1 | module interpolate_continuum_mod |
---|
2 | |
---|
3 | implicit none |
---|
4 | |
---|
5 | contains |
---|
6 | |
---|
7 | subroutine interpolate_continuum(filename,igas_X,igas_Y,c_WN,ind_WN,temp,pres_X,pres_Y,abs_coef,firstcall) |
---|
8 | |
---|
9 | !================================================================== |
---|
10 | ! |
---|
11 | ! Purpose |
---|
12 | ! ------- |
---|
13 | ! Generic routine to calculate continuum opacities, using lookup tables provided here: https://web.lmd.jussieu.fr/~lmdz/planets/generic/datagcm/continuum_data/ |
---|
14 | ! More information on the data here: https://lmdz-forge.lmd.jussieu.fr/mediawiki/Planets/index.php/Continuum_Database |
---|
15 | ! |
---|
16 | ! Author |
---|
17 | ! ------- |
---|
18 | ! M. Turbet (2025) |
---|
19 | ! |
---|
20 | !================================================================== |
---|
21 | |
---|
22 | use datafile_mod, only: datadir |
---|
23 | use mod_phys_lmdz_para, only : is_master |
---|
24 | |
---|
25 | use gases_h, only: ngasmx, gnom, & |
---|
26 | igas_H2, igas_H2O, igas_He, igas_N2, & |
---|
27 | igas_CH4, igas_CO2, igas_O2 |
---|
28 | |
---|
29 | use radinc_h, only: L_NSPECTI, L_NSPECTV |
---|
30 | |
---|
31 | use radcommon_h, only : BWNV,BWNI,WNOI,WNOV |
---|
32 | |
---|
33 | |
---|
34 | implicit none |
---|
35 | |
---|
36 | ! input |
---|
37 | integer,intent(in) :: ind_WN ! wavenumber index |
---|
38 | integer,intent(in) :: igas_X ! index of molecule X |
---|
39 | integer,intent(in) :: igas_Y ! index of molecule Y |
---|
40 | double precision,intent(in) :: temp ! temperature (Kelvin) |
---|
41 | double precision,intent(in) :: pres_X ! partial pressure of molecule X (Pascals) |
---|
42 | double precision,intent(in) :: pres_Y ! partial pressure of molecule Y (Pascals) |
---|
43 | character(len=*),intent(in) :: filename ! name of the lookup table |
---|
44 | character(len=2),intent(in) :: c_WN ! wavelength chanel: infrared (IR) or visible (VI) |
---|
45 | logical,intent(in) :: firstcall |
---|
46 | |
---|
47 | ! output |
---|
48 | double precision,intent(out) :: abs_coef ! absorption coefficient (m^-1) |
---|
49 | |
---|
50 | ! intermediate variables |
---|
51 | double precision amagat_X ! density of molecule X (in amagat units) |
---|
52 | double precision amagat_Y ! density of molecule Y (in amagat units) |
---|
53 | |
---|
54 | character(len=512) :: line |
---|
55 | character(len=21),parameter :: rname="interpolate_continuum" |
---|
56 | |
---|
57 | integer i, pos, iT, iW, iB, count_norm, igas |
---|
58 | |
---|
59 | double precision temp_value, temp_abs, temp_wn |
---|
60 | |
---|
61 | double precision z_temp |
---|
62 | |
---|
63 | integer num_wn, num_T |
---|
64 | |
---|
65 | double precision, dimension(:), allocatable :: temp_arr |
---|
66 | double precision, dimension(:), allocatable :: wn_arr |
---|
67 | double precision, dimension(:,:), allocatable :: abs_arr |
---|
68 | |
---|
69 | integer ios |
---|
70 | |
---|
71 | ! Temperature array, continuum absorption grid for the pair N2-N2 |
---|
72 | integer,save :: num_T_N2N2 |
---|
73 | double precision,save,dimension(:),allocatable :: temp_arr_N2N2 |
---|
74 | double precision,save,dimension(:,:),allocatable :: abs_arr_N2N2_IR |
---|
75 | double precision,save,dimension(:,:),allocatable :: abs_arr_N2N2_VI |
---|
76 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
77 | ! and then only accessed but never modified and thus can be shared |
---|
78 | |
---|
79 | ! Temperature array, continuum absorption grid for the pair O2-O2 |
---|
80 | integer,save :: num_T_O2O2 |
---|
81 | double precision,save,dimension(:),allocatable :: temp_arr_O2O2 |
---|
82 | double precision,save,dimension(:,:),allocatable :: abs_arr_O2O2_IR |
---|
83 | double precision,save,dimension(:,:),allocatable :: abs_arr_O2O2_VI |
---|
84 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
85 | ! and then only accessed but never modified and thus can be shared |
---|
86 | |
---|
87 | ! Temperature array, continuum absorption grid for the pair H2-H2 |
---|
88 | integer,save :: num_T_H2H2 |
---|
89 | double precision,save,dimension(:),allocatable :: temp_arr_H2H2 |
---|
90 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2H2_IR |
---|
91 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2H2_VI |
---|
92 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
93 | ! and then only accessed but never modified and thus can be shared |
---|
94 | |
---|
95 | ! Temperature array, continuum absorption grid for the pair CO2-CO2 |
---|
96 | integer,save :: num_T_CO2CO2 |
---|
97 | double precision,save,dimension(:),allocatable :: temp_arr_CO2CO2 |
---|
98 | double precision,save,dimension(:,:),allocatable :: abs_arr_CO2CO2_IR |
---|
99 | double precision,save,dimension(:,:),allocatable :: abs_arr_CO2CO2_VI |
---|
100 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
101 | ! and then only accessed but never modified and thus can be shared |
---|
102 | |
---|
103 | ! Temperature array, continuum absorption grid for the pair CH4-CH4 |
---|
104 | integer,save :: num_T_CH4CH4 |
---|
105 | double precision,save,dimension(:),allocatable :: temp_arr_CH4CH4 |
---|
106 | double precision,save,dimension(:,:),allocatable :: abs_arr_CH4CH4_IR |
---|
107 | double precision,save,dimension(:,:),allocatable :: abs_arr_CH4CH4_VI |
---|
108 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
