[253] | 1 | subroutine moistadj(t, pq, pplev, pplay, dtmana, dqmana, ptimestep, rneb) |
---|
[135] | 2 | |
---|
| 3 | use watercommon_h, only: To, RLVTT, RCPD |
---|
| 4 | |
---|
| 5 | implicit none |
---|
| 6 | |
---|
| 7 | |
---|
| 8 | !===================================================================== |
---|
| 9 | ! |
---|
| 10 | ! Purpose |
---|
| 11 | ! ------- |
---|
| 12 | ! Calculates moist convective adjustment by the method of Manabe. |
---|
| 13 | ! |
---|
| 14 | ! Authors |
---|
| 15 | ! ------- |
---|
| 16 | ! Adapted from the LMDTERRE code by R. Wordsworth (2010) |
---|
| 17 | ! Original author Z. X. Li (1993) |
---|
| 18 | ! |
---|
| 19 | !===================================================================== |
---|
| 20 | |
---|
| 21 | #include "dimensions.h" |
---|
| 22 | #include "dimphys.h" |
---|
| 23 | #include "tracer.h" |
---|
| 24 | #include "comcstfi.h" |
---|
| 25 | |
---|
| 26 | ! Pre-arguments (for universal model) |
---|
| 27 | real pq(ngridmx,nlayermx,nqmx) ! tracer (kg/kg) |
---|
| 28 | REAL pdq(ngridmx,nlayermx,nqmx) |
---|
| 29 | |
---|
| 30 | real dqmana(ngridmx,nlayermx,nqmx) ! tendency of tracers (kg/kg.s-1) |
---|
| 31 | REAL dtmana(ngridmx,nlayermx) ! temperature increment |
---|
| 32 | |
---|
| 33 | ! Arguments |
---|
| 34 | REAL t(ngridmx,nlayermx) ! temperature (K) |
---|
| 35 | REAL q(ngridmx,nlayermx) ! humidite specifique (kg/kg) |
---|
| 36 | REAL pplev(ngridmx,nlayermx+1) ! pression a inter-couche (Pa) |
---|
| 37 | REAL pplay(ngridmx,nlayermx) ! pression au milieu de couche (Pa) |
---|
| 38 | |
---|
| 39 | REAL d_t(ngridmx,nlayermx) ! temperature increment |
---|
| 40 | REAL d_q(ngridmx,nlayermx) ! incrementation pour vapeur d'eau |
---|
| 41 | REAL d_ql(ngridmx,nlayermx) ! incrementation pour l'eau liquide |
---|
| 42 | REAL rneb(ngridmx,nlayermx) ! cloud fraction |
---|
| 43 | REAL ptimestep |
---|
| 44 | |
---|
| 45 | ! REAL t_coup |
---|
| 46 | ! PARAMETER (t_coup=234.0) |
---|
| 47 | REAL seuil_vap |
---|
| 48 | PARAMETER (seuil_vap=1.0E-10) |
---|
| 49 | |
---|
| 50 | ! Local variables |
---|
| 51 | INTEGER i, k, iq |
---|
| 52 | INTEGER k1, k1p, k2, k2p |
---|
| 53 | LOGICAL itest(ngridmx) |
---|
| 54 | REAL delta_q(ngridmx, nlayermx) |
---|
| 55 | REAL cp_new_t(nlayermx) |
---|
| 56 | REAL cp_delta_t(nlayermx) |
---|
| 57 | REAL new_qb(nlayermx) |
---|
| 58 | REAL v_cptj(nlayermx), v_cptjk1, v_ssig |
---|
| 59 | REAL v_cptt(ngridmx,nlayermx), v_p, v_t |
---|
| 60 | REAL v_qs(ngridmx,nlayermx), v_qsd(ngridmx,nlayermx) |
---|
| 61 | REAL zq1(ngridmx), zq2(ngridmx) |
---|
| 62 | REAL gamcpdz(ngridmx,2:nlayermx) |
---|
| 63 | REAL zdp, zdpm |
---|
| 64 | |
---|
