1 | subroutine hydrol(ngrid,nq,ptimestep,rnat,tsurf, & |
---|
2 | qsurf,dqsurf,dqs_hyd,pcapcal, & |
---|
3 | albedo,albedo_bareground, & |
---|
4 | albedo_snow_SPECTV,albedo_co2_ice_SPECTV, & |
---|
5 | mu0,pdtsurf,pdtsurf_hyd,hice, & |
---|
6 | pctsrf_sic,sea_ice) |
---|
7 | |
---|
8 | use ioipsl_getin_p_mod, only: getin_p |
---|
9 | use mod_grid_phy_lmdz, only : klon_glo ! # of physics point on full grid |
---|
10 | use mod_phys_lmdz_para, only : is_master, gather, scatter |
---|
11 | use watercommon_h, only: T_h2O_ice_liq, RLFTT, rhowater, mx_eau_sol |
---|
12 | USE surfdat_h |
---|
13 | use comdiurn_h |
---|
14 | USE geometry_mod, only: cell_area |
---|
15 | USE tracer_h |
---|
16 | ! use slab_ice_h |
---|
17 | USE ocean_slab_mod, ONLY: alb_ice_min,h_alb_ice,snow_min |
---|
18 | use callkeys_mod, only: albedosnow,alb_ocean,albedoco2ice,ok_slab_ocean,Tsaldiff,maxicethick,co2cond |
---|
19 | use radinc_h, only : L_NSPECTV |
---|
20 | |
---|
21 | implicit none |
---|
22 | |
---|
23 | !================================================================== |
---|
24 | ! |
---|
25 | ! Purpose |
---|
26 | ! ------- |
---|
27 | ! Calculate the surface hydrology and albedo changes. |
---|
28 | ! Both for oceanic and continental regions |
---|
29 | ! |
---|
30 | ! Authors |
---|
31 | ! ------- |
---|
32 | ! Adapted from LMDTERRE by B. Charnay (2010). Further |
---|
33 | ! Modifications by R. Wordsworth (2010). |
---|
34 | ! Spectral albedo by M. Turbet (2015). |
---|
35 | ! |
---|
36 | ! Called by |
---|
37 | ! --------- |
---|
38 | ! physiq.F |
---|
39 | ! |
---|
40 | ! Calls |
---|
41 | ! ----- |
---|
42 | ! none |
---|
43 | ! |
---|
44 | ! Notes |
---|
45 | ! ----- |
---|
46 | ! rnat is terrain type: 0-ocean; 1-continent |
---|
47 | ! |
---|
48 | !================================================================== |
---|
49 | |
---|
50 | integer ngrid,nq |
---|
51 | |
---|
52 | ! Inputs |
---|
53 | ! ------ |
---|
54 | real snowlayer |
---|
55 | parameter (snowlayer=33.0) ! 33 kg/m^2 of snow, equal to a layer of 3.3 cm |
---|
56 | |
---|
57 | real oceantime ! this is a relaxation timescale for the oceanbulkavg parameterization |
---|
58 | parameter (oceantime=10*24*3600) |
---|
59 | logical,save :: oceanbulkavg ! simple parameterization to relax ocean temperatures to the global mean value (crude, 0th order parameterization to mimick ocean heat transport) |
---|
60 | |
---|
61 | logical,save :: activerunoff ! enable simple runoff scheme? |
---|
62 | logical,save :: oceanalbvary ! simple parameterization to account for the effect of solar zenith angle on the ocean albedo (for the moment it is not used, but to be included in the future) |
---|
63 | !$OMP THREADPRIVATE(oceanbulkavg,activerunoff,oceanalbvary) |
---|
64 | |
---|
65 | ! Arguments |
---|
66 | ! --------- |
---|
67 | real rnat(ngrid) ! rnat is terrain type: 0-ocean; 1-continent |
---|
