[1308] | 1 | subroutine largescale(ngrid,nlayer,nq,ptimestep, pplev, pplay, & |
---|
| 2 | pt, pq, pdt, pdq, pdtlsc, pdqvaplsc, pdqliqlsc, rneb) |
---|
[728] | 3 | |
---|
[1016] | 4 | |
---|
| 5 | ! to use 'getin' |
---|
[1315] | 6 | ! use ioipsl_getincom |
---|
| 7 | use ioipsl_getincom_p |
---|
[728] | 8 | use watercommon_h, only : RLVTT, RCPD, RVTMP2, & |
---|
[1016] | 9 | T_h2O_ice_clouds,T_h2O_ice_liq,Psat_waterDP,Lcpdqsat_waterDP |
---|
[787] | 10 | USE tracer_h |
---|
[728] | 11 | IMPLICIT none |
---|
| 12 | |
---|
| 13 | !================================================================== |
---|
| 14 | ! |
---|
| 15 | ! Purpose |
---|
| 16 | ! ------- |
---|
| 17 | ! Calculates large-scale (stratiform) H2O condensation. |
---|
| 18 | ! |
---|
| 19 | ! Authors |
---|
| 20 | ! ------- |
---|
| 21 | ! Adapted from the LMDTERRE code by R. Wordsworth (2009) |
---|
| 22 | ! Original author Z. X. Li (1993) |
---|
| 23 | ! |
---|
| 24 | !================================================================== |
---|
| 25 | |
---|
[1308] | 26 | INTEGER ngrid,nlayer,nq |
---|
[728] | 27 | |
---|
| 28 | ! Arguments |
---|
| 29 | REAL ptimestep ! intervalle du temps (s) |
---|
[1308] | 30 | REAL pplev(ngrid,nlayer+1) ! pression a inter-couche |
---|
| 31 | REAL pplay(ngrid,nlayer) ! pression au milieu de couche |
---|
| 32 | REAL pt(ngrid,nlayer) ! temperature (K) |
---|
| 33 | REAL pq(ngrid,nlayer,nq) ! tracer mixing ratio (kg/kg) |
---|
| 34 | REAL pdt(ngrid,nlayer) ! physical temperature tenedency (K/s) |
---|
| 35 | REAL pdq(ngrid,nlayer,nq)! physical tracer tenedency (K/s) |
---|
| 36 | REAL pdtlsc(ngrid,nlayer) ! incrementation de la temperature (K) |
---|
| 37 | REAL pdqvaplsc(ngrid,nlayer) ! incrementation de la vapeur d'eau |
---|
| 38 | REAL pdqliqlsc(ngrid,nlayer) ! incrementation de l'eau liquide |
---|
| 39 | REAL rneb(ngrid,nlayer) ! fraction nuageuse |
---|
[728] | 40 | |
---|
| 41 | |
---|
| 42 | ! Options du programme |
---|
[1016] | 43 | REAL, SAVE :: ratqs ! determine largeur de la distribution de vapeur |
---|
[1315] | 44 | !$OMP THREADPRIVATE(ratqs) |
---|
[728] | 45 | |
---|
| 46 | ! Variables locales |
---|
| 47 | REAL CBRT |
---|
| 48 | EXTERNAL CBRT |
---|
| 49 | INTEGER i, k , nn |
---|
[1016] | 50 | INTEGER,PARAMETER :: nitermax=5000 |
---|
| 51 | DOUBLE PRECISION,PARAMETER :: alpha=.1,qthreshold=1.d-8 |
---|
[875] | 52 | ! JL13: if "careful, T<Tmin in psat water" appears often, you may want to stabilise the model by |
---|
| 53 | ! decreasing alpha and increasing nitermax accordingly |
---|
[1016] | 54 | DOUBLE PRECISION zt(ngrid), zq(ngrid) |
---|
| 55 | DOUBLE PRECISION zcond(ngrid),zcond_iter |
---|
| 56 | DOUBLE PRECISION zdelq(ngrid) |
---|