| 65 | REAL zsat ! super-saturation |
---|
| 66 | REAL zflo ! flotabilite |
---|
| 67 | |
---|
| 68 | REAL local_q(ngridmx,nlayermx),local_t(ngridmx,nlayermx) |
---|
| 69 | |
---|
| 70 | REAL zdelta, zcor, zcvm5 |
---|
| 71 | |
---|
| 72 | REAL dEtot, dqtot, masse ! conservation diagnostics |
---|
| 73 | real dL1tot, dL2tot |
---|
| 74 | |
---|
| 75 | ! Indices of water vapour and water ice tracers |
---|
| 76 | INTEGER,SAVE :: i_h2o=0 ! water vapour |
---|
| 77 | INTEGER,SAVE :: i_ice=0 ! water ice |
---|
| 78 | |
---|
| 79 | LOGICAL firstcall |
---|
| 80 | SAVE firstcall |
---|
| 81 | |
---|
| 82 | DATA firstcall /.TRUE./ |
---|
| 83 | |
---|
| 84 | IF (firstcall) THEN |
---|
| 85 | |
---|
| 86 | i_h2o=igcm_h2o_vap |
---|
| 87 | i_ice=igcm_h2o_ice |
---|
| 88 | |
---|
| 89 | write(*,*) "rain: i_ice=",i_ice |
---|
| 90 | write(*,*) " i_h2o=",i_h2o |
---|
| 91 | |
---|
| 92 | firstcall = .FALSE. |
---|
| 93 | ENDIF |
---|
| 94 | |
---|
| 95 | ! GCM -----> subroutine variables |
---|
| 96 | DO k = 1, nlayermx |
---|
| 97 | DO i = 1, ngridmx |
---|
| 98 | |
---|
| 99 | q(i,k) = pq(i,k,i_h2o) |
---|
| 100 | |
---|
| 101 | if(q(i,k).lt.0.)then |
---|
| 102 | q(i,k)=0.0 |
---|
| 103 | endif |
---|
| 104 | DO iq = 1, nqmx |
---|
| 105 | dqmana(i,k,iq)=0.0 |
---|
| 106 | ENDDO |
---|
| 107 | ENDDO |
---|
| 108 | ENDDO |
---|
| 109 | |
---|
| 110 | DO k = 1, nlayermx |
---|
[253] | 111 | DO i = 1, ngridmx |
---|
| 112 | local_q(i,k) = q(i,k) |
---|
| 113 | local_t(i,k) = t(i,k) |
---|
| 114 | rneb(i,k) = 0.0 |
---|
| 115 | d_ql(i,k) = 0.0 |
---|
| 116 | d_t(i,k) = 0.0 |
---|
| 117 | d_q(i,k) = 0.0 |
---|
| 118 | ENDDO |
---|
| 119 | new_qb(k)=0.0 |
---|
[135] | 120 | ENDDO |
---|
| 121 | |
---|
| 122 | ! Calculate v_cptt |
---|
| 123 | DO k = 1, nlayermx |
---|
| 124 | DO i = 1, ngridmx |
---|
| 125 | v_cptt(i,k) = RCPD * local_t(i,k) |
---|
| 126 | ENDDO |
---|
| 127 | ENDDO |
---|
| 128 | |
---|
| 129 | DO k = 1, nlayermx |
---|
| 130 | DO i = 1, ngridmx |
---|
| 131 | v_cptt(i,k) = RCPD * local_t(i,k) |
---|
| 132 | v_t = local_t(i,k) |
---|
| 133 | v_p = pplay(i,k) |
---|
| 134 | |
---|
[253] | 135 | call watersat(v_t,v_p,v_qs(i,k)) |
---|
[135] | 136 | call watersat_grad(v_t,v_qs(i,k),v_qsd(i,k)) |
---|
| 137 | ENDDO |
---|
| 138 | ENDDO |
---|
| 139 | |
---|
| 140 | ! TEST: RH DIAGNOSTIC |
---|
| 141 | ! DO k = 1, nlayermx |
---|
| 142 | ! DO i = 1, ngridmx |
---|
| 143 | ! v_t = local_t(i,k) |
---|
[253] | 144 | ! IF (v_t.LT.To) THEN |
---|
[135] | 145 | ! print*,'RHs=',q(i,k) / v_qs(i,k) |
---|
| 146 | ! ELSE |
---|
| 147 | ! print*,'RHl=',q(i,k) / v_qs(i,k) |
---|
| 148 | ! ENDIF |
---|
| 149 | ! ENDDO |
---|
| 150 | ! ENDDO |