68 | real,dimension(:),allocatable,save :: runoff |
---|
69 | real totalrunoff, tsea, oceanarea |
---|
70 | save oceanarea |
---|
71 | !$OMP THREADPRIVATE(runoff,oceanarea) |
---|
72 | |
---|
73 | real ptimestep |
---|
74 | real mu0(ngrid) |
---|
75 | real qsurf(ngrid,nq), tsurf(ngrid) |
---|
76 | real dqsurf(ngrid,nq), pdtsurf(ngrid) |
---|
77 | real hice(ngrid) |
---|
78 | real albedo(ngrid,L_NSPECTV) |
---|
79 | real albedo_bareground(ngrid) |
---|
80 | real albedo_snow_SPECTV(L_NSPECTV) |
---|
81 | real albedo_co2_ice_SPECTV(L_NSPECTV) |
---|
82 | real pctsrf_sic(ngrid), sea_ice(ngrid) |
---|
83 | |
---|
84 | real oceanarea2 |
---|
85 | |
---|
86 | ! Output |
---|
87 | ! ------ |
---|
88 | real dqs_hyd(ngrid,nq) |
---|
89 | real pdtsurf_hyd(ngrid) |
---|
90 | |
---|
91 | ! Local |
---|
92 | ! ----- |
---|
93 | real a,b,E |
---|
94 | integer ig,iq, nw |
---|
95 | real fsnoi, subli, fauxo |
---|
96 | real twater(ngrid) |
---|
97 | real pcapcal(ngrid) |
---|
98 | real hicebis(ngrid) |
---|
99 | real zqsurf(ngrid,nq) |
---|
100 | real ztsurf(ngrid) |
---|
101 | real albedo_sic, alb_ice |
---|
102 | real frac_snow |
---|
103 | |
---|
104 | integer, save :: ivap, iliq, iice |
---|
105 | !$OMP THREADPRIVATE(ivap,iliq,iice) |
---|
106 | |
---|
107 | logical, save :: firstcall=.true. |
---|
108 | !$OMP THREADPRIVATE(firstcall) |
---|
109 | |
---|
110 | real :: runoffamount(ngrid) |
---|
111 | !#ifdef CPP_PARA |
---|
112 | real :: runoffamount_glo(klon_glo) |
---|
113 | real :: zqsurf_iliq_glo(klon_glo) |
---|
114 | real :: rnat_glo(klon_glo) |
---|
115 | real :: oceanarea_glo |
---|
116 | real :: cell_area_glo(klon_glo) |
---|
117 | !#else |
---|
118 | ! real :: runoffamount_glo(ngrid) |
---|
119 | ! real :: zqsurf_iliq_glo(ngrid) |
---|
120 | !#endif |
---|
121 | |
---|
122 | |
---|
123 | if(firstcall)then |
---|
124 | |
---|
125 | oceanbulkavg=.false. |
---|
126 | oceanalbvary=.false. |
---|
127 | write(*,*)"Activate runnoff into oceans?" |
---|
128 | activerunoff=.false. |
---|
129 | call getin_p("activerunoff",activerunoff) |
---|
130 | write(*,*)" activerunoff = ",activerunoff |
---|
131 | |
---|
132 | if (activerunoff) then |
---|
133 | ALLOCATE(runoff(ngrid)) |
---|
134 | runoff(1:ngrid)=0 |
---|
135 | endif |
---|
136 | |
---|
137 | ivap=igcm_h2o_vap |
---|
138 | iliq=igcm_h2o_vap |
---|
139 | iice=igcm_h2o_ice |
---|
140 | |
---|
141 | write(*,*) "hydrol: ivap=",ivap |
---|
142 | write(*,*) " iliq=",iliq |
---|
143 | write(*,*) " iice=",iice |
---|
144 | |
---|
145 | ! Here's the deal: iice is used in place of igcm_h2o_ice both on the |
---|
146 | ! surface and in the atmosphere. ivap is used in |
---|
147 | ! place of igcm_h2o_vap ONLY in the atmosphere, while |
---|
148 | ! iliq is used in place of igcm_h2o_vap ONLY on the |
---|
149 | ! surface. |
---|
150 | ! Soon to be extended to the entire water cycle... |
---|
151 | |
---|
152 | ! LOCAL ocean surface area |
---|
