[1308] | 1 | subroutine kcmprof_fn(nlayer,psurf_rcm,qsurf_rcm,Tsurf_rcm,Tstra_rcm,P_rcm,Pl_rcm,z_rcm,T_rcm,q_rcm,m_rcm) |
---|
[305] | 2 | |
---|
| 3 | use params_h |
---|
| 4 | use watercommon_h, only : mH2O |
---|
[471] | 5 | use gases_h |
---|
[305] | 6 | implicit none |
---|
| 7 | |
---|
| 8 | ! ---------------------------------------------------------------- |
---|
| 9 | ! Purpose: create profiles of T, rho_v, rho_n, Pv and Pn following |
---|
| 10 | ! Kasting 1988 |
---|
| 11 | ! Authour: Adapted from a code by E. Marcq by R. Wordsworth (2011) |
---|
| 12 | ! ---------------------------------------------------------------- |
---|
| 13 | |
---|
[1308] | 14 | !#include "dimensions.h" |
---|
| 15 | !#include "dimphys.h" |
---|
[305] | 16 | #include "comcstfi.h" |
---|
| 17 | #include "callkeys.h" |
---|
| 18 | |
---|
| 19 | integer ilay, nlay |
---|
| 20 | parameter (nlay=10000) ! number of vertical layers |
---|
| 21 | |
---|
| 22 | ! rcm inputs |
---|
[1308] | 23 | integer nlayer |
---|
[305] | 24 | real Tsurf_rcm,Tstra_rcm |
---|
| 25 | |
---|
| 26 | ! rcm outputs |
---|
| 27 | real psurf_rcm,qsurf_rcm |
---|
[1308] | 28 | real P_rcm(1:nlayer) |
---|
| 29 | real Pl_rcm(1:nlayer+1) |
---|
| 30 | real z_rcm(1:nlayer) |
---|
| 31 | real T_rcm(1:nlayer),q_rcm(1:nlayer) |
---|
| 32 | real m_rcm(1:nlayer+1) |
---|
[305] | 33 | |
---|
| 34 | ! rcm for interpolation (should really use log coords?) |
---|
| 35 | !double precision p1,p2,pnew,ilay_rcm |
---|
| 36 | |
---|
| 37 | double precision lnp1,lnp2,lnpnew |
---|
| 38 | real Dp_rcm, dlogp_rcm |
---|
| 39 | integer ilay_rcm,ilev_rcm,ifinal_rcm |
---|
| 40 | |
---|
| 41 | double precision Dz, Dp |
---|
| 42 | double precision Ptop, dlogp, Psat_max |
---|
[716] | 43 | parameter (Ptop=1.0) ! Pressure at TOA [Pa] |
---|
[305] | 44 | |
---|
| 45 | double precision T(1:nlay) ! temperature [K] |
---|
| 46 | double precision Ztab(1:nlay) ! altitude [m] |
---|
| 47 | double precision Pv(1:nlay),Pn(1:nlay),P(1:nlay) ! pressure [Pa] |
---|
| 48 | double precision rho_v(1:nlay), rho_n(1:nlay) ! density [kg m^-3] |
---|
| 49 | double precision a_v(1:nlay) ! = rho_v/rho_n [kg/kg] |
---|
| 50 | double precision q_v(1:nlay) ! = rho_v/rho_tot [kg/kg] |
---|
| 51 | double precision mtot(1:nlay) ! = (rho_v+rho_n)/(n_v+n_n) [g/mol] |
---|
| 52 | |
---|
| 53 | integer profil_flag(1:nlay) ! 0 = dry, 1 = moist, 2 = isothermal |
---|
| 54 | |
---|
| 55 | ! inputs |
---|
| 56 | double precision Tsurf ! surface temperature [K] |
---|
| 57 | double precision Psurf_v ! surface par. pressure (variable species) [Pa] |