---|
| 151 | |
---|
| 152 | ! Calculate Gamma * Cp * dz: (gamma is the critical gradient) |
---|
| 153 | DO k = 2, nlayermx |
---|
| 154 | DO i = 1, ngridmx |
---|
| 155 | zdp = pplev(i,k)-pplev(i,k+1) |
---|
| 156 | zdpm = pplev(i,k-1)-pplev(i,k) |
---|
| 157 | ! gamcpdz(i,k) = ( ( RD/RCPD /(zdpm+zdp) * |
---|
| 158 | gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * & |
---|
| 159 | (v_cptt(i,k-1)*zdpm + v_cptt(i,k)*zdp) & |
---|
| 160 | +RLVTT /(zdpm+zdp) * & |
---|
| 161 | (v_qs(i,k-1)*zdpm + v_qs(i,k)*zdp) & |
---|
| 162 | )* (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) ) & |
---|
| 163 | / (1.0+(v_qsd(i,k-1)*zdpm+ & |
---|
| 164 | v_qsd(i,k)*zdp)/(zdpm+zdp) ) |
---|
| 165 | ENDDO |
---|
| 166 | ENDDO |
---|
| 167 | |
---|
| 168 | !------------------------------------ modification of unstable profile |
---|
| 169 | DO 9999 i = 1, ngridmx |
---|
| 170 | itest(i) = .FALSE. |
---|
| 171 | |
---|
| 172 | ! print*,'we in the loop' |
---|
| 173 | ! stop |
---|
| 174 | |
---|
| 175 | k1 = 0 |
---|
| 176 | k2 = 1 |
---|
| 177 | |
---|
| 178 | 810 CONTINUE ! look for k1, the base of the column |
---|
| 179 | k2 = k2 + 1 |
---|
| 180 | IF (k2 .GT. nlayermx) GOTO 9999 |
---|
| 181 | zflo = v_cptt(i,k2-1) - v_cptt(i,k2) - gamcpdz(i,k2) |
---|
| 182 | zsat=(local_q(i,k2-1)-v_qs(i,k2-1))*(pplev(i,k2-1)-pplev(i,k2)) & |
---|
| 183 | +(local_q(i,k2)-v_qs(i,k2))*(pplev(i,k2)-pplev(i,k2+1)) |
---|
| 184 | |
---|
| 185 | IF ( zflo.LE.0.0 .OR. zsat.LE.0.0 ) GOTO 810 |
---|
| 186 | k1 = k2 - 1 |
---|
| 187 | itest(i) = .TRUE. |
---|
| 188 | |
---|
| 189 | 820 CONTINUE !! look for k2, the top of the column |
---|
| 190 | IF (k2 .EQ. nlayermx) GOTO 821 |
---|
| 191 | k2p = k2 + 1 |
---|
| 192 | zsat=zsat+(pplev(i,k2p)-pplev(i,k2p+1))*(local_q(i,k2p)-v_qs(i,k2p)) |
---|
| 193 | zflo = v_cptt(i,k2p-1) - v_cptt(i,k2p) - gamcpdz(i,k2p) |
---|
| 194 | |
---|
| 195 | IF (zflo.LE.0.0 .OR. zsat.LE.0.0) GOTO 821 |
---|
| 196 | k2 = k2p |
---|
| 197 | GOTO 820 |
---|
| 198 | 821 CONTINUE |
---|
| 199 | |
---|
| 200 | !------------------------------------------------------ local adjustment |
---|
| 201 | 830 CONTINUE ! actual adjustment |
---|
| 202 | v_cptj(k1) = 0.0 |
---|
| 203 | zdp = pplev(i,k1)-pplev(i,k1+1) |
---|
| 204 | v_cptjk1 = ( (1.0+v_qsd(i,k1))*(v_cptt(i,k1)+v_cptj(k1)) & |
---|
| 205 | + RLVTT*(local_q(i,k1)-v_qs(i,k1)) ) * zdp |
---|
| 206 | v_ssig = zdp * (1.0+v_qsd(i,k1)) |
---|
| 207 | |
---|
| 208 | k1p = k1 + 1 |
---|
| 209 | DO k = k1p, k2 |
---|
| 210 | zdp = pplev(i,k)-pplev(i,k+1) |
---|
| 211 | v_cptj(k) = v_cptj(k-1) + gamcpdz(i,k) |
---|
| 212 | v_cptjk1 = v_cptjk1 + zdp & |
---|
