[1308] | 1 | subroutine largescale(ngrid,nlayer,nq,ptimestep, pplev, pplay, & |
---|
| 2 | pt, pq, pdt, pdq, pdtlsc, pdqvaplsc, pdqliqlsc, rneb) |
---|
[728] | 3 | |
---|
[1016] | 4 | |
---|
[1521] | 5 | use ioipsl_getin_p_mod, only: getin_p |
---|
[728] | 6 | use watercommon_h, only : RLVTT, RCPD, RVTMP2, & |
---|
[1016] | 7 | T_h2O_ice_clouds,T_h2O_ice_liq,Psat_waterDP,Lcpdqsat_waterDP |
---|
[787] | 8 | USE tracer_h |
---|
[728] | 9 | IMPLICIT none |
---|
| 10 | |
---|
| 11 | !================================================================== |
---|
| 12 | ! |
---|
| 13 | ! Purpose |
---|
| 14 | ! ------- |
---|
| 15 | ! Calculates large-scale (stratiform) H2O condensation. |
---|
| 16 | ! |
---|
| 17 | ! Authors |
---|
| 18 | ! ------- |
---|
| 19 | ! Adapted from the LMDTERRE code by R. Wordsworth (2009) |
---|
| 20 | ! Original author Z. X. Li (1993) |
---|
| 21 | ! |
---|
| 22 | !================================================================== |
---|
| 23 | |
---|
[1308] | 24 | INTEGER ngrid,nlayer,nq |
---|
[728] | 25 | |
---|
| 26 | ! Arguments |
---|
| 27 | REAL ptimestep ! intervalle du temps (s) |
---|
[1308] | 28 | REAL pplev(ngrid,nlayer+1) ! pression a inter-couche |
---|
| 29 | REAL pplay(ngrid,nlayer) ! pression au milieu de couche |
---|
| 30 | REAL pt(ngrid,nlayer) ! temperature (K) |
---|
| 31 | REAL pq(ngrid,nlayer,nq) ! tracer mixing ratio (kg/kg) |
---|
| 32 | REAL pdt(ngrid,nlayer) ! physical temperature tenedency (K/s) |
---|
| 33 | REAL pdq(ngrid,nlayer,nq)! physical tracer tenedency (K/s) |
---|
| 34 | REAL pdtlsc(ngrid,nlayer) ! incrementation de la temperature (K) |
---|
| 35 | REAL pdqvaplsc(ngrid,nlayer) ! incrementation de la vapeur d'eau |
---|
| 36 | REAL pdqliqlsc(ngrid,nlayer) ! incrementation de l'eau liquide |
---|
| 37 | REAL rneb(ngrid,nlayer) ! fraction nuageuse |
---|
[728] | 38 | |
---|
| 39 | |
---|
| 40 | ! Options du programme |
---|
[1016] | 41 | REAL, SAVE :: ratqs ! determine largeur de la distribution de vapeur |
---|
[1315] | 42 | !$OMP THREADPRIVATE(ratqs) |
---|
[728] | 43 | |
---|
| 44 | ! Variables locales |
---|
| 45 | REAL CBRT |
---|
| 46 | EXTERNAL CBRT |
---|
| 47 | INTEGER i, k , nn |
---|
[1016] | 48 | INTEGER,PARAMETER :: nitermax=5000 |
---|
| 49 | DOUBLE PRECISION,PARAMETER :: alpha=.1,qthreshold=1.d-8 |
---|
[875] | 50 | ! JL13: if "careful, T<Tmin in psat water" appears often, you may want to stabilise the model by |
---|
| 51 | ! decreasing alpha and increasing nitermax accordingly |
---|
[1016] | 52 | DOUBLE PRECISION zt(ngrid), zq(ngrid) |
---|
| 53 | DOUBLE PRECISION zcond(ngrid),zcond_iter |
---|
| 54 | DOUBLE PRECISION zdelq(ngrid) |
---|
| 55 | DOUBLE PRECISION zqs(ngrid), zdqs(ngrid) |