---|
| 58 | double precision Psurf_n ! surface par. pressure (incondensible species)[Pa] |
---|
| 59 | double precision Ttop ! stratospheric temperature [K] |
---|
| 60 | |
---|
| 61 | double precision dTdp ! [K/Pa] |
---|
| 62 | double precision dPvdp,dPndp ! [Pa/Pa] |
---|
| 63 | double precision psat_v ! local Psat_H2O value |
---|
| 64 | double precision Tcrit ! Critical temperature [K] |
---|
| 65 | double precision rho_vTEMP,rho_nTEMP |
---|
| 66 | |
---|
[716] | 67 | double precision TCO2cond ! for CO2 condensation quasi-hack |
---|
| 68 | |
---|
[305] | 69 | ! variables necessary for steam.f90 |
---|
| 70 | double precision rhol,rhov,nul |
---|
| 71 | |
---|
| 72 | ! for output |
---|
| 73 | double precision vmr |
---|
| 74 | |
---|
| 75 | logical verbose |
---|
[716] | 76 | parameter(verbose=.true.) |
---|
[305] | 77 | |
---|
[716] | 78 | logical add_Pvar_to_total |
---|
| 79 | parameter(add_Pvar_to_total=.true.) |
---|
| 80 | |
---|
[305] | 81 | ! initialise flags |
---|
| 82 | profil_flag(:) = 0 |
---|
| 83 | |
---|
| 84 | !------------------------------- |
---|
| 85 | ! assign input variables |
---|
| 86 | m_n = dble(mugaz/1000.) |
---|
[716] | 87 | cp_n = cpp |
---|
[305] | 88 | ! modify/generalise later?? |
---|
| 89 | |
---|
[716] | 90 | Psat_max = 1000000.0 ! maximum vapour pressure [Pa] |
---|
| 91 | ! set huge until further notice |
---|
| 92 | |
---|
| 93 | if(vgas.lt.1)then |
---|
[366] | 94 | if(psat_max.gt.0.0)then |
---|
| 95 | print*,'Must have Psat_max=0 if no variable species' |
---|
[716] | 96 | psat_max=0.0 |
---|
| 97 | !stop |
---|
[366] | 98 | endif |
---|
| 99 | print*, 'Assuming pure atmosphere' |
---|
| 100 | m_v = 1.0 |
---|
| 101 | tcrit = 1000.0 |
---|
[869] | 102 | elseif(trim(gnom(vgas)).eq.'H2O')then |
---|
[305] | 103 | m_v = dble(mH2O/1000.) |
---|
| 104 | tcrit = 6.47d2 |
---|
[869] | 105 | elseif(trim(gnom(vgas)).eq.'NH3')then |
---|
[305] | 106 | m_v = 17.031/1000. |
---|
| 107 | tcrit = 4.06d2 |
---|
[869] | 108 | elseif(trim(gnom(vgas)).eq.'CH4')then |
---|
[305] | 109 | m_v = 16.04/1000. |
---|
| 110 | tcrit = 1.91d2 |
---|
| 111 | stop |
---|
| 112 | else |
---|
| 113 | print*,'Variable gas not recognised!' |
---|
| 114 | call abort |
---|
| 115 | endif |
---|
| 116 | |
---|
| 117 | rmn = rc/m_n |
---|
| 118 | Ttop = dble(Tstra_rcm) |
---|
| 119 | Tsurf = dble(Tsurf_rcm) |
---|
| 120 | |
---|
[716] | 121 | psat_v = psat_max |
---|
| 122 | if(vgas.gt.0)then |
---|
[869] | 123 | if(trim(gnom(vgas)).eq.'H2O')then |
---|
[716] | 124 | call Psat_H2O(tsurf,psat_v) |