| 213 | * ( (1.0+v_qsd(i, k))*(v_cptt(i,k)+v_cptj(k)) & |
---|
| 214 | + RLVTT*(local_q(i,k)-v_qs(i,k)) ) |
---|
| 215 | v_ssig = v_ssig + zdp *(1.0+v_qsd(i,k)) |
---|
| 216 | ENDDO |
---|
| 217 | |
---|
| 218 | |
---|
| 219 | ! this right here is where the adjustment is done??? |
---|
| 220 | DO k = k1, k2 |
---|
| 221 | cp_new_t(k) = v_cptjk1/v_ssig - v_cptj(k) |
---|
| 222 | cp_delta_t(k) = cp_new_t(k) - v_cptt(i,k) |
---|
| 223 | new_qb(k) = v_qs(i,k) + v_qsd(i,k)*cp_delta_t(k)/RLVTT |
---|
| 224 | local_q(i,k) = new_qb(k) |
---|
| 225 | local_t(i,k) = cp_new_t(k) / RCPD |
---|
[253] | 226 | |
---|
| 227 | ! print*,'v_qs in loop=',v_qs |
---|
| 228 | ! print*,'v_qsd in loop=',v_qsd |
---|
| 229 | ! print*,'new_qb in loop=',new_qb |
---|
| 230 | ! print*,'cp_delta_t in loop=',cp_delta_t |
---|
[135] | 231 | ENDDO |
---|
| 232 | |
---|
[253] | 233 | |
---|
[135] | 234 | !--------------------------------------------------- sounding downwards |
---|
| 235 | ! -- we refine the prognostic variables in |
---|
| 236 | ! -- the layer about to be adjusted |
---|
| 237 | |
---|
| 238 | DO k = k1, k2 |
---|
| 239 | v_cptt(i,k) = RCPD * local_t(i,k) |
---|
| 240 | v_t = local_t(i,k) |
---|
| 241 | v_p = pplay(i,k) |
---|
| 242 | |
---|
| 243 | ! IF (v_t.LT.t_coup) THEN |
---|
| 244 | ! v_qs(i,k) = qsats(v_t) / v_p |
---|
| 245 | ! v_qsd(i,k) = dqsats(v_t,v_qs(i,k)) |
---|
| 246 | ! ELSE |
---|
| 247 | ! v_qs(i,k) = qsatl(v_t) / v_p |
---|
| 248 | ! v_qsd(i,k) = dqsatl(v_t,v_qs(i,k)) |
---|
| 249 | ! ENDIF |
---|
| 250 | |
---|
[253] | 251 | call watersat(v_t,v_p,v_qs(i,k)) |
---|
[135] | 252 | call watersat_grad(v_t,v_qs(i,k),v_qsd(i,k)) |
---|
| 253 | |
---|
| 254 | ENDDO |
---|
| 255 | DO k = 2, nlayermx |
---|
| 256 | zdpm = pplev(i,k-1) - pplev(i,k) |
---|
| 257 | zdp = pplev(i,k) - pplev(i,k+1) |
---|
| 258 | ! gamcpdz(i,k) = ( ( RD/RCPD /(zdpm+zdp) * |
---|
| 259 | gamcpdz(i,k) = ( ( R/RCPD /(zdpm+zdp) * & |
---|
| 260 | (v_cptt(i,k-1)*zdpm+v_cptt(i,k)*zdp) & |
---|
| 261 | +RLVTT /(zdpm+zdp) * & |
---|
| 262 | (v_qs(i,k-1)*zdpm+v_qs(i,k)*zdp) & |
---|
| 263 | )* (pplay(i,k-1)-pplay(i,k)) / pplev(i,k) ) & |
---|
| 264 | / (1.0+(v_qsd(i,k-1)*zdpm+v_qsd(i,k)*zdp) & |
---|
| 265 | /(zdpm+zdp) ) |
---|
| 266 | ENDDO |
---|
| 267 | |
---|
| 268 | ! Test to see if we've reached the bottom |
---|
| 269 | |
---|
| 270 | IF (k1 .EQ. 1) GOTO 841 ! yes we have! |
---|
| 271 | zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1) |
---|
| 272 | zsat=(local_q(i,k1-1)-v_qs(i,k1-1))*(pplev(i,k1-1)-pplev(i,k1)) & |
---|
| 273 | + (local_q(i,k1)-v_qs(i,k1))*(pplev(i,k1)-pplev(i,k1+1)) |
---|
| 274 | IF (zflo.LE.0.0 .OR. zsat.LE.0.0) GOTO 841 ! yes we have! |