109 | ! and then only accessed but never modified and thus can be shared |
---|
110 | |
---|
111 | ! Temperature array, continuum absorption grid for the pair H2O-H2O |
---|
112 | integer,save :: num_T_H2OH2O |
---|
113 | double precision,save,dimension(:),allocatable :: temp_arr_H2OH2O |
---|
114 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2OH2O_IR |
---|
115 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2OH2O_VI |
---|
116 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
117 | ! and then only accessed but never modified and thus can be shared |
---|
118 | |
---|
119 | ! Temperature array, continuum absorption grid for the pair H2-He |
---|
120 | integer,save :: num_T_H2He |
---|
121 | double precision,save,dimension(:),allocatable :: temp_arr_H2He |
---|
122 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2He_IR |
---|
123 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2He_VI |
---|
124 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
125 | ! and then only accessed but never modified and thus can be shared |
---|
126 | |
---|
127 | ! Temperature array, continuum absorption grid for the pair H2-CH4 |
---|
128 | integer,save :: num_T_H2CH4 |
---|
129 | double precision,save,dimension(:),allocatable :: temp_arr_H2CH4 |
---|
130 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2CH4_IR |
---|
131 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2CH4_VI |
---|
132 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
133 | ! and then only accessed but never modified and thus can be shared |
---|
134 | |
---|
135 | ! Temperature array, continuum absorption grid for the pair CO2-H2 |
---|
136 | integer,save :: num_T_CO2H2 |
---|
137 | double precision,save,dimension(:),allocatable :: temp_arr_CO2H2 |
---|
138 | double precision,save,dimension(:,:),allocatable :: abs_arr_CO2H2_IR |
---|
139 | double precision,save,dimension(:,:),allocatable :: abs_arr_CO2H2_VI |
---|
140 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
141 | ! and then only accessed but never modified and thus can be shared |
---|
142 | |
---|
143 | ! Temperature array, continuum absorption grid for the pair CO2-CH4 |
---|
144 | integer,save :: num_T_CO2CH4 |
---|
145 | double precision,save,dimension(:),allocatable :: temp_arr_CO2CH4 |
---|
146 | double precision,save,dimension(:,:),allocatable :: abs_arr_CO2CH4_IR |
---|
147 | double precision,save,dimension(:,:),allocatable :: abs_arr_CO2CH4_VI |
---|
148 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
149 | ! and then only accessed but never modified and thus can be shared |
---|
150 | |
---|
151 | ! Temperature array, continuum absorption grid for the pair N2-H2 |
---|
152 | integer,save :: num_T_N2H2 |
---|
153 | double precision,save,dimension(:),allocatable :: temp_arr_N2H2 |
---|
154 | double precision,save,dimension(:,:),allocatable :: abs_arr_N2H2_IR |
---|
155 | double precision,save,dimension(:,:),allocatable :: abs_arr_N2H2_VI |
---|
156 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
157 | ! and then only accessed but never modified and thus can be shared |
---|
158 | |
---|
159 | ! Temperature array, continuum absorption grid for the pair N2-CH4 |
---|
160 | integer,save :: num_T_N2CH4 |
---|
161 | double precision,save,dimension(:),allocatable :: temp_arr_N2CH4 |
---|
162 | double precision,save,dimension(:,:),allocatable :: abs_arr_N2CH4_IR |
---|
163 | double precision,save,dimension(:,:),allocatable :: abs_arr_N2CH4_VI |
---|
164 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
165 | ! and then only accessed but never modified and thus can be shared |
---|
166 | |
---|
167 | ! Temperature array, continuum absorption grid for the pair CO2-O2 |
---|
168 | integer,save :: num_T_CO2O2 |
---|
169 | double precision,save,dimension(:),allocatable :: temp_arr_CO2O2 |
---|
170 | double precision,save,dimension(:,:),allocatable :: abs_arr_CO2O2_IR |
---|
171 | double precision,save,dimension(:,:),allocatable :: abs_arr_CO2O2_VI |
---|
172 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
173 | ! and then only accessed but never modified and thus can be shared |
---|
174 | |
---|
175 | ! Temperature array, continuum absorption grid for the pair N2-O2 |
---|
176 | integer,save :: num_T_N2O2 |
---|
177 | double precision,save,dimension(:), allocatable :: temp_arr_N2O2 |
---|
178 | double precision,save,dimension(:,:), allocatable :: abs_arr_N2O2_IR |
---|
179 | double precision,save,dimension(:,:), allocatable :: abs_arr_N2O2_VI |
---|
180 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
181 | ! and then only accessed but never modified and thus can be shared |
---|
182 | |
---|
183 | ! Temperature array, continuum absorption grid for the pair H2O-N2 |
---|
184 | integer,save :: num_T_H2ON2 |
---|
185 | double precision,save,dimension(:),allocatable :: temp_arr_H2ON2 |
---|
186 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2ON2_IR |
---|
187 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2ON2_VI |
---|
188 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
189 | ! and then only accessed but never modified and thus can be shared |
---|
190 | |
---|
191 | ! Temperature array, continuum absorption grid for the pair H2O-O2 |
---|
192 | integer,save :: num_T_H2OO2 |
---|
193 | double precision,save,dimension(:),allocatable :: temp_arr_H2OO2 |
---|
194 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2OO2_IR |
---|