---|
[869] | 125 | elseif(trim(gnom(vgas)).eq.'NH3')then |
---|
[716] | 126 | call Psat_NH3(tsurf,psat_v) |
---|
| 127 | endif |
---|
[305] | 128 | endif |
---|
| 129 | |
---|
[366] | 130 | ! Moist adiabat unless greater than or equal to psat_max |
---|
[305] | 131 | if(psat_v*1d6.lt.psat_max)then |
---|
| 132 | Psurf_v = Psat_v*1d6 |
---|
| 133 | profil_flag(1) = 1 |
---|
| 134 | else |
---|
| 135 | Psurf_v = psat_max |
---|
| 136 | profil_flag(1) = 0 |
---|
| 137 | endif |
---|
| 138 | |
---|
[716] | 139 | if(add_Pvar_to_total)then |
---|
| 140 | Psurf_n = dble(psurf_rcm) |
---|
| 141 | psurf_rcm = real(Psurf_n+Psurf_v) |
---|
| 142 | else |
---|
| 143 | Psurf_n = dble(psurf_rcm) - Psurf_v |
---|
| 144 | endif |
---|
[305] | 145 | |
---|
[716] | 146 | ! include relative humidity option |
---|
| 147 | !if(satval.lt.1.0)then |
---|
| 148 | ! Psurf_v = Psurf_v*satval |
---|
| 149 | ! profil_flag(1) = 0 |
---|
| 150 | !endif |
---|
[305] | 151 | |
---|
| 152 | if(verbose)then |
---|
| 153 | print*,'Psat_v =',psat_v*1d6 |
---|
| 154 | print*,'Tsurf =',Tsurf,' K' |
---|
| 155 | print*,'Ttop =',Ttop,' K' |
---|
| 156 | print*,'Psurf_v =',Psurf_v,' Pa' |
---|
| 157 | print*,'Psurf_n =',Psurf_n,' Pa' |
---|
| 158 | print*,'m_n =',m_n,' kg/mol' |
---|
| 159 | print*,'m_v =',m_v,' kg/mol' |
---|
| 160 | print*,'rc =',rc |
---|
| 161 | endif |
---|
| 162 | |
---|
| 163 | ! define fine pressure grid |
---|
[1308] | 164 | dlogp_rcm = -(log(psurf_rcm)-log(ptop))/nlayer |
---|
[305] | 165 | |
---|
| 166 | P_rcm(1) = psurf_rcm*exp(dlogp_rcm) |
---|
[1308] | 167 | do ilay_rcm=1,nlayer-1 |
---|
[305] | 168 | P_rcm(ilay_rcm+1) = P_rcm(ilay_rcm)*exp(dlogp_rcm) |
---|
| 169 | enddo |
---|
| 170 | |
---|
| 171 | Pl_rcm(1) = psurf_rcm |
---|
[1308] | 172 | do ilev_rcm=2,nlayer |
---|
[305] | 173 | ! log-linear interpolation |
---|
| 174 | Pl_rcm(ilev_rcm) = exp( log( P_rcm(ilev_rcm)*P_rcm(ilev_rcm-1) )/2 ) |
---|
| 175 | enddo |
---|
| 176 | |
---|
| 177 | !------------------------------- |
---|
| 178 | ! Layer 1 |
---|
| 179 | T(1) = Tsurf |
---|
| 180 | Pv(1) = Psurf_v |
---|
| 181 | Pn(1) = Psurf_n |
---|
| 182 | rho_n(1) = m_n*Pn(1)/(Rc*Tsurf) |
---|
| 183 | rho_v(1) = m_v*Pv(1)/(Rc*Tsurf) |
---|
| 184 | a_v(1) = rho_v(1)/rho_n(1) |
---|
| 185 | |
---|
| 186 | ! log pressure grid spacing (constant) |
---|
| 187 | dlogp = -(log(Pn(1)+Pv(1))-log(ptop))/(nlay-1) |
---|
| 188 | |
---|
| 189 | call gradients_kcm(profil_flag(1),rho_v(1),rho_n(1),Tsurf,dTdp,dPvdp,dPndp) |
---|
| 190 | if(verbose)then |
---|
