[253] | 1 | subroutine largescale(dtime, paprs, pplay, t, pq, |
---|
| 2 | & pdt, d_t, d_q, d_ql, rneb, reffH2O) |
---|
| 3 | |
---|
| 4 | use watercommon_h, only : RLVTT, RCPD, RVTMP2 |
---|
| 5 | |
---|
| 6 | IMPLICIT none |
---|
| 7 | |
---|
| 8 | !================================================================== |
---|
| 9 | ! |
---|
| 10 | ! Purpose |
---|
| 11 | ! ------- |
---|
| 12 | ! Calculates large-scale (stratiform) H2O condensation. |
---|
| 13 | ! |
---|
| 14 | ! Authors |
---|
| 15 | ! ------- |
---|
| 16 | ! Adapted from the LMDTERRE code by R. Wordsworth (2009) |
---|
| 17 | ! Original author Z. X. Li (1993) |
---|
| 18 | ! |
---|
| 19 | !================================================================== |
---|
| 20 | |
---|
| 21 | #include "dimensions.h" |
---|
| 22 | #include "dimphys.h" |
---|
| 23 | #include "comcstfi.h" |
---|
| 24 | |
---|
| 25 | #include "fisice.h" |
---|
| 26 | #include "callkeys.h" |
---|
| 27 | #include "tracer.h" |
---|
| 28 | |
---|
| 29 | |
---|
| 30 | ! Pre-arguments (for universal model) |
---|
| 31 | real pq(ngridmx,nlayermx,nqmx) ! tracer (kg/kg) |
---|
| 32 | |
---|
| 33 | ! Arguments |
---|
| 34 | REAL dtime ! intervalle du temps (s) |
---|
| 35 | REAL paprs(ngridmx,nlayermx+1) ! pression a inter-couche |
---|
| 36 | REAL pplay(ngridmx,nlayermx) ! pression au milieu de couche |
---|
| 37 | REAL t(ngridmx,nlayermx) ! temperature (K) |
---|
| 38 | REAL q(ngridmx,nlayermx) ! humidite specifique (kg/kg) |
---|
| 39 | REAL d_t(ngridmx,nlayermx) ! incrementation de la temperature (K) |
---|
| 40 | REAL d_q(ngridmx,nlayermx) ! incrementation de la vapeur d'eau |
---|
| 41 | REAL d_ql(ngridmx,nlayermx) ! incrementation de l'eau liquide |
---|
| 42 | REAL rneb(ngridmx,nlayermx) ! fraction nuageuse |
---|
| 43 | REAL reffH2O(ngridmx,nlayermx) ! cloud particle mean radius (m) |
---|
| 44 | |
---|
| 45 | REAL pdt(ngridmx,nlayermx) ! added by Benjamin! |
---|
| 46 | |
---|
| 47 | ! Options du programme |
---|
| 48 | REAL ratqs ! determine largeur de la distribution de vapeur |
---|
| 49 | PARAMETER (ratqs=0.2) |
---|
| 50 | |
---|
| 51 | ! Variables locales |
---|
| 52 | REAL CBRT |
---|
| 53 | EXTERNAL CBRT |
---|
| 54 | INTEGER i, k |
---|
| 55 | REAL zt(ngridmx), zq(ngridmx) |
---|
| 56 | REAL zcond(ngridmx) |
---|
| 57 | REAL zdelq(ngridmx) |
---|
| 58 | REAL zqs(ngridmx), zdqs(ngridmx) |
---|
| 59 | |
---|
| 60 | REAL zcor(ngridmx), zdelta(ngridmx), zcvm5(ngridmx) |
---|
| 61 | REAL zx_q(ngridmx) |
---|
| 62 | |
---|
| 63 | ! GCM -----> subroutine variables, initialisation of outputs |
---|
| 64 | DO k = 1, nlayermx |
---|
| 65 | DO i = 1, ngridmx |
---|
| 66 | q(i,k) = pq(i,k,igcm_h2o_vap) |
---|
| 67 | d_t(i,k) = 0.0 |
---|
| 68 | d_q(i,k) = 0.0 |
---|