195 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2OO2_VI |
---|
196 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
197 | ! and then only accessed but never modified and thus can be shared |
---|
198 | |
---|
199 | ! Temperature array, continuum absorption grid for the pair H2O-CO2 |
---|
200 | integer,save :: num_T_H2OCO2 |
---|
201 | double precision,save,dimension(:),allocatable :: temp_arr_H2OCO2 |
---|
202 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2OCO2_IR |
---|
203 | double precision,save,dimension(:,:),allocatable :: abs_arr_H2OCO2_VI |
---|
204 | ! None of these saved variables are THREADPRIVATE because read by master |
---|
205 | ! and then only accessed but never modified and thus can be shared |
---|
206 | |
---|
207 | |
---|
208 | if(firstcall)then ! called by sugas_corrk only |
---|
209 | if (is_master) print*,'----------------------------------------------------' |
---|
210 | if (is_master) print*,'Initialising continuum (interpolate_continuum routine) from ', trim(filename) |
---|
211 | |
---|
212 | !$OMP MASTER |
---|
213 | |
---|
214 | open(unit=33, file=trim(filename), status="old", action="read",iostat=ios) |
---|
215 | |
---|
216 | if (ios.ne.0) then ! file not found |
---|
217 | if (is_master) then |
---|
218 | write(*,*) 'Error from interpolate_continuum routine' |
---|
219 | write(*,*) 'Data file ',trim(filename),' not found.' |
---|
220 | write(*,*) 'Check that your path to datagcm:',trim(datadir) |
---|
221 | write(*,*) 'is correct. You can change it in callphys.def with:' |
---|
222 | write(*,*) 'datadir = /absolute/path/to/datagcm' |
---|
223 | write(*,*) 'Also check that the continuum data is there.' |
---|
224 | write(*,*) 'Latest continuum data can be downloaded here:' |
---|
225 | write(*,*) 'https://web.lmd.jussieu.fr/~lmdz/planets/generic/datagcm/continuum_data/' |
---|
226 | endif |
---|
227 | call abort_physic(rname,"missing input file",1) |
---|
228 | endif |
---|
229 | |
---|
230 | ! We read the first line of the file to get the number of temperatures provided in the data file |
---|
231 | read(33, '(A)') line |
---|
232 | |
---|
233 | i = 1 |
---|
234 | iT = 0 |
---|
235 | |
---|
236 | do while (i .lt. len_trim(line)) |
---|
237 | pos = index(line(i:), 'T=') |
---|
238 | if (pos == 0) exit |
---|
239 | i = i + pos |
---|
240 | iT = iT + 1 |
---|
241 | read(line(i+2:i+10), '(E9.2)') temp_value |
---|
242 | end do |
---|
243 | |
---|
244 | num_T=iT ! num_T is the number of temperatures provided in the data file |
---|
245 | |
---|
246 | ! We read all the remaining lines of the file to get the number of wavenumbers provided in the data file |
---|
247 | iW = 0 |
---|
248 | do |
---|
249 | read(33,*, end=501) line |
---|
250 | iW = iW + 1 |
---|
251 | end do |
---|
252 | |
---|
253 | 501 continue |
---|
254 | |
---|
255 | num_wn=iW ! num_wn is the number of wavenumbers provided in the data file |
---|
256 | |
---|
257 | close(33) |
---|
258 | |
---|
259 | allocate(temp_arr(num_T)) |
---|
260 | allocate(wn_arr(num_wn)) |
---|
261 | allocate(abs_arr(num_wn,num_T)) |
---|
262 | |
---|
263 | ! We now open and read the file a second time to extract the temperature array, wavenumber array and continuum absorption data |
---|
264 | |
---|
265 | open(unit=33, file=trim(filename), status="old", action="read") |
---|
266 | |
---|
267 | ! We extract the temperature array (temp_arr) |
---|
268 | |
---|
269 | read(33, '(A)') line |
---|
270 | |
---|
271 | i = 1 |
---|
272 | iT = 0 |
---|
273 | |
---|
274 | do while (i .lt. len_trim(line)) |
---|
275 | pos = index(line(i:), 'T=') |
---|
276 | if (pos == 0) exit |
---|
277 | i = i + pos |
---|
278 | iT = iT + 1 |
---|
279 | read(line(i+2:i+10), '(E9.2)') temp_arr(iT) |
---|
280 | end do |
---|
281 | |
---|
282 | ! We extract the wavenumber array (wn_arr) and continuum absorption (abs_arr) |
---|
283 | |
---|
284 | do iW=1,num_wn |
---|
285 | read(33,*) wn_arr(iW), (abs_arr(iW, iT), iT=1,num_T) |
---|
286 | end do |
---|
287 | |
---|
288 | close(33) |
---|
289 | |
---|
290 | print*,'We read continuum absorption data for the pair ', trim(gnom(igas_X)),'-',trim(gnom(igas_Y)) |
---|
291 | print*,'Temperature grid of the dataset: ', temp_arr(:) |
---|
292 | |
---|
293 | ! We loop on all molecular pairs with available continuum data and fill the corresponding array |
---|
294 | |
---|
295 | if ((igas_X .eq. igas_CO2) .and. (igas_Y .eq. igas_CO2)) then |
---|
296 | num_T_CO2CO2=num_T |
---|
297 | allocate(temp_arr_CO2CO2(num_T_CO2CO2)) |
---|
298 | allocate(abs_arr_CO2CO2_VI(L_NSPECTV,num_T_CO2CO2)) |
---|
299 | allocate(abs_arr_CO2CO2_IR(L_NSPECTI,num_T_CO2CO2)) |
---|
300 | temp_arr_CO2CO2(:)=temp_arr(:) |
---|
301 | abs_arr_CO2CO2_VI(:,:)=0. |
---|
302 | abs_arr_CO2CO2_IR(:,:)=0. |
---|
303 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_CO2CO2_VI,abs_arr_CO2CO2_IR,num_T_CO2CO2) |
---|
304 | elseif ((igas_X .eq. igas_N2) .and. (igas_Y .eq. igas_N2)) then |
---|
305 | num_T_N2N2=num_T |
---|
306 | allocate(temp_arr_N2N2(num_T_N2N2)) |
---|
307 | allocate(abs_arr_N2N2_VI(L_NSPECTV,num_T_N2N2)) |
---|
308 | allocate(abs_arr_N2N2_IR(L_NSPECTI,num_T_N2N2)) |
---|
309 | temp_arr_N2N2(:)=temp_arr(:) |
---|
310 | abs_arr_N2N2_VI(:,:)=0. |
---|
311 | abs_arr_N2N2_IR(:,:)=0. |
---|
312 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_N2N2_VI,abs_arr_N2N2_IR,num_T_N2N2) |
---|
313 | elseif ((igas_X .eq. igas_O2) .and. (igas_Y .eq. igas_O2)) then |
