| 1 | subroutine largescale(ngrid,nlayer,nq,ptimestep, pplev, pplay, & |
|---|
| 2 | pt, pq, pdt, pdq, pdtlsc, pdqvaplsc, pdqliqlsc, rneb) |
|---|
| 3 | |
|---|
| 4 | |
|---|
| 5 | use ioipsl_getin_p_mod, only: getin_p |
|---|
| 6 | use watercommon_h, only : RLVTT, RCPD, RVTMP2, & |
|---|
| 7 | T_h2O_ice_clouds,T_h2O_ice_liq,Psat_waterDP,Lcpdqsat_waterDP |
|---|
| 8 | USE tracer_h |
|---|
| 9 | IMPLICIT none |
|---|
| 10 | |
|---|
| 11 | !================================================================== |
|---|
| 12 | ! |
|---|
| 13 | ! Purpose |
|---|
| 14 | ! ------- |
|---|
| 15 | ! Calculates large-scale (stratiform) H2O condensation. |
|---|
| 16 | ! |
|---|
| 17 | ! Authors |
|---|
| 18 | ! ------- |
|---|
| 19 | ! Adapted from the LMDTERRE code by R. Wordsworth (2009) |
|---|
| 20 | ! Original author Z. X. Li (1993) |
|---|
| 21 | ! |
|---|
| 22 | !================================================================== |
|---|
| 23 | |
|---|
| 24 | INTEGER ngrid,nlayer,nq |
|---|
| 25 | |
|---|
| 26 | ! Arguments |
|---|
| 27 | REAL ptimestep ! intervalle du temps (s) |
|---|
| 28 | REAL pplev(ngrid,nlayer+1) ! pression a inter-couche |
|---|
| 29 | REAL pplay(ngrid,nlayer) ! pression au milieu de couche |
|---|
| 30 | REAL pt(ngrid,nlayer) ! temperature (K) |
|---|
| 31 | REAL pq(ngrid,nlayer,nq) ! tracer mixing ratio (kg/kg) |
|---|
| 32 | REAL pdt(ngrid,nlayer) ! physical temperature tenedency (K/s) |
|---|
| 33 | REAL pdq(ngrid,nlayer,nq)! physical tracer tenedency (K/s) |
|---|
| 34 | REAL pdtlsc(ngrid,nlayer) ! incrementation de la temperature (K) |
|---|
| 35 | REAL pdqvaplsc(ngrid,nlayer) ! incrementation de la vapeur d'eau |
|---|
| 36 | REAL pdqliqlsc(ngrid,nlayer) ! incrementation de l'eau liquide |
|---|
| 37 | REAL rneb(ngrid,nlayer) ! fraction nuageuse |
|---|
| 38 | |
|---|
| 39 | |
|---|
| 40 | ! Options du programme |
|---|
| 41 | REAL, SAVE :: ratqs ! determine largeur de la distribution de vapeur |
|---|
| 42 | !$OMP THREADPRIVATE(ratqs) |
|---|
| 43 | |
|---|
| 44 | ! Variables locales |
|---|
| 45 | REAL CBRT |
|---|
| 46 | EXTERNAL CBRT |
|---|
| 47 | INTEGER i, k , nn |
|---|
| 48 | INTEGER,PARAMETER :: nitermax=5000 |
|---|
| 49 | DOUBLE PRECISION,PARAMETER :: alpha=.1,qthreshold=1.d-8 |
|---|
| 50 | ! JL13: if "careful, T<Tmin in psat water" appears often, you may want to stabilise the model by |
|---|
| 51 | ! decreasing alpha and increasing nitermax accordingly |
|---|
| 52 | DOUBLE PRECISION zt(ngrid), zq(ngrid) |
|---|
| 53 | DOUBLE PRECISION zcond(ngrid),zcond_iter |
|---|
| 54 | DOUBLE PRECISION zdelq(ngrid) |
|---|
| 55 | DOUBLE PRECISION zqs(ngrid), zdqs(ngrid) |
|---|
| 56 | DOUBLE PRECISION local_p,psat_tmp,dlnpsat_tmp,Lcp |