| 191 | print*, 'dT/dp ground [K/Pa] =',dTdp |
---|
| 192 | endif |
---|
| 193 | |
---|
| 194 | ! initial delta p, delta z |
---|
| 195 | Dp = (Pn(1) + Pv(1))*(exp(dlogp) - 1d0) |
---|
| 196 | Dz = -Dp/( g*(rho_n(1) + rho_v(1)) ) |
---|
| 197 | |
---|
| 198 | !------------------------------- |
---|
| 199 | ! Layer 2 |
---|
| 200 | T(2) = tsurf + dTdp*Dp |
---|
| 201 | Pv(2) = Pv(1) + dPvdp*Dp |
---|
| 202 | Pn(2) = Pn(1) + dPndp*Dp |
---|
| 203 | rho_n(2) = m_n*Pn(2)/(Rc*T(2)) |
---|
| 204 | rho_v(2) = m_v*Pv(2)/(Rc*T(2)) |
---|
| 205 | a_v(2) = rho_v(2)/rho_n(2) |
---|
| 206 | |
---|
| 207 | !------------------------------- |
---|
| 208 | ! start vertical ascent |
---|
| 209 | Ztab(1) = 0. |
---|
| 210 | do ilay=2,nlay-1 |
---|
| 211 | |
---|
| 212 | ! calculate altitude levels (for diagnostic only) |
---|
| 213 | Dz = -Dp/( g*(rho_n(ilay) + rho_v(ilay)) ) |
---|
| 214 | Ztab(ilay) = Dz + Ztab(ilay-1) |
---|
| 215 | |
---|
| 216 | ! 1st assume next layer same as last one |
---|
| 217 | profil_flag(ilay) = profil_flag(ilay-1) |
---|
| 218 | |
---|
| 219 | ! update delta p |
---|
| 220 | Dp = (Pn(ilay)+Pv(ilay))*(exp(dlogp) - 1d0) |
---|
| 221 | |
---|
| 222 | ! intial gradients call to calculate temperature at next level |
---|
| 223 | call gradients_kcm(profil_flag(ilay),rho_v(ilay),rho_n(ilay),& |
---|
| 224 | T(ilay),dTdp,dPvdp,dPndp) |
---|
| 225 | |
---|
| 226 | T(ilay+1) = T(ilay) + dTdp*Dp |
---|
| 227 | |
---|
| 228 | ! test for moist adiabat at next level |
---|
[366] | 229 | psat_v=psat_max |
---|
[716] | 230 | |
---|
| 231 | if(vgas.gt.0)then |
---|
[869] | 232 | if(trim(gnom(vgas)).eq.'H2O')then |
---|
[305] | 233 | call Psat_H2O(T(ilay+1),psat_v) |
---|
[869] | 234 | elseif(trim(gnom(vgas)).eq.'NH3')then |
---|
[305] | 235 | call Psat_NH3(T(ilay+1),psat_v) |
---|
| 236 | endif |
---|
[716] | 237 | endif |
---|
[305] | 238 | |
---|
| 239 | if (psat_v*1d6 .lt. Pv(ilay)+dPvdp*Dp) then |
---|
| 240 | profil_flag(ilay)=1 |
---|
| 241 | call gradients_kcm(profil_flag(ilay),rho_v(ilay),rho_n(ilay),& |
---|
| 242 | T(ilay),dTdp,dPvdp,dPndp) |
---|
| 243 | endif |
---|
| 244 | |
---|
| 245 | ! test for stratosphere at next level |
---|
| 246 | if (T(ilay+1) .le. Ttop) then |
---|
| 247 | profil_flag(ilay)=2 |
---|
| 248 | T(ilay+1)=Ttop |
---|
| 249 | endif |
---|
| 250 | |
---|
| 251 | ! calculate pressures at next level |
---|
| 252 | Pn(ilay+1) = Pn(ilay) + dPndp*Dp |
---|
| 253 | Pv(ilay+1) = Pv(ilay) + dPvdp*Dp |
---|
| 254 | |
---|
| 255 | if(profil_flag(ilay) .eq. 1)then |
---|
[366] | 256 | |
---|
| 257 | psat_v=psat_max |
