[1308] | 1 | subroutine largescale(ngrid,nlayer,nq,ptimestep, pplev, pplay, & |
---|
| 2 | pt, pq, pdt, pdq, pdtlsc, pdqvaplsc, pdqliqlsc, rneb) |
---|
[728] | 3 | |
---|
[1016] | 4 | |
---|
[1521] | 5 | use ioipsl_getin_p_mod, only: getin_p |
---|
[728] | 6 | use watercommon_h, only : RLVTT, RCPD, RVTMP2, & |
---|
[1993] | 7 | T_h2O_ice_clouds,T_h2O_ice_liq,Psat_water,Lcpdqsat_water |
---|
[787] | 8 | USE tracer_h |
---|
[728] | 9 | IMPLICIT none |
---|
| 10 | |
---|
| 11 | !================================================================== |
---|
| 12 | ! |
---|
| 13 | ! Purpose |
---|
| 14 | ! ------- |
---|
| 15 | ! Calculates large-scale (stratiform) H2O condensation. |
---|
| 16 | ! |
---|
| 17 | ! Authors |
---|
| 18 | ! ------- |
---|
| 19 | ! Adapted from the LMDTERRE code by R. Wordsworth (2009) |
---|
| 20 | ! Original author Z. X. Li (1993) |
---|
| 21 | ! |
---|
| 22 | !================================================================== |
---|
| 23 | |
---|
[1308] | 24 | INTEGER ngrid,nlayer,nq |
---|
[728] | 25 | |
---|
| 26 | ! Arguments |
---|
| 27 | REAL ptimestep ! intervalle du temps (s) |
---|
[1308] | 28 | REAL pplev(ngrid,nlayer+1) ! pression a inter-couche |
---|
| 29 | REAL pplay(ngrid,nlayer) ! pression au milieu de couche |
---|
| 30 | REAL pt(ngrid,nlayer) ! temperature (K) |
---|
| 31 | REAL pq(ngrid,nlayer,nq) ! tracer mixing ratio (kg/kg) |
---|
| 32 | REAL pdt(ngrid,nlayer) ! physical temperature tenedency (K/s) |
---|
| 33 | REAL pdq(ngrid,nlayer,nq)! physical tracer tenedency (K/s) |
---|
| 34 | REAL pdtlsc(ngrid,nlayer) ! incrementation de la temperature (K) |
---|
| 35 | REAL pdqvaplsc(ngrid,nlayer) ! incrementation de la vapeur d'eau |
---|
| 36 | REAL pdqliqlsc(ngrid,nlayer) ! incrementation de l'eau liquide |
---|
| 37 | REAL rneb(ngrid,nlayer) ! fraction nuageuse |
---|
[728] | 38 | |
---|
| 39 | |
---|
| 40 | ! Options du programme |
---|
[1016] | 41 | REAL, SAVE :: ratqs ! determine largeur de la distribution de vapeur |
---|
[2871] | 42 | REAL, SAVE :: qvap_deep ! deep mixing ratio of water vapor when simulating bottom less planets |
---|
| 43 | !$OMP THREADPRIVATE(ratqs, qvap_deep) |
---|
[728] | 44 | |
---|
| 45 | ! Variables locales |
---|
| 46 | REAL CBRT |
---|
| 47 | EXTERNAL CBRT |
---|
| 48 | INTEGER i, k , nn |
---|
[1016] | 49 | INTEGER,PARAMETER :: nitermax=5000 |
---|
| 50 | DOUBLE PRECISION,PARAMETER :: alpha=.1,qthreshold=1.d-8 |
---|
[875] | 51 | ! JL13: if "careful, T<Tmin in psat water" appears often, you may want to stabilise the model by |
---|
| 52 | ! decreasing alpha and increasing nitermax accordingly |
---|
[1993] | 53 | DOUBLE PRECISION zq(ngrid) |
---|
[1016] | 54 | DOUBLE PRECISION zcond(ngrid),zcond_iter |
---|
| 55 | DOUBLE PRECISION zdelq(ngrid) |
---|
[1993] | 56 | DOUBLE PRECISION zqs(ngrid) |
---|
| 57 | real zt(ngrid),local_p,psat_tmp,dlnpsat_tmp,Lcp,zqs_temp,zdqs |
---|
[728] | 58 | |
---|
| 59 | ! evaporation calculations |
---|
[1308] | 60 | REAL dqevap(ngrid,nlayer),dtevap(ngrid,nlayer) |
---|
| 61 | REAL qevap(ngrid,nlayer,nq) |
---|
| 62 | REAL tevap(ngrid,nlayer) |
---|
[728] | 63 | |
---|