|---|
| 57 | |
|---|
| 58 | ! evaporation calculations |
|---|
| 59 | REAL dqevap(ngrid,nlayer),dtevap(ngrid,nlayer) |
|---|
| 60 | REAL qevap(ngrid,nlayer,nq) |
|---|
| 61 | REAL tevap(ngrid,nlayer) |
|---|
| 62 | |
|---|
| 63 | DOUBLE PRECISION zx_q(ngrid) |
|---|
| 64 | LOGICAL,SAVE :: firstcall=.true. |
|---|
| 65 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 66 | |
|---|
| 67 | |
|---|
| 68 | IF (firstcall) THEN |
|---|
| 69 | |
|---|
| 70 | write(*,*) "value for ratqs? " |
|---|
| 71 | ratqs=0.2 ! default value |
|---|
| 72 | call getin_p("ratqs",ratqs) |
|---|
| 73 | write(*,*) " ratqs = ",ratqs |
|---|
| 74 | |
|---|
| 75 | firstcall = .false. |
|---|
| 76 | ENDIF |
|---|
| 77 | |
|---|
| 78 | ! GCM -----> subroutine variables, initialisation of outputs |
|---|
| 79 | |
|---|
| 80 | pdtlsc(1:ngrid,1:nlayer) = 0.0 |
|---|
| 81 | pdqvaplsc(1:ngrid,1:nlayer) = 0.0 |
|---|
| 82 | pdqliqlsc(1:ngrid,1:nlayer) = 0.0 |
|---|
| 83 | rneb(1:ngrid,1:nlayer) = 0.0 |
|---|
| 84 | Lcp=RLVTT/RCPD |
|---|
| 85 | |
|---|
| 86 | |
|---|
| 87 | ! Evaporate cloud water/ice |
|---|
| 88 | call evap(ngrid,nlayer,nq,ptimestep,pt,pq,pdq,pdt,dqevap,dtevap,qevap,tevap) |
|---|
| 89 | ! note: we use qevap but not tevap in largescale/moistadj |
|---|
| 90 | ! otherwise is a big mess |
|---|
| 91 | |
|---|
| 92 | |
|---|
| 93 | ! Boucle verticale (du haut vers le bas) |
|---|
| 94 | DO k = nlayer, 1, -1 |
|---|
| 95 | |
|---|
| 96 | zt(1:ngrid)=pt(1:ngrid,k)+(pdt(1:ngrid,k)+dtevap(1:ngrid,k))*ptimestep |
|---|
| 97 | zq(1:ngrid)=qevap(1:ngrid,k,igcm_h2o_vap) !liquid water is included in qevap |
|---|
| 98 | |
|---|
| 99 | ! Calculer la vapeur d'eau saturante et |
|---|
| 100 | ! determiner la condensation partielle |
|---|
| 101 | DO i = 1, ngrid |
|---|
| 102 | |
|---|
| 103 | local_p=pplay(i,k) |
|---|
| 104 | if(zt(i).le.15.) then |
|---|
| 105 | print*,'in lsc',i,k,zt(i) |
|---|
| 106 | ! zt(i)=15. ! check too low temperatures |
|---|
| 107 | endif |
|---|
| 108 | call Psat_waterDP(zt(i),local_p,psat_tmp,zqs(i)) |
|---|
| 109 | |
|---|
| 110 | zdelq(i) = MAX(MIN(ratqs * zq(i),1.-zq(i)),1.d-12) |
|---|
| 111 | rneb(i,k) = (zq(i)+zdelq(i)-zqs(i)) / (2.0*zdelq(i)) |
|---|
| 112 | #ifdef MESOSCALE |
|---|
| 113 | if (rneb(i,k).lt.0.01) then !no clouds MESO |
|---|
| 114 | #else |
|---|
| 115 | if (rneb(i,k).lt.0.) then !no clouds |
|---|
| 116 | #endif |
|---|
| 117 | |
|---|
| 118 | rneb(i,k)=0. |
|---|
| 119 | zcond(i)=0. |
|---|
| 120 | |
|---|
| 121 | else if ((rneb(i,k).gt.0.99).or.(ratqs.lt.1.e-6)) then !complete cloud cover, we start without evaporating |
|---|
| 122 | rneb(i,k)=1. |
|---|
| 123 | zt(i)=pt(i,k)+pdt(i,k)*ptimestep |
|---|