153 | oceanarea=0. |
---|
154 | do ig=1,ngrid |
---|
155 | if(nint(rnat(ig)).eq.0)then |
---|
156 | oceanarea=oceanarea+cell_area(ig) |
---|
157 | endif |
---|
158 | enddo |
---|
159 | |
---|
160 | if(oceanbulkavg.and.(oceanarea.le.0.))then |
---|
161 | print*,'How are we supposed to average the ocean' |
---|
162 | print*,'temperature, when there are no oceans?' |
---|
163 | call abort |
---|
164 | endif |
---|
165 | |
---|
166 | if(activerunoff.and.(oceanarea.le.0.))then |
---|
167 | print*,'You have enabled runoff, but you have no oceans.' |
---|
168 | print*,'Where did you think the water was going to go?' |
---|
169 | call abort |
---|
170 | endif |
---|
171 | |
---|
172 | firstcall = .false. |
---|
173 | endif |
---|
174 | |
---|
175 | ! write (*,*) "oceanarea", oceanarea |
---|
176 | |
---|
177 | ! add physical tendencies already calculated |
---|
178 | ! ------------------------------------------ |
---|
179 | |
---|
180 | do ig=1,ngrid |
---|
181 | ztsurf(ig) = tsurf(ig) + ptimestep*pdtsurf(ig) |
---|
182 | pdtsurf_hyd(ig)=0.0 |
---|
183 | do iq=1,nq |
---|
184 | zqsurf(ig,iq) = qsurf(ig,iq) + ptimestep*dqsurf(ig,iq) |
---|
185 | enddo |
---|
186 | enddo |
---|
187 | |
---|
188 | do ig=1,ngrid |
---|
189 | do iq=1,nq |
---|
190 | dqs_hyd(ig,iq) = 0.0 |
---|
191 | enddo |
---|
192 | enddo |
---|
193 | |
---|
194 | do ig = 1, ngrid |
---|
195 | |
---|
196 | ! Ocean regions (rnat = 0) |
---|
197 | ! ----------------------- |
---|
198 | if(nint(rnat(ig)).eq.0)then |
---|
199 | |
---|
200 | ! Parameterization (not used for the moment) to compute the effect of solar zenith angle on the albedo |
---|
201 | ! -------------------------- |
---|
202 | ! |
---|
203 | ! if(diurnal.and.oceanalbvary)then |
---|
204 | ! fauxo = ( 1.47 - ACOS( mu0(ig) ) )/0.15 ! where does this come from (Benjamin)? |
---|
205 | ! albedo(ig) = 1.1*( .03 + .630/( 1. + fauxo*fauxo)) |
---|
206 | ! albedo(ig) = MAX(MIN(albedo(ig),0.60),0.04) |
---|
207 | ! else |
---|
208 | ! |
---|
209 | ! do nw=1,L_NSPECTV |
---|
210 | ! albedo(ig,nw) = alb_ocean ! For now, alb_ocean is defined in inifis_mod.F90. Later we could introduce spectral dependency for alb_ocean. |
---|
211 | ! enddo |
---|
212 | ! end if |
---|
213 | |
---|
214 | ! we first start by fixing the albedo of oceanic grid to that of the ocean |
---|
215 | do nw=1,L_NSPECTV |
---|
216 | albedo(ig,nw) = alb_ocean ! For now, alb_ocean is defined in inifis_mod.F90. Later we could introduce spectral dependency for alb_ocean. |
---|
217 | enddo |
---|
218 | |
---|
219 | if(ok_slab_ocean) then ! if ocean heat transport param activated |
---|
220 | |
---|
221 | frac_snow = MAX(0.0,MIN(1.0,zqsurf(ig,iice)/snow_min)) ! Critical snow height (in kg/m2) from ocean_slab_ice routine. |
---|
222 | ! Standard value should be 15kg/m2 (i.e. about 5 cm). Note that in the previous ocean param. (from BC2014), this value was 45kg/m2 (i.e. about 15cm). |
---|
