 | k1 = k1 - 1 |
|---|
| 255 | IF (k1 .EQ. 1) GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
|---|
| 256 | zsat = zsat + (local_q(i,k1-1)-zqs(i,k1-1)) & |
|---|
| 257 | *(pplev(i,k1-1)-pplev(i,k1)) |
|---|
| 258 | zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1) |
|---|
| 259 | IF (zflo.GT.0.0 .AND. zsat.GT.0.0) THEN |
|---|
| 260 | GOTO 840 |
|---|
| 261 | ELSE |
|---|
| 262 | GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
|---|
| 263 | ENDIF |
|---|
| 264 | 841 CONTINUE |
|---|
| 265 | |
|---|
| 266 | GOTO 810 ! look for other layers higher up |
|---|
| 267 | |
|---|
| 268 | 9999 CONTINUE ! loop over all the points |
|---|
| 269 | |
|---|
| 270 | !----------------------------------------------------------------------- |
|---|
| 271 | ! Determine the cloud fraction (hypothese: la nebulosite a lieu |
|---|
| 272 | ! a l'endroit ou la vapeur d'eau est diminuee par l'ajustement): |
|---|
| 273 | |
|---|
| 274 | DO k = 1, nlayermx |
|---|
| 275 | DO i = 1, ngrid |
|---|
| 276 | IF (itest(i)) THEN |
|---|
| 277 | delta_q(i,k) = local_q(i,k) - zq(i,k) |
|---|
| 278 | IF (delta_q(i,k).LT.0.) rneb(i,k) = 1.0 |
|---|
| 279 | ENDIF |
|---|
| 280 | ENDDO |
|---|
| 281 | ENDDO |
|---|
| 282 | |
|---|
| 283 | ! Distribuer l'eau condensee en eau liquide nuageuse (hypothese: |
|---|
| 284 | ! l'eau liquide est distribuee aux endroits ou la vapeur d'eau |
|---|
| 285 | ! diminue et d'une maniere proportionnelle a cet diminution): |
|---|
| 286 | |
|---|
| 287 | DO i = 1, ngrid |
|---|
| 288 | IF (itest(i)) THEN |
|---|
| 289 | zq1(i) = 0.0 |
|---|
| 290 | zq2(i) = 0.0 |
|---|
| 291 | ENDIF |
|---|
| 292 | ENDDO |
|---|
| 293 | DO k = 1, nlayermx |
|---|
| 294 | DO i = 1, ngrid |
|---|
| 295 | IF (itest(i)) THEN |
|---|
| 296 | zdp = pplev(i,k)-pplev(i,k+1) |
|---|
| 297 | zq1(i) = zq1(i) - delta_q(i,k) * zdp |
|---|
| 298 | zq2(i) = zq2(i) - MIN(0.0, delta_q(i,k)) * zdp |
|---|
| 299 | ENDIF |
|---|
| 300 | ENDDO |
|---|
| 301 | ENDDO |
|---|
| 302 | DO k = 1, nlayermx |
|---|
| 303 | DO i = 1, ngrid |
|---|
| 304 | IF (itest(i)) THEN |
|---|
| 305 | IF (zq2(i).NE.0.0) d_ql(i,k) = - MIN(0.0,delta_q(i,k))*zq1(i)/zq2(i) |
|---|
| 306 | ENDIF |
|---|
| 307 | ENDDO |
|---|
| 308 | ENDDO |
|---|
| 309 | |
|---|
| 310 | DO k = 1, nlayermx |
|---|
| 311 | DO i = 1, ngrid |
|---|
| 312 | local_q(i, k) = MAX(local_q(i, k), seuil_vap) |
|---|
| 313 | ENDDO |
|---|
| 314 | ENDDO |
|---|
| 315 | |
|---|
| 316 | DO k = 1, nlayermx |
|---|
| 317 | DO i = 1, ngrid |
|---|
| 318 | d_t(i,k) = local_t(i,k) - zt(i,k) |
|---|
| 319 | d_q(i,k) = local_q(i,k) - zq(i,k) |
|---|
| 320 | ENDDO |
|---|
| 321 | ENDDO |
|---|
| 322 | |
|---|
| 323 | ! now subroutine -----> GCM variables |
|---|
| 324 | DO k = 1, nlayermx |
|---|
| 325 | DO i = 1, ngrid |
|---|
| 326 | |
|---|
| 327 | pdtmana(i,k) = d_t(i,k)/ptimestep |
|---|
| 328 | pdqmana(i,k,i_h2o) = d_q(i,k)/ptimestep |
|---|
| 329 | pdqmana(i,k,i_ice) = d_ql(i,k)/ptimestep |
|---|
| 330 | |
|---|
| 331 | ENDDO |
|---|
| 332 | ENDDO |
|---|
| 333 | |
|---|
| 334 | |
|---|
| 335 | RETURN |
|---|
| 336 | END |
|---|