---|
314 | num_T_O2O2=num_T |
---|
315 | allocate(temp_arr_O2O2(num_T_O2O2)) |
---|
316 | allocate(abs_arr_O2O2_VI(L_NSPECTV,num_T_O2O2)) |
---|
317 | allocate(abs_arr_O2O2_IR(L_NSPECTI,num_T_O2O2)) |
---|
318 | temp_arr_O2O2(:)=temp_arr(:) |
---|
319 | abs_arr_O2O2_VI(:,:)=0. |
---|
320 | abs_arr_O2O2_IR(:,:)=0. |
---|
321 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_O2O2_VI,abs_arr_O2O2_IR,num_T_O2O2) |
---|
322 | elseif ((igas_X .eq. igas_CH4) .and. (igas_Y .eq. igas_CH4)) then |
---|
323 | num_T_CH4CH4=num_T |
---|
324 | allocate(temp_arr_CH4CH4(num_T_CH4CH4)) |
---|
325 | allocate(abs_arr_CH4CH4_VI(L_NSPECTV,num_T_CH4CH4)) |
---|
326 | allocate(abs_arr_CH4CH4_IR(L_NSPECTI,num_T_CH4CH4)) |
---|
327 | temp_arr_CH4CH4(:)=temp_arr(:) |
---|
328 | abs_arr_CH4CH4_VI(:,:)=0. |
---|
329 | abs_arr_CH4CH4_IR(:,:)=0. |
---|
330 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_CH4CH4_VI,abs_arr_CH4CH4_IR,num_T_CH4CH4) |
---|
331 | elseif ((igas_X .eq. igas_H2) .and. (igas_Y .eq. igas_H2)) then |
---|
332 | num_T_H2H2=num_T |
---|
333 | allocate(temp_arr_H2H2(num_T_H2H2)) |
---|
334 | allocate(abs_arr_H2H2_VI(L_NSPECTV,num_T_H2H2)) |
---|
335 | allocate(abs_arr_H2H2_IR(L_NSPECTI,num_T_H2H2)) |
---|
336 | temp_arr_H2H2(:)=temp_arr(:) |
---|
337 | abs_arr_H2H2_VI(:,:)=0. |
---|
338 | abs_arr_H2H2_IR(:,:)=0. |
---|
339 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_H2H2_VI,abs_arr_H2H2_IR,num_T_H2H2) |
---|
340 | elseif ((igas_X .eq. igas_H2O) .and. (igas_Y .eq. igas_H2O)) then |
---|
341 | num_T_H2OH2O=num_T |
---|
342 | allocate(temp_arr_H2OH2O(num_T_H2OH2O)) |
---|
343 | allocate(abs_arr_H2OH2O_VI(L_NSPECTV,num_T_H2OH2O)) |
---|
344 | allocate(abs_arr_H2OH2O_IR(L_NSPECTI,num_T_H2OH2O)) |
---|
345 | temp_arr_H2OH2O(:)=temp_arr(:) |
---|
346 | abs_arr_H2OH2O_VI(:,:)=0. |
---|
347 | abs_arr_H2OH2O_IR(:,:)=0. |
---|
348 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_H2OH2O_VI,abs_arr_H2OH2O_IR,num_T_H2OH2O) |
---|
349 | elseif ((igas_X .eq. igas_N2) .and. (igas_Y .eq. igas_H2)) then |
---|
350 | num_T_N2H2=num_T |
---|
351 | allocate(temp_arr_N2H2(num_T_N2H2)) |
---|
352 | allocate(abs_arr_N2H2_VI(L_NSPECTV,num_T_N2H2)) |
---|
353 | allocate(abs_arr_N2H2_IR(L_NSPECTI,num_T_N2H2)) |
---|
354 | temp_arr_N2H2(:)=temp_arr(:) |
---|
355 | abs_arr_N2H2_VI(:,:)=0. |
---|
356 | abs_arr_N2H2_IR(:,:)=0. |
---|
357 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_N2H2_VI,abs_arr_N2H2_IR,num_T_N2H2) |
---|
358 | elseif ((igas_X .eq. igas_N2) .and. (igas_Y .eq. igas_O2)) then |
---|
359 | num_T_N2O2=num_T |
---|
360 | allocate(temp_arr_N2O2(num_T_N2O2)) |
---|
361 | allocate(abs_arr_N2O2_VI(L_NSPECTV,num_T_N2O2)) |
---|
362 | allocate(abs_arr_N2O2_IR(L_NSPECTI,num_T_N2O2)) |
---|
363 | temp_arr_N2O2(:)=temp_arr(:) |
---|
364 | abs_arr_N2O2_VI(:,:)=0. |
---|
365 | abs_arr_N2O2_IR(:,:)=0. |
---|
366 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_N2O2_VI,abs_arr_N2O2_IR,num_T_N2O2) |
---|
367 | elseif ((igas_X .eq. igas_N2) .and. (igas_Y .eq. igas_CH4)) then |
---|
368 | num_T_N2CH4=num_T |
---|
369 | allocate(temp_arr_N2CH4(num_T_N2CH4)) |
---|
370 | allocate(abs_arr_N2CH4_VI(L_NSPECTV,num_T_N2CH4)) |
---|
371 | allocate(abs_arr_N2CH4_IR(L_NSPECTI,num_T_N2CH4)) |
---|
372 | temp_arr_N2CH4(:)=temp_arr(:) |
---|
373 | abs_arr_N2CH4_VI(:,:)=0. |
---|
374 | abs_arr_N2CH4_IR(:,:)=0. |
---|
375 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_N2CH4_VI,abs_arr_N2CH4_IR,num_T_N2CH4) |
---|
376 | elseif ((igas_X .eq. igas_CO2) .and. (igas_Y .eq. igas_O2)) then |
---|
377 | num_T_CO2O2=num_T |
---|
378 | allocate(temp_arr_CO2O2(num_T_CO2O2)) |
---|
379 | allocate(abs_arr_CO2O2_VI(L_NSPECTV,num_T_CO2O2)) |
---|
380 | allocate(abs_arr_CO2O2_IR(L_NSPECTI,num_T_CO2O2)) |
---|
381 | temp_arr_CO2O2(:)=temp_arr(:) |
---|
382 | abs_arr_CO2O2_VI(:,:)=0. |
---|
383 | abs_arr_CO2O2_IR(:,:)=0. |
---|
384 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_CO2O2_VI,abs_arr_CO2O2_IR,num_T_CO2O2) |
---|
385 | elseif ((igas_X .eq. igas_H2) .and. (igas_Y .eq. igas_CH4)) then |
---|
386 | num_T_H2CH4=num_T |
---|
387 | allocate(temp_arr_H2CH4(num_T_H2CH4)) |
---|
388 | allocate(abs_arr_H2CH4_VI(L_NSPECTV,num_T_H2CH4)) |
---|
389 | allocate(abs_arr_H2CH4_IR(L_NSPECTI,num_T_H2CH4)) |
---|
390 | temp_arr_H2CH4(:)=temp_arr(:) |
---|
391 | abs_arr_H2CH4_VI(:,:)=0. |
---|
392 | abs_arr_H2CH4_IR(:,:)=0. |
---|
393 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_H2CH4_VI,abs_arr_H2CH4_IR,num_T_H2CH4) |
---|
394 | elseif ((igas_X .eq. igas_H2) .and. (igas_Y .eq. igas_He)) then |
---|
395 | num_T_H2He=num_T |
---|
396 | allocate(temp_arr_H2He(num_T_H2He)) |
---|
397 | allocate(abs_arr_H2He_VI(L_NSPECTV,num_T_H2He)) |
---|
398 | allocate(abs_arr_H2He_IR(L_NSPECTI,num_T_H2He)) |
---|
399 | temp_arr_H2He(:)=temp_arr(:) |
---|
400 | abs_arr_H2He_VI(:,:)=0. |
---|
401 | abs_arr_H2He_IR(:,:)=0. |
---|
402 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_H2He_VI,abs_arr_H2He_IR,num_T_H2He) |
---|
403 | elseif ((igas_X .eq. igas_H2O) .and. (igas_Y .eq. igas_N2)) then |
---|
404 | num_T_H2ON2=num_T |
---|
405 | allocate(temp_arr_H2ON2(num_T_H2ON2)) |
---|
406 | allocate(abs_arr_H2ON2_VI(L_NSPECTV,num_T_H2ON2)) |
---|
407 | allocate(abs_arr_H2ON2_IR(L_NSPECTI,num_T_H2ON2)) |
---|
408 | temp_arr_H2ON2(:)=temp_arr(:) |
---|
409 | abs_arr_H2ON2_VI(:,:)=0. |
---|
410 | abs_arr_H2ON2_IR(:,:)=0. |
---|