---|
| 275 | |
---|
| 276 | 840 CONTINUE |
---|
| 277 | k1 = k1 - 1 |
---|
| 278 | IF (k1 .EQ. 1) GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
---|
| 279 | zsat = zsat + (local_q(i,k1-1)-v_qs(i,k1-1)) & |
---|
| 280 | *(pplev(i,k1-1)-pplev(i,k1)) |
---|
| 281 | zflo = v_cptt(i,k1-1) - v_cptt(i,k1) - gamcpdz(i,k1) |
---|
| 282 | IF (zflo.GT.0.0 .AND. zsat.GT.0.0) THEN |
---|
| 283 | GOTO 840 |
---|
| 284 | ELSE |
---|
| 285 | GOTO 830 ! GOTO 820 (a tester, Z.X.Li, mars 1995) |
---|
| 286 | ENDIF |
---|
| 287 | 841 CONTINUE |
---|
| 288 | |
---|
| 289 | GOTO 810 ! look for other layers higher up |
---|
| 290 | |
---|
| 291 | 9999 CONTINUE ! loop over all the points |
---|
| 292 | |
---|
| 293 | ! print*,'k1=',k1 |
---|
| 294 | ! print*,'k2=',k2 |
---|
| 295 | |
---|
| 296 | ! print*,'local_t=',local_t |
---|
| 297 | ! print*,'v_cptt=',v_cptt |
---|
| 298 | ! print*,'gamcpdz=',gamcpdz |
---|
| 299 | |
---|
| 300 | !----------------------------------------------------------------------- |
---|
| 301 | ! Determine the cloud fraction (hypothese: la nebulosite a lieu |
---|
| 302 | ! a l'endroit ou la vapeur d'eau est diminuee par l'ajustement): |
---|
| 303 | |
---|
| 304 | DO k = 1, nlayermx |
---|
| 305 | DO i = 1, ngridmx |
---|
| 306 | IF (itest(i)) THEN |
---|
| 307 | delta_q(i,k) = local_q(i,k) - q(i,k) |
---|
| 308 | IF (delta_q(i,k).LT.0.) rneb(i,k) = 1.0 |
---|
| 309 | ENDIF |
---|
| 310 | ENDDO |
---|
| 311 | ENDDO |
---|
| 312 | |
---|
| 313 | ! Distribuer l'eau condensee en eau liquide nuageuse (hypothese: |
---|
| 314 | ! l'eau liquide est distribuee aux endroits ou la vapeur d'eau |
---|
| 315 | ! diminue et d'une maniere proportionnelle a cet diminution): |
---|
| 316 | |
---|
| 317 | DO i = 1, ngridmx |
---|
| 318 | IF (itest(i)) THEN |
---|
| 319 | zq1(i) = 0.0 |
---|
| 320 | zq2(i) = 0.0 |
---|
| 321 | ENDIF |
---|
| 322 | ENDDO |
---|
| 323 | DO k = 1, nlayermx |
---|
| 324 | DO i = 1, ngridmx |
---|
| 325 | IF (itest(i)) THEN |
---|
| 326 | zdp = pplev(i,k)-pplev(i,k+1) |
---|
| 327 | zq1(i) = zq1(i) - delta_q(i,k) * zdp |
---|
| 328 | zq2(i) = zq2(i) - MIN(0.0, delta_q(i,k)) * zdp |
---|
| 329 | ENDIF |
---|
| 330 | ENDDO |
---|
| 331 | ENDDO |
---|
| 332 | DO k = 1, nlayermx |
---|
| 333 | DO i = 1, ngridmx |
---|
| 334 | IF (itest(i)) THEN |
---|
| 335 | IF (zq2(i).NE.0.0) & |
---|
| 336 | d_ql(i,k) = - MIN(0.0,delta_q(i,k))*zq1(i)/zq2(i) |
---|
| 337 | ENDIF |
---|
| 338 | ENDDO |
---|
| 339 | ENDDO |
---|
| 340 | |
---|
[253] | 341 | ! print*,'local_q BEFORE=',local_q |
---|
| 342 | |
---|
[135] | 343 | DO k = 1, nlayermx |
---|
| 344 | DO i = 1, ngridmx |
---|