| 57 | DOUBLE PRECISION zqs(ngrid), zdqs(ngrid) |
---|
| 58 | DOUBLE PRECISION local_p,psat_tmp,dlnpsat_tmp,Lcp |
---|
[728] | 59 | |
---|
| 60 | ! evaporation calculations |
---|
[1308] | 61 | REAL dqevap(ngrid,nlayer),dtevap(ngrid,nlayer) |
---|
| 62 | REAL qevap(ngrid,nlayer,nq) |
---|
| 63 | REAL tevap(ngrid,nlayer) |
---|
[728] | 64 | |
---|
[1016] | 65 | DOUBLE PRECISION zx_q(ngrid) |
---|
| 66 | LOGICAL,SAVE :: firstcall=.true. |
---|
[1315] | 67 | !$OMP THREADPRIVATE(firstcall) |
---|
[728] | 68 | |
---|
[1016] | 69 | |
---|
| 70 | IF (firstcall) THEN |
---|
| 71 | |
---|
| 72 | write(*,*) "value for ratqs? " |
---|
| 73 | ratqs=0.2 ! default value |
---|
[1315] | 74 | call getin_p("ratqs",ratqs) |
---|
[1016] | 75 | write(*,*) " ratqs = ",ratqs |
---|
| 76 | |
---|
| 77 | firstcall = .false. |
---|
| 78 | ENDIF |
---|
| 79 | |
---|
[728] | 80 | ! GCM -----> subroutine variables, initialisation of outputs |
---|
| 81 | |
---|
[1308] | 82 | pdtlsc(1:ngrid,1:nlayer) = 0.0 |
---|
| 83 | pdqvaplsc(1:ngrid,1:nlayer) = 0.0 |
---|
| 84 | pdqliqlsc(1:ngrid,1:nlayer) = 0.0 |
---|
| 85 | rneb(1:ngrid,1:nlayer) = 0.0 |
---|
[1016] | 86 | Lcp=RLVTT/RCPD |
---|
[728] | 87 | |
---|
| 88 | |
---|
| 89 | ! Evaporate cloud water/ice |
---|
[1308] | 90 | call evap(ngrid,nlayer,nq,ptimestep,pt,pq,pdq,pdt,dqevap,dtevap,qevap,tevap) |
---|
[728] | 91 | ! note: we use qevap but not tevap in largescale/moistadj |
---|
| 92 | ! otherwise is a big mess |
---|
| 93 | |
---|
| 94 | |
---|
| 95 | ! Boucle verticale (du haut vers le bas) |
---|
[1308] | 96 | DO k = nlayer, 1, -1 |
---|
[728] | 97 | |
---|
[787] | 98 | zt(1:ngrid)=pt(1:ngrid,k)+(pdt(1:ngrid,k)+dtevap(1:ngrid,k))*ptimestep |
---|
| 99 | zq(1:ngrid)=qevap(1:ngrid,k,igcm_h2o_vap) !liquid water is included in qevap |
---|
[728] | 100 | |
---|
| 101 | ! Calculer la vapeur d'eau saturante et |
---|
| 102 | ! determiner la condensation partielle |
---|
[787] | 103 | DO i = 1, ngrid |
---|
[728] | 104 | |
---|
[1016] | 105 | local_p=pplay(i,k) |
---|
[773] | 106 | if(zt(i).le.15.) then |
---|
[786] | 107 | print*,'in lsc',i,k,zt(i) |
---|
| 108 | ! zt(i)=15. ! check too low temperatures |
---|
[773] | 109 | endif |
---|
[1016] | 110 | call Psat_waterDP(zt(i),local_p,psat_tmp,zqs(i)) |
---|
[728] | 111 | |
---|
[1016] | 112 | zdelq(i) = MAX(MIN(ratqs * zq(i),1.-zq(i)),1.d-12) |
---|
[786] | 113 | rneb(i,k) = (zq(i)+zdelq(i)-zqs(i)) / (2.0*zdelq(i)) |
---|
| 114 | if (rneb(i,k).lt.0.) then !no clouds |
---|
| 115 | |
---|
| 116 | rneb(i,k)=0. |
---|
| 117 | zcond(i)=0. |
---|
| 118 | |
---|
[1016] | 119 | else if ((rneb(i,k).gt.0.99).or.(ratqs.lt.1.e-6)) then !complete cloud cover, we start without evaporating |
---|
[786] | 120 | rneb(i,k)=1. |