411 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_H2ON2_VI,abs_arr_H2ON2_IR,num_T_H2ON2) |
---|
412 | elseif ((igas_X .eq. igas_H2O) .and. (igas_Y .eq. igas_O2)) then |
---|
413 | num_T_H2OO2=num_T |
---|
414 | allocate(temp_arr_H2OO2(num_T_H2OO2)) |
---|
415 | allocate(abs_arr_H2OO2_VI(L_NSPECTV,num_T_H2OO2)) |
---|
416 | allocate(abs_arr_H2OO2_IR(L_NSPECTI,num_T_H2OO2)) |
---|
417 | temp_arr_H2OO2(:)=temp_arr(:) |
---|
418 | abs_arr_H2OO2_VI(:,:)=0. |
---|
419 | abs_arr_H2OO2_IR(:,:)=0. |
---|
420 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_H2OO2_VI,abs_arr_H2OO2_IR,num_T_H2OO2) |
---|
421 | elseif ((igas_X .eq. igas_H2O) .and. (igas_Y .eq. igas_CO2)) then |
---|
422 | num_T_H2OCO2=num_T |
---|
423 | allocate(temp_arr_H2OCO2(num_T_H2OCO2)) |
---|
424 | allocate(abs_arr_H2OCO2_VI(L_NSPECTV,num_T_H2OCO2)) |
---|
425 | allocate(abs_arr_H2OCO2_IR(L_NSPECTI,num_T_H2OCO2)) |
---|
426 | temp_arr_H2OCO2(:)=temp_arr(:) |
---|
427 | abs_arr_H2OCO2_VI(:,:)=0. |
---|
428 | abs_arr_H2OCO2_IR(:,:)=0. |
---|
429 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_H2OCO2_VI,abs_arr_H2OCO2_IR,num_T_H2OCO2) |
---|
430 | elseif ((igas_X .eq. igas_CO2) .and. (igas_Y .eq. igas_CO2)) then |
---|
431 | num_T_CO2CO2=num_T |
---|
432 | allocate(temp_arr_CO2CO2(num_T_CO2CO2)) |
---|
433 | allocate(abs_arr_CO2CO2_VI(L_NSPECTV,num_T_CO2CO2)) |
---|
434 | allocate(abs_arr_CO2CO2_IR(L_NSPECTI,num_T_CO2CO2)) |
---|
435 | temp_arr_CO2CO2(:)=temp_arr(:) |
---|
436 | abs_arr_CO2CO2_VI(:,:)=0. |
---|
437 | abs_arr_CO2CO2_IR(:,:)=0. |
---|
438 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_CO2CO2_VI,abs_arr_CO2CO2_IR,num_T_CO2CO2) |
---|
439 | elseif ((igas_X .eq. igas_CO2) .and. (igas_Y .eq. igas_H2)) then |
---|
440 | num_T_CO2H2=num_T |
---|
441 | allocate(temp_arr_CO2H2(num_T_CO2H2)) |
---|
442 | allocate(abs_arr_CO2H2_VI(L_NSPECTV,num_T_CO2H2)) |
---|
443 | allocate(abs_arr_CO2H2_IR(L_NSPECTI,num_T_CO2H2)) |
---|
444 | temp_arr_CO2H2(:)=temp_arr(:) |
---|
445 | abs_arr_CO2H2_VI(:,:)=0. |
---|
446 | abs_arr_CO2H2_IR(:,:)=0. |
---|
447 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_CO2H2_VI,abs_arr_CO2H2_IR,num_T_CO2H2) |
---|
448 | elseif ((igas_X .eq. igas_CO2) .and. (igas_Y .eq. igas_CH4)) then |
---|
449 | num_T_CO2CH4=num_T |
---|
450 | allocate(temp_arr_CO2CH4(num_T_CO2CH4)) |
---|
451 | allocate(abs_arr_CO2CH4_VI(L_NSPECTV,num_T_CO2CH4)) |
---|
452 | allocate(abs_arr_CO2CH4_IR(L_NSPECTI,num_T_CO2CH4)) |
---|
453 | temp_arr_CO2CH4(:)=temp_arr(:) |
---|
454 | abs_arr_CO2CH4_VI(:,:)=0. |
---|
455 | abs_arr_CO2CH4_IR(:,:)=0. |
---|
456 | call interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr,abs_arr_CO2CH4_VI,abs_arr_CO2CH4_IR,num_T_CO2CH4) |
---|
457 | endif ! igas_X / igas_Y condition |
---|
458 | |
---|
459 | |
---|
460 | !$OMP END MASTER |
---|
461 | !$OMP BARRIER |
---|
462 | |
---|
463 | |
---|
464 | endif ! firstcall |
---|
465 | |
---|
466 | ! We loop on all molecular pairs with available continuum data and interpolate in the temperature field |
---|
467 | ! Two options: we call visible (VI) or infrared (IR) tables, depending on the value of c_WN |
---|
468 | |
---|
469 | if ((igas_X .eq. igas_CO2) .and. (igas_Y .eq. igas_CO2)) then |
---|
470 | call T_boundaries_continuum(z_temp,temp,temp_arr_CO2CO2,num_T_CO2CO2) |
---|
471 | if(c_WN .eq. 'IR') then |
---|
472 | call interpolate_T_abs_coeff(z_temp,temp_arr_CO2CO2,num_T_CO2CO2,abs_coef,abs_arr_CO2CO2_IR(ind_WN,:)) |
---|
473 | elseif(c_WN .eq. 'VI') then |
---|
474 | call interpolate_T_abs_coeff(z_temp,temp_arr_CO2CO2,num_T_CO2CO2,abs_coef,abs_arr_CO2CO2_VI(ind_WN,:)) |
---|
475 | else |
---|
476 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
477 | call abort_physic(rname,"CO2CO2 bad channel",1) |
---|
478 | endif |
---|
479 | elseif ((igas_X .eq. igas_N2) .and. (igas_Y .eq. igas_N2)) then |
---|
480 | call T_boundaries_continuum(z_temp,temp,temp_arr_N2N2,num_T_N2N2) |
---|
481 | if(c_WN .eq. 'IR') then |
---|
482 | call interpolate_T_abs_coeff(z_temp,temp_arr_N2N2,num_T_N2N2,abs_coef,abs_arr_N2N2_IR(ind_WN,:)) |
---|
483 | elseif(c_WN .eq. 'VI') then |
---|
484 | call interpolate_T_abs_coeff(z_temp,temp_arr_N2N2,num_T_N2N2,abs_coef,abs_arr_N2N2_VI(ind_WN,:)) |
---|
485 | else |
---|
486 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
487 | call abort_physic(rname,"N2N2 bad channel",1) |
---|
488 | endif |
---|
489 | elseif ((igas_X .eq. igas_O2) .and. (igas_Y .eq. igas_O2)) then |
---|
490 | call T_boundaries_continuum(z_temp,temp,temp_arr_O2O2,num_T_O2O2) |
---|
491 | if(c_WN .eq. 'IR') then |
---|
492 | call interpolate_T_abs_coeff(z_temp,temp_arr_O2O2,num_T_O2O2,abs_coef,abs_arr_O2O2_IR(ind_WN,:)) |
---|
493 | elseif(c_WN .eq. 'VI') then |
---|
494 | call interpolate_T_abs_coeff(z_temp,temp_arr_O2O2,num_T_O2O2,abs_coef,abs_arr_O2O2_VI(ind_WN,:)) |
---|
495 | else |
---|
496 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
497 | call abort_physic(rname,"O2O2 bad channel",1) |
---|
498 | endif |
---|
499 | elseif ((igas_X .eq. igas_CH4) .and. (igas_Y .eq. igas_CH4)) then |
---|
500 | call T_boundaries_continuum(z_temp,temp,temp_arr_CH4CH4,num_T_CH4CH4) |
---|
501 | if(c_WN .eq. 'IR') then |
---|
502 | call interpolate_T_abs_coeff(z_temp,temp_arr_CH4CH4,num_T_CH4CH4,abs_coef,abs_arr_CH4CH4_IR(ind_WN,:)) |
---|
503 | elseif(c_WN .eq. 'VI') then |
---|
504 | call interpolate_T_abs_coeff(z_temp,temp_arr_CH4CH4,num_T_CH4CH4,abs_coef,abs_arr_CH4CH4_VI(ind_WN,:)) |