223 | |
---|
224 | ! Albedo final calculation : |
---|
225 | do nw=1,L_NSPECTV |
---|
226 | alb_ice=albedo_snow_SPECTV(nw)-(albedo_snow_SPECTV(nw)-alb_ice_min)*exp(-sea_ice(ig)/h_alb_ice) ! this replaces the formulation from BC2014 |
---|
227 | ! More details on the parameterization of sea ice albedo vs thickness is provided in the wiki : |
---|
228 | ! https://lmdz-forge.lmd.jussieu.fr/mediawiki/Planets/index.php/Slab_ocean_model |
---|
229 | ! sea_ice is the ice thickness (calculated in ocean_slab routine) in kg/m2 ; h_alb_ice is fixed to 275.1kg/m2 i.e. 30cm based on comparisons with Brandt et al. 2005 |
---|
230 | albedo(ig,nw) = pctsrf_sic(ig)* & |
---|
231 | (albedo_snow_SPECTV(nw)*frac_snow + alb_ice*(1.0-frac_snow)) & |
---|
232 | + (1.-pctsrf_sic(ig))*alb_ocean |
---|
233 | enddo |
---|
234 | |
---|
235 | ! Oceanic ice height, just for diagnostics |
---|
236 | hice(ig) = MIN(10.,sea_ice(ig)/rhowater) |
---|
237 | else !ok_slab_ocean ; here this is the case where we are dealing with a static ocean |
---|
238 | |
---|
239 | |
---|
240 | ! calculate oceanic ice height including the latent heat of ice formation |
---|
241 | ! hice is the height of oceanic ice with a maximum of maxicethick. |
---|
242 | hice(ig) = zqsurf(ig,iice)/rhowater ! update hice to include recent snowfall |
---|
243 | twater(ig) = ztsurf(ig) - hice(ig)*RLFTT*rhowater/pcapcal(ig) ! this is the temperature water would have if we melted the entire ocean ice layer |
---|
244 | hicebis(ig) = hice(ig) |
---|
245 | hice(ig) = 0. |
---|
246 | |
---|
247 | if(twater(ig) .lt. T_h2O_ice_liq)then |
---|
248 | E=min((T_h2O_ice_liq+Tsaldiff-twater(ig))*pcapcal(ig),RLFTT*rhowater*maxicethick) |
---|
249 | hice(ig) = E/(RLFTT*rhowater) |
---|
250 | hice(ig) = max(hice(ig),0.0) |
---|
251 | hice(ig) = min(hice(ig),maxicethick) |
---|
252 | pdtsurf_hyd(ig) = (hice(ig) - hicebis(ig))*RLFTT*rhowater/pcapcal(ig)/ptimestep |
---|
253 | do nw=1,L_NSPECTV |
---|
254 | albedo(ig,nw) = albedo_snow_SPECTV(nw) ! Albedo of ice has been replaced by albedo of snow here. MT2015. |
---|
255 | enddo |
---|
256 | |
---|
257 | ! if (zqsurf(ig,iice).ge.snowlayer) then |
---|
258 | ! albedo(ig) = albedoice |
---|
259 | ! else |
---|
260 | ! albedo(ig) = albedoocean & |
---|
261 | ! + (albedosnow - albedoocean)*zqsurf(ig,iice)/snowlayer |
---|
262 | ! endif |
---|
263 | |
---|
264 | else |
---|
265 | |
---|
266 | pdtsurf_hyd(ig) = -hicebis(ig)*RLFTT*rhowater/pcapcal(ig)/ptimestep |
---|
267 | DO nw=1,L_NSPECTV |
---|
268 | albedo(ig,nw) = alb_ocean |
---|
269 | ENDDO |
---|
270 | |
---|
271 | endif |
---|
272 | |
---|
273 | zqsurf(ig,iliq) = zqsurf(ig,iliq)-(hice(ig)*rhowater-zqsurf(ig,iice)) |
---|
274 | zqsurf(ig,iice) = hice(ig)*rhowater |
---|
275 | |
---|
276 | endif!(ok_slab_ocean) |
---|
277 | |
---|
278 | |
---|
279 | ! Continental regions (rnat = 1) |
---|
280 | ! ----------------------- |
---|