---|
| 121 | zt(i)=pt(i,k)+pdt(i,k)*ptimestep |
---|
| 122 | zx_q(i) = pq(i,k,igcm_h2o_vap)+pdq(i,k,igcm_h2o_vap)*ptimestep |
---|
| 123 | dqevap(i,k)=0. |
---|
| 124 | ! iterative process to stabilize the scheme when large water amounts JL12 |
---|
[1016] | 125 | zcond(i) = 0.0d0 |
---|
[786] | 126 | Do nn=1,nitermax |
---|
[1016] | 127 | call Psat_waterDP(zt(i),local_p,psat_tmp,zqs(i)) |
---|
| 128 | call Lcpdqsat_waterDP(zt(i),local_p,psat_tmp,zqs(i),zdqs(i),dlnpsat_tmp) |
---|
| 129 | zcond_iter = alpha*(zx_q(i)-zqs(i))/(1.d0+zdqs(i)) |
---|
[786] | 130 | !zcond can be negative here |
---|
| 131 | zx_q(i) = zx_q(i) - zcond_iter |
---|
| 132 | zcond(i) = zcond(i) + zcond_iter |
---|
[1016] | 133 | zt(i) = zt(i) + zcond_iter*Lcp |
---|
| 134 | if (ABS(zcond_iter/alpha/zqs(i)).lt.qthreshold) exit |
---|
| 135 | ! if (ABS(zcond_iter/alpha).lt.qthreshold) exit |
---|
| 136 | if (nn.eq.nitermax) print*,'itermax in largescale' |
---|
[786] | 137 | End do ! niter |
---|
| 138 | zcond(i)=MAX(zcond(i),-(pq(i,k,igcm_h2o_ice)+pdq(i,k,igcm_h2o_ice)*ptimestep)) |
---|
| 139 | |
---|
| 140 | else !standard case |
---|
| 141 | |
---|
[1016] | 142 | zx_q(i) = (zq(i)+zdelq(i)+zqs(i))/2.0d0 !water vapor in cloudy sky |
---|
[786] | 143 | ! iterative process to stabilize the scheme when large water amounts JL12 |
---|
[1016] | 144 | zcond(i) = 0.0d0 |
---|
[786] | 145 | Do nn=1,nitermax |
---|
[1016] | 146 | call Lcpdqsat_waterDP(zt(i),local_p,psat_tmp,zqs(i),zdqs(i),dlnpsat_tmp) |
---|
| 147 | zcond_iter = MAX(0.0d0,alpha*(zx_q(i)-zqs(i))/(1.d0+zdqs(i))) |
---|
[786] | 148 | !zcond always postive! cannot evaporate clouds! |
---|
| 149 | !this is why we must reevaporate before largescale |
---|
| 150 | zx_q(i) = zx_q(i) - zcond_iter |
---|
| 151 | zcond(i) = zcond(i) + zcond_iter |
---|
[1016] | 152 | if (ABS(zcond_iter/alpha/zqs(i)).lt.qthreshold) exit |
---|
| 153 | ! if (ABS(zcond_iter/alpha).lt.qthreshold) exit |
---|
| 154 | zt(i) = zt(i) + zcond_iter*Lcp*rneb(i,k) |
---|
| 155 | call Psat_waterDP(zt(i),local_p,psat_tmp,zqs(i)) |
---|
| 156 | if (nn.eq.nitermax) print*,'itermax in largescale' |
---|
[786] | 157 | End do ! niter |
---|
| 158 | |
---|
[728] | 159 | Endif |
---|
| 160 | |
---|
[786] | 161 | zcond(i) = zcond(i)*rneb(i,k)/ptimestep ! JL12 |
---|
[728] | 162 | |
---|
| 163 | ENDDO |
---|
| 164 | |
---|
| 165 | ! Tendances de t et q |
---|
[787] | 166 | pdqvaplsc(1:ngrid,k) = dqevap(1:ngrid,k) - zcond(1:ngrid) |
---|
| 167 | pdqliqlsc(1:ngrid,k) = - pdqvaplsc(1:ngrid,k) |
---|
[1016] | 168 | pdtlsc(1:ngrid,k) = pdqliqlsc(1:ngrid,k)*real(Lcp) |
---|
[728] | 169 | |
---|
[1308] | 170 | Enddo ! k= nlayer, 1, -1 |
---|
[1016] | 171 | |
---|
[728] | 172 | |
---|
| 173 | end |
---|