---|
505 | else |
---|
506 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
507 | call abort_physic(rname,"CH4CH4 bad channel",1) |
---|
508 | endif |
---|
509 | elseif ((igas_X .eq. igas_H2) .and. (igas_Y .eq. igas_H2)) then |
---|
510 | call T_boundaries_continuum(z_temp,temp,temp_arr_H2H2,num_T_H2H2) |
---|
511 | if(c_WN .eq. 'IR') then |
---|
512 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2H2,num_T_H2H2,abs_coef,abs_arr_H2H2_IR(ind_WN,:)) |
---|
513 | elseif(c_WN .eq. 'VI') then |
---|
514 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2H2,num_T_H2H2,abs_coef,abs_arr_H2H2_VI(ind_WN,:)) |
---|
515 | else |
---|
516 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
517 | call abort_physic(rname,"H2H2 bad channel",1) |
---|
518 | endif |
---|
519 | elseif ((igas_X .eq. igas_H2O) .and. (igas_Y .eq. igas_H2O)) then |
---|
520 | call T_boundaries_continuum(z_temp,temp,temp_arr_H2OH2O,num_T_H2OH2O) |
---|
521 | if(c_WN .eq. 'IR') then |
---|
522 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2OH2O,num_T_H2OH2O,abs_coef,abs_arr_H2OH2O_IR(ind_WN,:)) |
---|
523 | elseif(c_WN .eq. 'VI') then |
---|
524 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2OH2O,num_T_H2OH2O,abs_coef,abs_arr_H2OH2O_VI(ind_WN,:)) |
---|
525 | else |
---|
526 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
527 | call abort_physic(rname,"H2OH2O bad channel",1) |
---|
528 | endif |
---|
529 | elseif ((igas_X .eq. igas_N2) .and. (igas_Y .eq. igas_H2)) then |
---|
530 | call T_boundaries_continuum(z_temp,temp,temp_arr_N2H2,num_T_N2H2) |
---|
531 | if(c_WN .eq. 'IR') then |
---|
532 | call interpolate_T_abs_coeff(z_temp,temp_arr_N2H2,num_T_N2H2,abs_coef,abs_arr_N2H2_IR(ind_WN,:)) |
---|
533 | elseif(c_WN .eq. 'VI') then |
---|
534 | call interpolate_T_abs_coeff(z_temp,temp_arr_N2H2,num_T_N2H2,abs_coef,abs_arr_N2H2_VI(ind_WN,:)) |
---|
535 | else |
---|
536 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
537 | call abort_physic(rname,"N2H2 bad channel",1) |
---|
538 | endif |
---|
539 | elseif ((igas_X .eq. igas_N2) .and. (igas_Y .eq. igas_O2)) then |
---|
540 | call T_boundaries_continuum(z_temp,temp,temp_arr_N2O2,num_T_N2O2) |
---|
541 | if(c_WN .eq. 'IR') then |
---|
542 | call interpolate_T_abs_coeff(z_temp,temp_arr_N2O2,num_T_N2O2,abs_coef,abs_arr_N2O2_IR(ind_WN,:)) |
---|
543 | elseif(c_WN .eq. 'VI') then |
---|
544 | call interpolate_T_abs_coeff(z_temp,temp_arr_N2O2,num_T_N2O2,abs_coef,abs_arr_N2O2_VI(ind_WN,:)) |
---|
545 | else |
---|
546 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
547 | call abort_physic(rname,"N2O2 bad channel",1) |
---|
548 | endif |
---|
549 | elseif ((igas_X .eq. igas_N2) .and. (igas_Y .eq. igas_CH4)) then |
---|
550 | call T_boundaries_continuum(z_temp,temp,temp_arr_N2CH4,num_T_N2CH4) |
---|
551 | if(c_WN .eq. 'IR') then |
---|
552 | call interpolate_T_abs_coeff(z_temp,temp_arr_N2CH4,num_T_N2CH4,abs_coef,abs_arr_N2CH4_IR(ind_WN,:)) |
---|
553 | elseif(c_WN .eq. 'VI') then |
---|
554 | call interpolate_T_abs_coeff(z_temp,temp_arr_N2CH4,num_T_N2CH4,abs_coef,abs_arr_N2CH4_VI(ind_WN,:)) |
---|
555 | else |
---|
556 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
557 | call abort_physic(rname,"N2CH4 bad channel",1) |
---|
558 | endif |
---|
559 | elseif ((igas_X .eq. igas_CO2) .and. (igas_Y .eq. igas_O2)) then |
---|
560 | call T_boundaries_continuum(z_temp,temp,temp_arr_CO2O2,num_T_CO2O2) |
---|
561 | if(c_WN .eq. 'IR') then |
---|
562 | call interpolate_T_abs_coeff(z_temp,temp_arr_CO2O2,num_T_CO2O2,abs_coef,abs_arr_CO2O2_IR(ind_WN,:)) |
---|
563 | elseif(c_WN .eq. 'VI') then |
---|
564 | call interpolate_T_abs_coeff(z_temp,temp_arr_CO2O2,num_T_CO2O2,abs_coef,abs_arr_CO2O2_VI(ind_WN,:)) |
---|
565 | else |
---|
566 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
567 | call abort_physic(rname,"CO2O2 bad channel",1) |
---|
568 | endif |
---|
569 | elseif ((igas_X .eq. igas_H2) .and. (igas_Y .eq. igas_CH4)) then |
---|
570 | call T_boundaries_continuum(z_temp,temp,temp_arr_H2CH4,num_T_H2CH4) |
---|
571 | if(c_WN .eq. 'IR') then |
---|
572 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2CH4,num_T_H2CH4,abs_coef,abs_arr_H2CH4_IR(ind_WN,:)) |
---|
573 | elseif(c_WN .eq. 'VI') then |
---|
574 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2CH4,num_T_H2CH4,abs_coef,abs_arr_H2CH4_VI(ind_WN,:)) |
---|
575 | else |
---|
576 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
577 | call abort_physic(rname,"H2CH4 bad channel",1) |
---|
578 | endif |
---|
579 | elseif ((igas_X .eq. igas_H2) .and. (igas_Y .eq. igas_He)) then |
---|
580 | call T_boundaries_continuum(z_temp,temp,temp_arr_H2He,num_T_H2He) |
---|
581 | if(c_WN .eq. 'IR') then |
---|
582 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2He,num_T_H2He,abs_coef,abs_arr_H2He_IR(ind_WN,:)) |
---|
583 | elseif(c_WN .eq. 'VI') then |
---|
584 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2He,num_T_H2He,abs_coef,abs_arr_H2He_VI(ind_WN,:)) |
---|
585 | else |
---|
586 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
587 | call abort_physic(rname,"H2He bad channel",1) |
---|
588 | endif |
---|
589 | elseif ((igas_X .eq. igas_H2O) .and. (igas_Y .eq. igas_N2)) then |
---|
590 | call T_boundaries_continuum(z_temp,temp,temp_arr_H2ON2,num_T_H2ON2) |
---|
591 | if(c_WN .eq. 'IR') then |
---|
592 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2ON2,num_T_H2ON2,abs_coef,abs_arr_H2ON2_IR(ind_WN,:)) |