---|
[716] | 258 | |
---|
| 259 | if(vgas.gt.0)then |
---|
[869] | 260 | if(trim(gnom(vgas)).eq.'H2O')then |
---|
[305] | 261 | call Psat_H2O(T(ilay+1),psat_v) |
---|
[869] | 262 | elseif(trim(gnom(vgas)).eq.'NH3')then |
---|
[305] | 263 | call Psat_NH3(T(ilay+1),psat_v) |
---|
| 264 | endif |
---|
[716] | 265 | endif |
---|
[305] | 266 | |
---|
| 267 | if(Pv(ilay+1) .lt. psat_v*1e6)then |
---|
| 268 | Pv(ilay+1)=psat_v*1d6 |
---|
| 269 | endif |
---|
| 270 | |
---|
| 271 | endif |
---|
| 272 | |
---|
| 273 | ! calculate gas densities at next level (assume ideal) |
---|
| 274 | rho_n(ilay+1) = m_n*Pn(ilay+1)/(rc*T(ilay+1)) |
---|
| 275 | select case(profil_flag(ilay)) |
---|
| 276 | case(2) ! isothermal |
---|
| 277 | rho_v(ilay+1) = rho_v(ilay)/rho_n(ilay)*rho_n(ilay+1) |
---|
| 278 | case(1) ! moist |
---|
| 279 | |
---|
| 280 | ! dont think this is necessary |
---|
| 281 | !call psat_est(T(ilay+1),psat_v) |
---|
| 282 | ! modify for ammonia!!! |
---|
| 283 | |
---|
| 284 | rho_v(ilay+1) = m_v*psat_v*1d6/(rc*T(ilay+1)) |
---|
| 285 | case(0) ! dry |
---|
| 286 | rho_v(ilay+1) = m_v*Pv(ilay+1)/(rc*T(ilay+1)) |
---|
| 287 | end select |
---|
| 288 | |
---|
| 289 | enddo |
---|
| 290 | |
---|
| 291 | Ztab(nlay)=Ztab(nlay-1)+Dz |
---|
| 292 | |
---|
| 293 | !------------------------------- |
---|
| 294 | ! save to kcm1d variables |
---|
| 295 | |
---|
| 296 | ! surface quantities |
---|
| 297 | psurf_rcm = Pn(1) + Pv(1) |
---|
| 298 | qsurf_rcm = rho_v(1)/(rho_v(1) + rho_n(1)) |
---|
| 299 | |
---|
| 300 | ! create q_v, mtot for saving |
---|
| 301 | do ilay=1,nlay |
---|
| 302 | mtot(ilay) = 1d3*(rho_v(ilay) + rho_n(ilay)) / & |
---|
| 303 | (rho_v(ilay)/m_v + rho_n(ilay)/m_n) |
---|
| 304 | q_v(ilay) = rho_v(ilay)/(rho_v(ilay) + rho_n(ilay)) |
---|
| 305 | ! CHECK THIS |
---|
| 306 | enddo |
---|
| 307 | |
---|
| 308 | |
---|
| 309 | ! convert to rcm lower-res grid |
---|
| 310 | z_rcm(:) = 0.0 |
---|
| 311 | T_rcm(:) = 0.0 |
---|
| 312 | q_rcm(:) = 0.0 |
---|
| 313 | m_rcm(:) = 0.0 |
---|
| 314 | |
---|
| 315 | m_rcm(1) = real( 1d3*(rho_v(1) + rho_n(1)) / & |
---|
| 316 | (rho_v(1)/m_v + rho_n(1)/m_n) ) |
---|
| 317 | |
---|
| 318 | ilay_rcm=1 |
---|
| 319 | do ilay=2,nlay |
---|
| 320 | |
---|
[1308] | 321 | if(ilay_rcm.le.nlayer)then |
---|
[305] | 322 | ! interpolate rcm variables |
---|
| 323 | |
---|
| 324 | if(Pn(ilay)+Pv(ilay) .lt. P_rcm(ilay_rcm))then |
---|
| 325 | |
---|
| 326 | if(ilay.eq.1)then |
---|
| 327 | print*,'Error in create_profils: Psurf here less than Psurf in RCM!' |
---|
| 328 | call abort |