| 69 | d_ql(i,k) = 0.0 |
---|
| 70 | rneb(i,k) = 0.0 |
---|
| 71 | ENDDO |
---|
| 72 | ENDDO |
---|
| 73 | |
---|
| 74 | ! Boucle verticale (du haut vers le bas) |
---|
| 75 | DO 9999 k = nlayermx, 1, -1 |
---|
| 76 | |
---|
| 77 | DO i = 1, ngridmx |
---|
| 78 | zt(i)=t(i,k)+pdt(i,k)*dtime |
---|
| 79 | zq(i)=q(i,k) ! no need to add tendency as we're already dealing with qevap |
---|
| 80 | ENDDO |
---|
| 81 | |
---|
| 82 | ! Calculer la vapeur d'eau saturante et |
---|
| 83 | ! determiner la condensation partielle |
---|
| 84 | DO i = 1, ngridmx |
---|
| 85 | |
---|
| 86 | call watersat(zt(i),pplay(i,k),zqs(i)) |
---|
| 87 | call watersat_grad(zt(i),zqs(i),zdqs(i)) |
---|
| 88 | |
---|
| 89 | !IF (zt(i).LT.t_coup) THEN |
---|
| 90 | ! zqs(i) = qsats(zt(i))/pplay(i,k) |
---|
| 91 | ! zdqs(i) = dqsats(zt(i),zqs(i)) |
---|
| 92 | !ELSE |
---|
| 93 | ! zqs(i) = qsatl(zt(i))/pplay(i,k) |
---|
| 94 | ! zdqs(i) = dqsatl(zt(i),zqs(i)) |
---|
| 95 | !ENDIF |
---|
| 96 | |
---|
| 97 | zdelq(i) = ratqs * zq(i) |
---|
| 98 | rneb(i,k) = (zq(i)+zdelq(i)-zqs(i)) / (2.0*zdelq(i)) |
---|
| 99 | zcond(i) = 0.0 |
---|
| 100 | zx_q(i) = (zq(i)+zdelq(i)+zqs(i))/2.0 |
---|
| 101 | if (rneb(i,k) .LE. 0.0) zx_q(i) = 0.0 |
---|
| 102 | if (rneb(i,k) .GE. 1.0) zx_q(i) = zq(i) |
---|
| 103 | rneb(i,k) = MAX(0.0,MIN(1.0,rneb(i,k))) |
---|
| 104 | !zcond(i) = MAX(0.0,(zx_q(i)-zqs(i)*rneb(i,k)/(1.+zdqs(i)))) |
---|
| 105 | zcond(i) = MAX(0.0,(zx_q(i)-zqs(i))*rneb(i,k)/(1.+zdqs(i))) |
---|
| 106 | ! zcond always postive! cannot evaporate clouds! |
---|
| 107 | ! this is why we must reevaporate before largescale |
---|
| 108 | |
---|
| 109 | |
---|
| 110 | zcond(i) = zcond(i)/dtime ! added by RDW |
---|
| 111 | |
---|
| 112 | ! for varying particle size in rad tran and (possibly) sedimentation |
---|
[726] | 113 | if(aeroh2o.and.(.not.aerofixh2o)) then |
---|
| 114 | |
---|
[253] | 115 | reffH2O(i,k) = CBRT( 3*zcond(i)/( 4*Nmix_h2o*pi*rho_ice)) |
---|
| 116 | reffH2O(i,k) = max(reffH2O(i,k),1.e-8) |
---|
| 117 | endif |
---|
| 118 | |
---|
| 119 | ENDDO |
---|
| 120 | |
---|
| 121 | ! Tendances de t et q |
---|
| 122 | DO i = 1, ngridmx |
---|
| 123 | d_q(i,k) = - zcond(i) |
---|
| 124 | d_ql(i,k) = zcond(i) |
---|
| 125 | !d_t(i,k) = zcond(i)*RLVTT/cpp |
---|
| 126 | d_t(i,k) = zcond(i)*RLVTT/RCPD!/(1.0+RVTMP2*q(i,k)) |
---|
| 127 | ! this one is FAR TOO BIG |
---|
| 128 | ENDDO |
---|
| 129 | |
---|
| 130 | 9999 CONTINUE |
---|
| 131 | |
---|
| 132 | !print*,'qsat=',zqs |
---|
| 133 | !print*,'q=',q |
---|
| 134 | !print*,'dq=',d_q*dtime |
---|
| 135 | !print*,'dT in LS=',d_t*dtime |
---|
| 136 | |
---|
| 137 | !print*,'rice=',rice |
---|
| 138 | !print*,'rneb=',rneb |
---|
| 139 | |
---|
| 140 | return |
---|
| 141 | end |
---|