---|
593 | elseif(c_WN .eq. 'VI') then |
---|
594 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2ON2,num_T_H2ON2,abs_coef,abs_arr_H2ON2_VI(ind_WN,:)) |
---|
595 | else |
---|
596 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
597 | call abort_physic(rname,"H2ON2 bad channel",1) |
---|
598 | endif |
---|
599 | elseif ((igas_X .eq. igas_H2O) .and. (igas_Y .eq. igas_O2)) then |
---|
600 | call T_boundaries_continuum(z_temp,temp,temp_arr_H2OO2,num_T_H2OO2) |
---|
601 | if(c_WN .eq. 'IR') then |
---|
602 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2OO2,num_T_H2OO2,abs_coef,abs_arr_H2OO2_IR(ind_WN,:)) |
---|
603 | elseif(c_WN .eq. 'VI') then |
---|
604 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2OO2,num_T_H2OO2,abs_coef,abs_arr_H2OO2_VI(ind_WN,:)) |
---|
605 | else |
---|
606 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
607 | call abort_physic(rname,"H2OO2 bad channel",1) |
---|
608 | endif |
---|
609 | elseif ((igas_X .eq. igas_H2O) .and. (igas_Y .eq. igas_CO2)) then |
---|
610 | call T_boundaries_continuum(z_temp,temp,temp_arr_H2OCO2,num_T_H2OCO2) |
---|
611 | if(c_WN .eq. 'IR') then |
---|
612 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2OCO2,num_T_H2OCO2,abs_coef,abs_arr_H2OCO2_IR(ind_WN,:)) |
---|
613 | elseif(c_WN .eq. 'VI') then |
---|
614 | call interpolate_T_abs_coeff(z_temp,temp_arr_H2OCO2,num_T_H2OCO2,abs_coef,abs_arr_H2OCO2_VI(ind_WN,:)) |
---|
615 | else |
---|
616 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
617 | call abort_physic(rname,"H2OCO2 bad channel",1) |
---|
618 | endif |
---|
619 | elseif ((igas_X .eq. igas_CO2) .and. (igas_Y .eq. igas_H2)) then |
---|
620 | call T_boundaries_continuum(z_temp,temp,temp_arr_CO2H2,num_T_CO2H2) |
---|
621 | if(c_WN .eq. 'IR') then |
---|
622 | call interpolate_T_abs_coeff(z_temp,temp_arr_CO2H2,num_T_CO2H2,abs_coef,abs_arr_CO2H2_IR(ind_WN,:)) |
---|
623 | elseif(c_WN .eq. 'VI') then |
---|
624 | call interpolate_T_abs_coeff(z_temp,temp_arr_CO2H2,num_T_CO2H2,abs_coef,abs_arr_CO2H2_VI(ind_WN,:)) |
---|
625 | else |
---|
626 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
627 | call abort_physic(rname,"CO2H2 bad channel",1) |
---|
628 | endif |
---|
629 | elseif ((igas_X .eq. igas_CO2) .and. (igas_Y .eq. igas_CH4)) then |
---|
630 | call T_boundaries_continuum(z_temp,temp,temp_arr_CO2CH4,num_T_CO2CH4) |
---|
631 | if(c_WN .eq. 'IR') then |
---|
632 | call interpolate_T_abs_coeff(z_temp,temp_arr_CO2CH4,num_T_CO2CH4,abs_coef,abs_arr_CO2CH4_IR(ind_WN,:)) |
---|
633 | elseif(c_WN .eq. 'VI') then |
---|
634 | call interpolate_T_abs_coeff(z_temp,temp_arr_CO2CH4,num_T_CO2CH4,abs_coef,abs_arr_CO2CH4_VI(ind_WN,:)) |
---|
635 | else |
---|
636 | print*,'You must select visible (VI) or infrared (IR) channel.' |
---|
637 | call abort_physic(rname,"CO2CH4 bad channel",1) |
---|
638 | endif |
---|
639 | endif ! igas_X / igas_Y condition |
---|
640 | |
---|
641 | ! We compute the values of amagat for molecules X and Y |
---|
642 | amagat_X = (273.15/temp)*(pres_X/101325.0) |
---|
643 | amagat_Y = (273.15/temp)*(pres_Y/101325.0) |
---|
644 | |
---|
645 | ! We convert the absorption coefficient from cm^-1 amagat^-2 into m^-1 |
---|
646 | abs_coef=abs_coef*100.0*amagat_X*amagat_Y |
---|
647 | |
---|
648 | !print*,'We have ',amagat_X,' amagats of molecule ', trim(gnom(igas_X)) |
---|
649 | !print*,'We have ',amagat_X,' amagats of molecule ', trim(gnom(igas_Y)) |
---|
650 | !print*,'So the absorption is ',abs_coef,' m^-1' |
---|
651 | |
---|
652 | end subroutine interpolate_continuum |
---|
653 | |
---|
654 | |
---|
655 | subroutine interpolate_wn_abs_coeff(wn_arr,num_wn,abs_arr_in,abs_arr_out_VI,abs_arr_out_IR,num_T) |
---|
656 | |
---|
657 | !================================================================== |
---|
658 | ! |
---|
659 | ! Purpose |
---|
660 | ! ------- |
---|
661 | ! Interpolate the continuum data into the visible (VI) and infrared (IR) spectral chanels. |
---|
662 | ! |
---|
663 | ! Author |
---|
664 | ! ------- |
---|
665 | ! M. Turbet (2025) |
---|
666 | ! |
---|
667 | !================================================================== |
---|
668 | |
---|
669 | use radcommon_h, only : BWNV,BWNI,WNOI,WNOV |
---|
670 | use radinc_h, only: L_NSPECTI, L_NSPECTV |
---|
671 | use mod_phys_lmdz_para, only : is_master |
---|
672 | |
---|
673 | implicit none |
---|
674 | |
---|
675 | integer iW, iB, count_norm |
---|
676 | integer,intent(in) :: num_T |
---|
677 | integer,intent(in) :: num_wn |
---|
678 | double precision,intent(in) :: wn_arr(num_wn) |
---|
679 | double precision,intent(in) :: abs_arr_in(num_wn,num_T) |
---|
680 | double precision,intent(out) :: abs_arr_out_IR(L_NSPECTI,num_T) |
---|
681 | double precision,intent(out) :: abs_arr_out_VI(L_NSPECTV,num_T) |
---|
682 | |
---|
683 | ! First visible (VI) chanel |
---|
684 | |
---|
685 | ! We get read of all the wavenumbers lower than the minimum wavenumber in the visible wavenumber grid |
---|
686 | iW=1 |
---|
687 | do while((wn_arr(iW) .lt. BWNV(1)) .and. (iW .lt. num_wn)) |
---|
688 | iW=iW+1 |
---|
689 | enddo |
---|
690 | |
---|
691 | ! We compute the mean of the continuum absorption inside each wavenumber visible (VI) chanel |
---|
692 | do iB = 1, L_NSPECTV |
---|
693 | count_norm=0 |
---|
694 | do while((wn_arr(iW) .lt. BWNV(iB+1)) .and. (iW .lt. num_wn)) |
---|
695 | abs_arr_out_VI(iB,:)=abs_arr_out_VI(iB,:)+abs_arr_in(iW,:) |