281 | elseif (nint(rnat(ig)).eq.1) then |
---|
282 | |
---|
283 | ! melt the snow |
---|
284 | if(ztsurf(ig).gt.T_h2O_ice_liq)then |
---|
285 | if(zqsurf(ig,iice).gt.1.0e-8)then |
---|
286 | |
---|
287 | a = (ztsurf(ig)-T_h2O_ice_liq)*pcapcal(ig)/RLFTT |
---|
288 | b = zqsurf(ig,iice) |
---|
289 | fsnoi = min(a,b) |
---|
290 | |
---|
291 | zqsurf(ig,iice) = zqsurf(ig,iice) - fsnoi |
---|
292 | zqsurf(ig,iliq) = zqsurf(ig,iliq) + fsnoi |
---|
293 | |
---|
294 | ! thermal effects |
---|
295 | pdtsurf_hyd(ig) = -fsnoi*RLFTT/pcapcal(ig)/ptimestep |
---|
296 | |
---|
297 | endif |
---|
298 | else |
---|
299 | |
---|
300 | ! freeze the water |
---|
301 | if(zqsurf(ig,iliq).gt.1.0e-8)then |
---|
302 | |
---|
303 | a = -(ztsurf(ig)-T_h2O_ice_liq)*pcapcal(ig)/RLFTT |
---|
304 | b = zqsurf(ig,iliq) |
---|
305 | |
---|
306 | fsnoi = min(a,b) |
---|
307 | |
---|
308 | zqsurf(ig,iice) = zqsurf(ig,iice) + fsnoi |
---|
309 | zqsurf(ig,iliq) = zqsurf(ig,iliq) - fsnoi |
---|
310 | |
---|
311 | ! thermal effects |
---|
312 | pdtsurf_hyd(ig) = +fsnoi*RLFTT/pcapcal(ig)/ptimestep |
---|
313 | |
---|
314 | endif |
---|
315 | endif |
---|
316 | |
---|
317 | ! add runoff (to simulate transport of water from continental regions to oceanic regions ; in practice, this prevents liquid water to build up too much on continental regions) |
---|
318 | if(activerunoff)then |
---|
319 | runoff(ig) = max(zqsurf(ig,iliq) - mx_eau_sol, 0.0) |
---|
320 | if(ngrid.gt.1)then ! runoff only exists in 3D |
---|
321 | if(runoff(ig).ne.0.0)then |
---|
322 | zqsurf(ig,iliq) = mx_eau_sol |
---|
323 | ! note: runoff is added to ocean at end |
---|
324 | endif |
---|
325 | end if |
---|
326 | |
---|
327 | endif |
---|
328 | |
---|
329 | ! re-calculate continental albedo |
---|
330 | DO nw=1,L_NSPECTV |
---|
331 | albedo(ig,nw) = albedo_bareground(ig) |
---|
332 | ENDDO |
---|
333 | if (zqsurf(ig,iice).ge.snowlayer) then |
---|
334 | DO nw=1,L_NSPECTV |
---|
335 | albedo(ig,nw) = albedo_snow_SPECTV(nw) |
---|
336 | ENDDO |
---|
337 | else |
---|
338 | DO nw=1,L_NSPECTV |
---|
339 | albedo(ig,nw) = albedo_bareground(ig) & |
---|
340 | + (albedo_snow_SPECTV(nw) - albedo_bareground(ig)) & |
---|
341 | *zqsurf(ig,iice)/snowlayer |
---|
342 | ENDDO |
---|
343 | endif |
---|
344 | |
---|
345 | else |
---|
346 | |
---|
347 | print*,'Surface type not recognised in hydrol.F!' |
---|
348 | print*,'Exiting...' |
---|
349 | call abort |
---|
350 | |
---|
351 | endif |
---|
352 | |
---|
353 | end do ! ig=1,ngrid |
---|
354 | |
---|
355 | |
---|
356 | ! simple parameterization to perform crude bulk averaging of temperature in ocean |
---|
357 | ! ---------------------------------------------------- |
---|
358 | if(oceanbulkavg)then |
---|
359 | |
---|
360 | oceanarea2=0. |
---|
361 | DO ig=1,ngrid |
---|
362 | if((nint(rnat(ig)).eq.0).and.(hice(ig).eq.0.))then |
---|
363 | oceanarea2=oceanarea2+cell_area(ig)*pcapcal(ig) |
---|
364 | end if |