---|
| 329 | endif |
---|
| 330 | |
---|
| 331 | lnp1 = log(Pn(ilay-1)+Pv(ilay-1)) |
---|
| 332 | lnp2 = log(Pn(ilay)+Pv(ilay)) |
---|
| 333 | lnpnew = dble(log(P_rcm(ilay_rcm))) |
---|
| 334 | |
---|
| 335 | z_rcm(ilay_rcm) = real(Ztab(ilay-1)*(lnp2-lnpnew)/(lnp2-lnp1) & |
---|
| 336 | + Ztab(ilay)*(lnpnew-lnp1)/(lnp2-lnp1)) |
---|
| 337 | T_rcm(ilay_rcm) = real(T(ilay-1)*(lnp2-lnpnew)/(lnp2-lnp1) & |
---|
| 338 | + T(ilay)*(lnpnew-lnp1)/(lnp2-lnp1)) |
---|
| 339 | q_rcm(ilay_rcm) = real(q_v(ilay-1)*(lnp2-lnpnew)/(lnp2-lnp1) & |
---|
| 340 | + q_v(ilay)*(lnpnew-lnp1)/(lnp2-lnp1)) |
---|
| 341 | |
---|
| 342 | m_rcm(ilay_rcm+1) = real(mtot(ilay-1)*(lnp2-lnpnew)/(lnp2-lnp1) & |
---|
| 343 | + mtot(ilay)*(lnpnew-lnp1)/(lnp2-lnp1)) |
---|
| 344 | |
---|
| 345 | ilay_rcm = ilay_rcm+1 |
---|
| 346 | endif |
---|
| 347 | |
---|
| 348 | endif |
---|
| 349 | enddo |
---|
| 350 | |
---|
| 351 | ifinal_rcm=ilay_rcm-1 |
---|
[1308] | 352 | if(ifinal_rcm.lt.nlayer)then |
---|
[305] | 353 | if(verbose)then |
---|
| 354 | print*,'Interpolation in kcmprof stopped at layer',ilay_rcm,'!' |
---|
| 355 | endif |
---|
| 356 | |
---|
[1308] | 357 | do ilay_rcm=ifinal_rcm+1,nlayer |
---|
[305] | 358 | |
---|
| 359 | z_rcm(ilay_rcm) = z_rcm(ilay_rcm-1) |
---|
| 360 | T_rcm(ilay_rcm) = T_rcm(ilay_rcm-1) |
---|
| 361 | q_rcm(ilay_rcm) = q_rcm(ilay_rcm-1) |
---|
| 362 | m_rcm(ilay_rcm+1) = m_rcm(ilay_rcm) |
---|
| 363 | |
---|
| 364 | enddo |
---|
| 365 | endif |
---|
| 366 | |
---|
[1308] | 367 | do ilay=2,nlayer |
---|
[305] | 368 | if(T_rcm(ilay).lt.Ttop)then |
---|
| 369 | T_rcm(ilay)=Ttop |
---|
| 370 | endif |
---|
| 371 | enddo |
---|
| 372 | |
---|
[716] | 373 | ! CO2 condensation 'haircut' of temperature profile if necessary |
---|
| 374 | if(co2cond)then |
---|
| 375 | print*,'CO2 condensation haircut - assumes CO2-dominated atmosphere!' |
---|
[1308] | 376 | do ilay=2,nlayer |
---|
[716] | 377 | if(P_rcm(ilay).lt.518000.)then |
---|
| 378 | TCO2cond = (-3167.8)/(log(.01*P_rcm(ilay))-23.23) ! Fanale's formula |
---|
| 379 | else |
---|
| 380 | TCO2cond = 684.2-92.3*log(P_rcm(ilay))+4.32*log(P_rcm(ilay))**2 |
---|
| 381 | ! liquid-vapour transition (based on CRC handbook 2003 data) |
---|
| 382 | endif |
---|
| 383 | |
---|
| 384 | print*,'p=',P_rcm(ilay),', T=',T_rcm(ilay),' Tcond=',TCO2cond |
---|
| 385 | if(T_rcm(ilay).lt.TCO2cond)then |
---|
| 386 | T_rcm(ilay)=TCO2cond |
---|
| 387 | endif |
---|
| 388 | enddo |
---|
| 389 | endif |
---|
| 390 | |
---|
[305] | 391 | return |
---|
| 392 | end subroutine kcmprof_fn |
---|