---|
696 | count_norm=count_norm+1 |
---|
697 | iW=iW+1 |
---|
698 | enddo |
---|
699 | if(count_norm .ge. 1) abs_arr_out_VI(iB,:)=abs_arr_out_VI(iB,:)/count_norm |
---|
700 | end do |
---|
701 | |
---|
702 | ! Then infrared (IR) chanel |
---|
703 | |
---|
704 | ! We get read of all the wavenumbers lower than the minimum wavenumber in the infrared wavenumber grid |
---|
705 | iW=1 |
---|
706 | do while((wn_arr(iW) .lt. BWNI(1)) .and. (iW .lt. num_wn)) |
---|
707 | iW=iW+1 |
---|
708 | enddo |
---|
709 | |
---|
710 | ! We compute the mean of the continuum absorption inside each wavenumber visible (VI) chanel |
---|
711 | do iB = 1, L_NSPECTI |
---|
712 | count_norm=0 |
---|
713 | do while((wn_arr(iW) .lt. BWNI(iB+1)) .and. (iW .lt. num_wn)) |
---|
714 | abs_arr_out_IR(iB,:)=abs_arr_out_IR(iB,:)+abs_arr_in(iW,:) |
---|
715 | count_norm=count_norm+1 |
---|
716 | iW=iW+1 |
---|
717 | enddo |
---|
718 | if(count_norm .ge. 1) abs_arr_out_IR(iB,:)=abs_arr_out_IR(iB,:)/count_norm |
---|
719 | end do |
---|
720 | |
---|
721 | if (is_master) then |
---|
722 | print*, 'Continuum absorption, first temperature, visible (VI):' |
---|
723 | do iB = 1, L_NSPECTV |
---|
724 | print*,WNOV(iB),' cm-1',abs_arr_out_VI(iB,1), ' cm-1 amagat-2' |
---|
725 | end do |
---|
726 | |
---|
727 | print*, 'Continuum absorption, first temperature, infrared (IR):' |
---|
728 | do iB = 1, L_NSPECTI |
---|
729 | print*,WNOI(iB),' cm-1',abs_arr_out_IR(iB,1), ' cm-1 amagat-2' |
---|
730 | end do |
---|
731 | endif |
---|
732 | |
---|
733 | end subroutine interpolate_wn_abs_coeff |
---|
734 | |
---|
735 | |
---|
736 | subroutine T_boundaries_continuum(z_temp,temp,temp_arr,num_T) |
---|
737 | |
---|
738 | !================================================================== |
---|
739 | ! |
---|
740 | ! Purpose |
---|
741 | ! ------- |
---|
742 | ! Check if the temperature is outside the boundaries of the continuum data temperatures. |
---|
743 | ! |
---|
744 | ! Author |
---|
745 | ! ------- |
---|
746 | ! M. Turbet (2025) |
---|
747 | ! |
---|
748 | !================================================================== |
---|
749 | |
---|
750 | use callkeys_mod, only: strictboundcia |
---|
751 | use mod_phys_lmdz_para, only : is_master |
---|
752 | |
---|
753 | implicit none |
---|
754 | |
---|
755 | double precision,intent(out) :: z_temp |
---|
756 | double precision,intent(in) :: temp |
---|
757 | integer,intent(in) :: num_T |
---|
758 | double precision,intent(in) :: temp_arr(num_T) |
---|
759 | |
---|
760 | character(len=22) :: rname = "T_boundaries_continuum" |
---|
761 | |
---|
762 | z_temp=temp |
---|
763 | |
---|
764 | if(z_temp .lt. minval(temp_arr)) then |
---|
765 | if (strictboundcia) then |
---|
766 | if (is_master) then |
---|
767 | print*,'Your temperatures are too low for this continuum dataset' |
---|
768 | print*, 'Minimum temperature is ', minval(temp_arr), ' K' |
---|
769 | endif |
---|
770 | call abort_physic(rname,"temperature too low",1) |
---|
771 | else |
---|
772 | z_temp=minval(temp_arr) |
---|
773 | endif |
---|
774 | elseif(z_temp .gt. maxval(temp_arr)) then |
---|
775 | if (strictboundcia) then |
---|
776 | if (is_master) then |
---|
777 | print*,'Your temperatures are too high for this continuum dataset' |
---|
778 | print*, 'Maximum temperature is ', maxval(temp_arr), ' K' |
---|
779 | endif |
---|
780 | call abort_physic(rname,"temperature too high",1) |
---|
781 | else |
---|
782 | z_temp=maxval(temp_arr) |
---|
783 | endif |
---|
784 | endif |
---|
785 | |
---|
786 | end subroutine T_boundaries_continuum |
---|
787 | |
---|
788 | |
---|
789 | subroutine interpolate_T_abs_coeff(z_temp,temp_arr,num_T,abs_coef,abs_arr) |
---|
790 | |
---|
791 | !================================================================== |
---|
792 | ! |
---|
793 | ! Purpose |
---|
794 | ! ------- |
---|
795 | ! Interpolate in the continuum data using the temperature field |
---|
796 | ! |
---|
797 | ! Author |
---|
798 | ! ------- |
---|
799 | ! M. Turbet (2025) |
---|
800 | ! |
---|
801 | !================================================================== |
---|
802 | |
---|
803 | implicit none |
---|
804 | |
---|
805 | integer iT |
---|
806 | double precision,intent(in) :: z_temp |
---|
807 | integer,intent(in) :: num_T |
---|
808 | double precision,intent(in) :: temp_arr(num_T) |
---|
809 | |
---|
810 | double precision,intent(out) :: abs_coef |
---|
811 | double precision,intent(in) :: abs_arr(num_T) |
---|
812 | |
---|
813 | ! Check where to interpolate |
---|
814 | iT=1 |
---|
815 | do while ( z_temp .gt. temp_arr(iT) ) |
---|
816 | iT=iT+1 |
---|
817 | end do |
---|
818 | |
---|
819 | ! If below lowest temperature in temp_arr() |
---|
820 | if (iT==1) then |
---|
821 | abs_coef=abs_arr(1) |
---|
822 | return |
---|
823 | endif |
---|
824 | |
---|
825 | ! We proceed to a simple linear interpolation using the two most nearby temperatures |
---|
826 | if(iT .lt. num_T) then |
---|
827 | abs_coef=abs_arr(iT-1)+(abs_arr(iT)-abs_arr(iT-1))*(z_temp-temp_arr(iT-1))/(temp_arr(iT)-temp_arr(iT-1)) |
---|
828 | else |
---|
829 | ! If above highest temperature |
---|
830 | abs_coef=abs_arr(iT) |
---|
831 | endif |
---|
832 | |
---|
833 | !print*,'the absorption is ',abs_coef,' cm^-1 amagat^-2' |
---|
834 | |
---|
835 | |
---|
836 | end subroutine interpolate_T_abs_coeff |
---|
837 | |
---|
838 | end module interpolate_continuum_mod |
---|