[1016] | 64 | DOUBLE PRECISION zx_q(ngrid) |
---|
| 65 | LOGICAL,SAVE :: firstcall=.true. |
---|
[1315] | 66 | !$OMP THREADPRIVATE(firstcall) |
---|
[728] | 67 | |
---|
[1016] | 68 | |
---|
| 69 | IF (firstcall) THEN |
---|
| 70 | |
---|
| 71 | write(*,*) "value for ratqs? " |
---|
| 72 | ratqs=0.2 ! default value |
---|
[1315] | 73 | call getin_p("ratqs",ratqs) |
---|
[1016] | 74 | write(*,*) " ratqs = ",ratqs |
---|
| 75 | |
---|
[2871] | 76 | write(*,*) "Deep water vapor mixing ratio ? (no effect if negative) " |
---|
| 77 | qvap_deep=-1. ! default value |
---|
| 78 | call getin_p("qvap_deep",qvap_deep) |
---|
| 79 | write(*,*) " qvap_deep = ",qvap_deep |
---|
| 80 | |
---|
[1016] | 81 | firstcall = .false. |
---|
| 82 | ENDIF |
---|
| 83 | |
---|
[728] | 84 | ! GCM -----> subroutine variables, initialisation of outputs |
---|
| 85 | |
---|
[1308] | 86 | pdtlsc(1:ngrid,1:nlayer) = 0.0 |
---|
| 87 | pdqvaplsc(1:ngrid,1:nlayer) = 0.0 |
---|
| 88 | pdqliqlsc(1:ngrid,1:nlayer) = 0.0 |
---|
| 89 | rneb(1:ngrid,1:nlayer) = 0.0 |
---|
[1016] | 90 | Lcp=RLVTT/RCPD |
---|
[728] | 91 | |
---|
| 92 | |
---|
| 93 | ! Evaporate cloud water/ice |
---|
[1308] | 94 | call evap(ngrid,nlayer,nq,ptimestep,pt,pq,pdq,pdt,dqevap,dtevap,qevap,tevap) |
---|
[728] | 95 | ! note: we use qevap but not tevap in largescale/moistadj |
---|
| 96 | ! otherwise is a big mess |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | ! Boucle verticale (du haut vers le bas) |
---|
[1308] | 100 | DO k = nlayer, 1, -1 |
---|
[728] | 101 | |
---|
[787] | 102 | zt(1:ngrid)=pt(1:ngrid,k)+(pdt(1:ngrid,k)+dtevap(1:ngrid,k))*ptimestep |
---|
| 103 | zq(1:ngrid)=qevap(1:ngrid,k,igcm_h2o_vap) !liquid water is included in qevap |
---|
[728] | 104 | |
---|
| 105 | ! Calculer la vapeur d'eau saturante et |
---|
| 106 | ! determiner la condensation partielle |
---|
[787] | 107 | DO i = 1, ngrid |
---|
[728] | 108 | |
---|
[1016] | 109 | local_p=pplay(i,k) |
---|
[773] | 110 | if(zt(i).le.15.) then |
---|
[786] | 111 | print*,'in lsc',i,k,zt(i) |
---|
| 112 | ! zt(i)=15. ! check too low temperatures |
---|
[773] | 113 | endif |
---|
[1993] | 114 | call Psat_water(zt(i),local_p,psat_tmp,zqs_temp) |
---|
| 115 | zqs(i)=zqs_temp |
---|
[728] | 116 | |
---|
[1016] | 117 | zdelq(i) = MAX(MIN(ratqs * zq(i),1.-zq(i)),1.d-12) |
---|
[786] | 118 | rneb(i,k) = (zq(i)+zdelq(i)-zqs(i)) / (2.0*zdelq(i)) |
---|
[1830] | 119 | #ifdef MESOSCALE |
---|
| 120 | if (rneb(i,k).lt.0.01) then !no clouds MESO |
---|
| 121 | #else |
---|
[786] | 122 | if (rneb(i,k).lt.0.) then !no clouds |
---|
[1830] | 123 | #endif |
---|
[786] | 124 | |
---|
| 125 | rneb(i,k)=0. |
---|
| 126 | zcond(i)=0. |
---|
| 127 | |
---|
[1016] | 128 | else if ((rneb(i,k).gt.0.99).or.(ratqs.lt.1.e-6)) then !complete cloud cover, we start without evaporating |
---|
[786] | 129 | rneb(i,k)=1. |
---|
| 130 | zt(i)=pt(i,k)+pdt(i,k)*ptimestep |
---|
| 131 | zx_q(i) = pq(i,k,igcm_h2o_vap)+pdq(i,k,igcm_h2o_vap)*ptimestep |
---|
| 132 | dqevap(i,k)=0. |
---|
| 133 | ! iterative process to stabilize the scheme when large water amounts JL12 |
---|
[1016] | 134 | zcond(i) = 0.0d0 |
---|
[786] | 135 | Do nn=1,nitermax |