---|
| 56 | DOUBLE PRECISION local_p,psat_tmp,dlnpsat_tmp,Lcp |
---|
[728] | 57 | |
---|
| 58 | ! evaporation calculations |
---|
[1308] | 59 | REAL dqevap(ngrid,nlayer),dtevap(ngrid,nlayer) |
---|
| 60 | REAL qevap(ngrid,nlayer,nq) |
---|
| 61 | REAL tevap(ngrid,nlayer) |
---|
[728] | 62 | |
---|
[1016] | 63 | DOUBLE PRECISION zx_q(ngrid) |
---|
| 64 | LOGICAL,SAVE :: firstcall=.true. |
---|
[1315] | 65 | !$OMP THREADPRIVATE(firstcall) |
---|
[728] | 66 | |
---|
[1016] | 67 | |
---|
| 68 | IF (firstcall) THEN |
---|
| 69 | |
---|
| 70 | write(*,*) "value for ratqs? " |
---|
| 71 | ratqs=0.2 ! default value |
---|
[1315] | 72 | call getin_p("ratqs",ratqs) |
---|
[1016] | 73 | write(*,*) " ratqs = ",ratqs |
---|
| 74 | |
---|
| 75 | firstcall = .false. |
---|
| 76 | ENDIF |
---|
| 77 | |
---|
[728] | 78 | ! GCM -----> subroutine variables, initialisation of outputs |
---|
| 79 | |
---|
[1308] | 80 | pdtlsc(1:ngrid,1:nlayer) = 0.0 |
---|
| 81 | pdqvaplsc(1:ngrid,1:nlayer) = 0.0 |
---|
| 82 | pdqliqlsc(1:ngrid,1:nlayer) = 0.0 |
---|
| 83 | rneb(1:ngrid,1:nlayer) = 0.0 |
---|
[1016] | 84 | Lcp=RLVTT/RCPD |
---|
[728] | 85 | |
---|
| 86 | |
---|
| 87 | ! Evaporate cloud water/ice |
---|
[1308] | 88 | call evap(ngrid,nlayer,nq,ptimestep,pt,pq,pdq,pdt,dqevap,dtevap,qevap,tevap) |
---|
[728] | 89 | ! note: we use qevap but not tevap in largescale/moistadj |
---|
| 90 | ! otherwise is a big mess |
---|
| 91 | |
---|
| 92 | |
---|
| 93 | ! Boucle verticale (du haut vers le bas) |
---|
[1308] | 94 | DO k = nlayer, 1, -1 |
---|
[728] | 95 | |
---|
[787] | 96 | zt(1:ngrid)=pt(1:ngrid,k)+(pdt(1:ngrid,k)+dtevap(1:ngrid,k))*ptimestep |
---|
| 97 | zq(1:ngrid)=qevap(1:ngrid,k,igcm_h2o_vap) !liquid water is included in qevap |
---|
[728] | 98 | |
---|
| 99 | ! Calculer la vapeur d'eau saturante et |
---|
| 100 | ! determiner la condensation partielle |
---|
[787] | 101 | DO i = 1, ngrid |
---|
[728] | 102 | |
---|
[1016] | 103 | local_p=pplay(i,k) |
---|
[773] | 104 | if(zt(i).le.15.) then |
---|
[786] | 105 | print*,'in lsc',i,k,zt(i) |
---|
| 106 | ! zt(i)=15. ! check too low temperatures |
---|
[773] | 107 | endif |
---|
[1016] | 108 | call Psat_waterDP(zt(i),local_p,psat_tmp,zqs(i)) |
---|
[728] | 109 | |
---|
[1016] | 110 | zdelq(i) = MAX(MIN(ratqs * zq(i),1.-zq(i)),1.d-12) |
---|
[786] | 111 | rneb(i,k) = (zq(i)+zdelq(i)-zqs(i)) / (2.0*zdelq(i)) |
---|
| 112 | if (rneb(i,k).lt.0.) then !no clouds |
---|
| 113 | |
---|
| 114 | rneb(i,k)=0. |
---|
| 115 | zcond(i)=0. |
---|
| 116 | |
---|
[1016] | 117 | else if ((rneb(i,k).gt.0.99).or.(ratqs.lt.1.e-6)) then !complete cloud cover, we start without evaporating |
---|
[786] | 118 | rneb(i,k)=1. |
---|