| 124 | zx_q(i) = pq(i,k,igcm_h2o_vap)+pdq(i,k,igcm_h2o_vap)*ptimestep |
|---|
| 125 | dqevap(i,k)=0. |
|---|
| 126 | ! iterative process to stabilize the scheme when large water amounts JL12 |
|---|
| 127 | zcond(i) = 0.0d0 |
|---|
| 128 | Do nn=1,nitermax |
|---|
| 129 | call Psat_waterDP(zt(i),local_p,psat_tmp,zqs(i)) |
|---|
| 130 | call Lcpdqsat_waterDP(zt(i),local_p,psat_tmp,zqs(i),zdqs(i),dlnpsat_tmp) |
|---|
| 131 | zcond_iter = alpha*(zx_q(i)-zqs(i))/(1.d0+zdqs(i)) |
|---|
| 132 | !zcond can be negative here |
|---|
| 133 | zx_q(i) = zx_q(i) - zcond_iter |
|---|
| 134 | zcond(i) = zcond(i) + zcond_iter |
|---|
| 135 | zt(i) = zt(i) + zcond_iter*Lcp |
|---|
| 136 | if (ABS(zcond_iter/alpha/zqs(i)).lt.qthreshold) exit |
|---|
| 137 | ! if (ABS(zcond_iter/alpha).lt.qthreshold) exit |
|---|
| 138 | if (nn.eq.nitermax) print*,'itermax in largescale' |
|---|
| 139 | End do ! niter |
|---|
| 140 | zcond(i)=MAX(zcond(i),-(pq(i,k,igcm_h2o_ice)+pdq(i,k,igcm_h2o_ice)*ptimestep)) |
|---|
| 141 | |
|---|
| 142 | else !standard case |
|---|
| 143 | #ifdef MESOSCALE |
|---|
| 144 | rneb(i,k)=1. !LES/MESO case |
|---|
| 145 | zx_q(i) = (zq(i)+zqs(i))/2.0d0 ! LES |
|---|
| 146 | #else |
|---|
| 147 | zx_q(i) = (zq(i)+zdelq(i)+zqs(i))/2.0d0 !water vapor in cloudy sky |
|---|
| 148 | #endif |
|---|
| 149 | ! iterative process to stabilize the scheme when large water amounts JL12 |
|---|
| 150 | zcond(i) = 0.0d0 |
|---|
| 151 | Do nn=1,nitermax |
|---|
| 152 | call Lcpdqsat_waterDP(zt(i),local_p,psat_tmp,zqs(i),zdqs(i),dlnpsat_tmp) |
|---|
| 153 | zcond_iter = MAX(0.0d0,alpha*(zx_q(i)-zqs(i))/(1.d0+zdqs(i))) |
|---|
| 154 | !zcond always postive! cannot evaporate clouds! |
|---|
| 155 | !this is why we must reevaporate before largescale |
|---|
| 156 | zx_q(i) = zx_q(i) - zcond_iter |
|---|
| 157 | zcond(i) = zcond(i) + zcond_iter |
|---|
| 158 | if (ABS(zcond_iter/alpha/zqs(i)).lt.qthreshold) exit |
|---|
| 159 | ! if (ABS(zcond_iter/alpha).lt.qthreshold) exit |
|---|
| 160 | zt(i) = zt(i) + zcond_iter*Lcp*rneb(i,k) |
|---|
| 161 | call Psat_waterDP(zt(i),local_p,psat_tmp,zqs(i)) |
|---|
| 162 | if (nn.eq.nitermax) print*,'itermax in largescale' |
|---|
| 163 | End do ! niter |
|---|
| 164 | |
|---|
| 165 | Endif |
|---|
| 166 | |
|---|
| 167 | zcond(i) = zcond(i)*rneb(i,k)/ptimestep ! JL12 |
|---|
| 168 | |
|---|
| 169 | ENDDO |
|---|
| 170 | |
|---|
| 171 | ! Tendances de t et q |
|---|
| 172 | pdqvaplsc(1:ngrid,k) = dqevap(1:ngrid,k) - zcond(1:ngrid) |
|---|
| 173 | pdqliqlsc(1:ngrid,k) = - pdqvaplsc(1:ngrid,k) |
|---|
| 174 | pdtlsc(1:ngrid,k) = pdqliqlsc(1:ngrid,k)*real(Lcp) |
|---|
| 175 | |
|---|
| 176 | Enddo ! k= nlayer, 1, -1 |
|---|
| 177 | |
|---|
| 178 | |
|---|
| 179 | end |
|---|