---|
[1993] | 136 | call Psat_water(zt(i),local_p,psat_tmp,zqs_temp) |
---|
| 137 | zqs(i)=zqs_temp |
---|
| 138 | call Lcpdqsat_water(zt(i),local_p,psat_tmp,zqs_temp,zdqs,dlnpsat_tmp) |
---|
| 139 | zcond_iter = alpha*(zx_q(i)-zqs(i))/(1.d0+zdqs) |
---|
[786] | 140 | !zcond can be negative here |
---|
| 141 | zx_q(i) = zx_q(i) - zcond_iter |
---|
| 142 | zcond(i) = zcond(i) + zcond_iter |
---|
[1016] | 143 | zt(i) = zt(i) + zcond_iter*Lcp |
---|
| 144 | if (ABS(zcond_iter/alpha/zqs(i)).lt.qthreshold) exit |
---|
| 145 | ! if (ABS(zcond_iter/alpha).lt.qthreshold) exit |
---|
| 146 | if (nn.eq.nitermax) print*,'itermax in largescale' |
---|
[786] | 147 | End do ! niter |
---|
| 148 | zcond(i)=MAX(zcond(i),-(pq(i,k,igcm_h2o_ice)+pdq(i,k,igcm_h2o_ice)*ptimestep)) |
---|
| 149 | |
---|
| 150 | else !standard case |
---|
[1830] | 151 | #ifdef MESOSCALE |
---|
| 152 | rneb(i,k)=1. !LES/MESO case |
---|
| 153 | zx_q(i) = (zq(i)+zqs(i))/2.0d0 ! LES |
---|
| 154 | #else |
---|
[1016] | 155 | zx_q(i) = (zq(i)+zdelq(i)+zqs(i))/2.0d0 !water vapor in cloudy sky |
---|
[1830] | 156 | #endif |
---|
[786] | 157 | ! iterative process to stabilize the scheme when large water amounts JL12 |
---|
[1016] | 158 | zcond(i) = 0.0d0 |
---|
[2073] | 159 | Do nn=1,nitermax |
---|
| 160 | ! use zqs_temp and not zqs(i) to force type conversion |
---|
| 161 | ! -- might not be a good solution, actually |
---|
| 162 | ! but this is compliant with "complete cloud cover" case above |
---|
| 163 | call Lcpdqsat_water(zt(i),local_p,psat_tmp,zqs_temp,zdqs,dlnpsat_tmp) |
---|
[1993] | 164 | zcond_iter = MAX(0.0d0,alpha*(zx_q(i)-zqs(i))/(1.d0+zdqs)) |
---|
[786] | 165 | !zcond always postive! cannot evaporate clouds! |
---|
| 166 | !this is why we must reevaporate before largescale |
---|
| 167 | zx_q(i) = zx_q(i) - zcond_iter |
---|
| 168 | zcond(i) = zcond(i) + zcond_iter |
---|
[1016] | 169 | if (ABS(zcond_iter/alpha/zqs(i)).lt.qthreshold) exit |
---|
| 170 | ! if (ABS(zcond_iter/alpha).lt.qthreshold) exit |
---|
| 171 | zt(i) = zt(i) + zcond_iter*Lcp*rneb(i,k) |
---|
[1993] | 172 | call Psat_water(zt(i),local_p,psat_tmp,zqs_temp) |
---|
| 173 | zqs(i)=zqs_temp |
---|
[1016] | 174 | if (nn.eq.nitermax) print*,'itermax in largescale' |
---|
[786] | 175 | End do ! niter |
---|
| 176 | |
---|
[728] | 177 | Endif |
---|
| 178 | |
---|
[786] | 179 | zcond(i) = zcond(i)*rneb(i,k)/ptimestep ! JL12 |
---|
[728] | 180 | |
---|
| 181 | ENDDO |
---|
| 182 | |
---|
| 183 | ! Tendances de t et q |
---|
[787] | 184 | pdqvaplsc(1:ngrid,k) = dqevap(1:ngrid,k) - zcond(1:ngrid) |
---|
| 185 | pdqliqlsc(1:ngrid,k) = - pdqvaplsc(1:ngrid,k) |
---|
[1993] | 186 | pdtlsc(1:ngrid,k) = pdqliqlsc(1:ngrid,k)*Lcp |
---|
[728] | 187 | |
---|
[1308] | 188 | Enddo ! k= nlayer, 1, -1 |
---|
[728] | 189 | |
---|
[2871] | 190 | if (qvap_deep >= 0.) then |
---|
| 191 | !brings lower vapor ratio to a fixed value. |
---|
| 192 | ! tau=3600. seems too fast |
---|
| 193 | pdqvaplsc(1:ngrid,1) = (qvap_deep - pq(1:ngrid,1,igcm_h2o_vap))/14400. - pdq(1:ngrid,1,igcm_h2o_vap) |
---|
| 194 | endif |
---|
| 195 | |
---|
| 196 | |
---|
[728] | 197 | end |
---|