| 119 | zt(i)=pt(i,k)+pdt(i,k)*ptimestep |
---|
| 120 | zx_q(i) = pq(i,k,igcm_h2o_vap)+pdq(i,k,igcm_h2o_vap)*ptimestep |
---|
| 121 | dqevap(i,k)=0. |
---|
| 122 | ! iterative process to stabilize the scheme when large water amounts JL12 |
---|
[1016] | 123 | zcond(i) = 0.0d0 |
---|
[786] | 124 | Do nn=1,nitermax |
---|
[1016] | 125 | call Psat_waterDP(zt(i),local_p,psat_tmp,zqs(i)) |
---|
| 126 | call Lcpdqsat_waterDP(zt(i),local_p,psat_tmp,zqs(i),zdqs(i),dlnpsat_tmp) |
---|
| 127 | zcond_iter = alpha*(zx_q(i)-zqs(i))/(1.d0+zdqs(i)) |
---|
[786] | 128 | !zcond can be negative here |
---|
| 129 | zx_q(i) = zx_q(i) - zcond_iter |
---|
| 130 | zcond(i) = zcond(i) + zcond_iter |
---|
[1016] | 131 | zt(i) = zt(i) + zcond_iter*Lcp |
---|
| 132 | if (ABS(zcond_iter/alpha/zqs(i)).lt.qthreshold) exit |
---|
| 133 | ! if (ABS(zcond_iter/alpha).lt.qthreshold) exit |
---|
| 134 | if (nn.eq.nitermax) print*,'itermax in largescale' |
---|
[786] | 135 | End do ! niter |
---|
| 136 | zcond(i)=MAX(zcond(i),-(pq(i,k,igcm_h2o_ice)+pdq(i,k,igcm_h2o_ice)*ptimestep)) |
---|
| 137 | |
---|
| 138 | else !standard case |
---|
| 139 | |
---|
[1016] | 140 | zx_q(i) = (zq(i)+zdelq(i)+zqs(i))/2.0d0 !water vapor in cloudy sky |
---|
[786] | 141 | ! iterative process to stabilize the scheme when large water amounts JL12 |
---|
[1016] | 142 | zcond(i) = 0.0d0 |
---|
[786] | 143 | Do nn=1,nitermax |
---|
[1016] | 144 | call Lcpdqsat_waterDP(zt(i),local_p,psat_tmp,zqs(i),zdqs(i),dlnpsat_tmp) |
---|
| 145 | zcond_iter = MAX(0.0d0,alpha*(zx_q(i)-zqs(i))/(1.d0+zdqs(i))) |
---|
[786] | 146 | !zcond always postive! cannot evaporate clouds! |
---|
| 147 | !this is why we must reevaporate before largescale |
---|
| 148 | zx_q(i) = zx_q(i) - zcond_iter |
---|
| 149 | zcond(i) = zcond(i) + zcond_iter |
---|
[1016] | 150 | if (ABS(zcond_iter/alpha/zqs(i)).lt.qthreshold) exit |
---|
| 151 | ! if (ABS(zcond_iter/alpha).lt.qthreshold) exit |
---|
| 152 | zt(i) = zt(i) + zcond_iter*Lcp*rneb(i,k) |
---|
| 153 | call Psat_waterDP(zt(i),local_p,psat_tmp,zqs(i)) |
---|
| 154 | if (nn.eq.nitermax) print*,'itermax in largescale' |
---|
[786] | 155 | End do ! niter |
---|
| 156 | |
---|
[728] | 157 | Endif |
---|
| 158 | |
---|
[786] | 159 | zcond(i) = zcond(i)*rneb(i,k)/ptimestep ! JL12 |
---|
[728] | 160 | |
---|
| 161 | ENDDO |
---|
| 162 | |
---|
| 163 | ! Tendances de t et q |
---|
[787] | 164 | pdqvaplsc(1:ngrid,k) = dqevap(1:ngrid,k) - zcond(1:ngrid) |
---|
| 165 | pdqliqlsc(1:ngrid,k) = - pdqvaplsc(1:ngrid,k) |
---|
[1016] | 166 | pdtlsc(1:ngrid,k) = pdqliqlsc(1:ngrid,k)*real(Lcp) |
---|
[728] | 167 | |
---|
[1308] | 168 | Enddo ! k= nlayer, 1, -1 |
---|
[1016] | 169 | |
---|
[728] | 170 | |
---|
| 171 | end |
---|