| 345 | local_q(i, k) = MAX(local_q(i, k), seuil_vap) |
---|
| 346 | ENDDO |
---|
| 347 | ENDDO |
---|
| 348 | |
---|
| 349 | DO k = 1, nlayermx |
---|
| 350 | DO i = 1, ngridmx |
---|
| 351 | d_t(i,k) = local_t(i,k) - t(i,k) |
---|
| 352 | d_q(i,k) = local_q(i,k) - q(i,k) |
---|
| 353 | ENDDO |
---|
| 354 | ENDDO |
---|
| 355 | |
---|
| 356 | ! now subroutine -----> GCM variables |
---|
| 357 | DO k = 1, nlayermx |
---|
| 358 | DO i = 1, ngridmx |
---|
| 359 | |
---|
| 360 | dtmana(i,k) = d_t(i,k)/ptimestep |
---|
| 361 | dqmana(i,k,i_h2o) = d_q(i,k)/ptimestep |
---|
| 362 | dqmana(i,k,i_ice) = d_ql(i,k)/ptimestep |
---|
| 363 | |
---|
| 364 | ENDDO |
---|
| 365 | ENDDO |
---|
| 366 | |
---|
| 367 | ! print*,'IN MANABE:' |
---|
| 368 | ! print*,'pplev=',pplev |
---|
| 369 | ! print*,'t=',t |
---|
| 370 | ! print*,'d_t=',d_t |
---|
| 371 | ! print*,'d_q=',d_q |
---|
[253] | 372 | ! print*,'local_q=',local_q |
---|
| 373 | ! print*,'q=',q |
---|
| 374 | ! print*,'v_qs(i,k)=',v_qs |
---|
| 375 | ! print*,'v_qsd(i,k)=',v_qsd |
---|
| 376 | ! print*,'cp_delta_t(k)=',cp_delta_t |
---|
| 377 | |
---|
[135] | 378 | ! print*,'d_ql=',d_ql |
---|
[253] | 379 | ! print*,'delta_q=',delta_q |
---|
| 380 | ! print*,'zq1=',zq1 |
---|
| 381 | ! print*,'zq2=',zq2 |
---|
| 382 | !! print*,'i_h2o=',i_h2o |
---|
[135] | 383 | ! print*,'i_ice=',i_ice |
---|
[253] | 384 | ! |
---|
[135] | 385 | ! print*,'IN MANABE:' |
---|
| 386 | ! print*,'d_q=',d_q |
---|
| 387 | ! print*,'d_ql=',d_ql |
---|
| 388 | ! print*,'dtmana=',d_t |
---|
| 389 | ! stop |
---|
| 390 | ! print*,'gamcpdz at end=',gamcpdz |
---|
| 391 | ! stop |
---|
| 392 | |
---|
| 393 | ! Some conservation diagnostics... |
---|
[253] | 394 | ! dEtot=0.0 |
---|
| 395 | ! dL1tot=0.0 |
---|
| 396 | ! dL2tot=0.0 |
---|
| 397 | ! dqtot=0.0 |
---|
| 398 | ! masse=0.0 |
---|
| 399 | ! DO k = 1, nlayermx |
---|
| 400 | ! DO i = 1, ngridmx |
---|
| 401 | ! |
---|
| 402 | ! masse = (pplev(i,k) - pplev(i,k+1))/g |
---|
| 403 | ! |
---|
| 404 | ! dEtot = dEtot + cpp*d_t(i,k)*masse |
---|
| 405 | ! dL1tot = dL1tot + RLVTT*d_ql(i,k)*masse |
---|
| 406 | ! dL2tot = dL2tot + RLVTT*d_q(i,k)*masse ! is this line necessary? |
---|
| 407 | ! |
---|
| 408 | ! dqtot = dqtot + (d_q(i,k) + d_ql(i,k))*masse |
---|
| 409 | ! |
---|
| 410 | ! ENDDO |
---|
| 411 | ! ENDDO |
---|
[135] | 412 | |
---|
[253] | 413 | ! print*,'In manabe energy change=',dEtot |
---|
| 414 | ! print*,'In manabe condense energy change 1 =',dL1tot |
---|
| 415 | ! print*,'In manabe condense energy change 2 =',dL2tot |
---|
| 416 | ! print*,'In manabe water change=',dqtot |
---|
[135] | 417 | |
---|
| 418 | RETURN |
---|
[253] | 419 | END |
---|