---|
365 | END DO |
---|
366 | |
---|
367 | tsea=0. |
---|
368 | DO ig=1,ngrid |
---|
369 | if((nint(rnat(ig)).eq.0).and.(hice(ig).eq.0.))then |
---|
370 | tsea=tsea+ztsurf(ig)*cell_area(ig)*pcapcal(ig)/oceanarea2 |
---|
371 | end if |
---|
372 | END DO |
---|
373 | |
---|
374 | DO ig=1,ngrid |
---|
375 | if((nint(rnat(ig)).eq.0).and.(hice(ig).eq.0))then |
---|
376 | pdtsurf_hyd(ig) = pdtsurf_hyd(ig) + (tsea-ztsurf(ig))/oceantime |
---|
377 | end if |
---|
378 | END DO |
---|
379 | |
---|
380 | print*,'Mean ocean temperature = ',tsea,' K' |
---|
381 | |
---|
382 | endif |
---|
383 | |
---|
384 | ! shove all the runoff water into the ocean |
---|
385 | ! ----------------------------------------- |
---|
386 | if(activerunoff)then |
---|
387 | |
---|
388 | ! totalrunoff=0. |
---|
389 | do ig=1,ngrid |
---|
390 | runoffamount(ig) = cell_area(ig)*runoff(ig) |
---|
391 | ! if (nint(rnat(ig)).eq.1) then |
---|
392 | ! totalrunoff = totalrunoff + cell_area(ig)*runoff(ig) |
---|
393 | ! endif |
---|
394 | enddo |
---|
395 | |
---|
396 | ! collect on the full grid |
---|
397 | call gather(runoffamount,runoffamount_glo) |
---|
398 | call gather(zqsurf(1:ngrid,iliq),zqsurf_iliq_glo) |
---|
399 | call gather(rnat,rnat_glo) |
---|
400 | call gather(cell_area,cell_area_glo) |
---|
401 | |
---|
402 | if (is_master) then |
---|
403 | totalrunoff=0. |
---|
404 | oceanarea_glo=0. |
---|
405 | do ig=1,klon_glo |
---|
406 | if (nint(rnat_glo(ig)).eq.1) then |
---|
407 | totalrunoff = totalrunoff + runoffamount_glo(ig) |
---|
408 | endif |
---|
409 | if (nint(rnat_glo(ig)).eq.0) then |
---|
410 | oceanarea_glo = oceanarea_glo + cell_area_glo(ig) |
---|
411 | endif |
---|
412 | enddo |
---|
413 | |
---|
414 | do ig=1,klon_glo |
---|
415 | if (nint(rnat_glo(ig)).eq.0) then |
---|
416 | zqsurf_iliq_glo(ig) = zqsurf_iliq_glo(ig) + & |
---|
417 | totalrunoff/oceanarea_glo |
---|
418 | endif |
---|
419 | enddo |
---|
420 | |
---|
421 | endif! is_master |
---|
422 | |
---|
423 | ! scatter the field back on all processes |
---|
424 | call scatter(zqsurf_iliq_glo,zqsurf(1:ngrid,iliq)) |
---|
425 | |
---|
426 | |
---|
427 | |
---|
428 | ! do ig=1,ngrid |
---|
429 | ! if (nint(rnat(ig)).eq.0) then |
---|
430 | ! zqsurf(ig,iliq) = zqsurf(ig,iliq) + & |
---|
431 | ! totalrunoff/oceanarea |
---|
432 | ! endif |
---|
433 | ! enddo |
---|
434 | |
---|
435 | endif !activerunoff |
---|
436 | |
---|
437 | ! Re-add the albedo effects of CO2 ice if necessary |
---|
438 | ! ------------------------------------------------- |
---|
439 | if(co2cond)then |
---|
440 | |
---|
441 | do ig=1,ngrid |
---|
442 | if (qsurf(ig,igcm_co2_ice).gt.1.) then ! Condition changed - Need now ~1 mm CO2 ice coverage. MT2015 |
---|
443 | DO nw=1,L_NSPECTV |
---|
444 | albedo(ig,nw) = albedo_co2_ice_SPECTV(nw) |
---|
445 | ENDDO |
---|
446 | endif |
---|
447 | enddo ! ngrid |
---|
448 | |
---|
449 | endif ! co2cond |
---|
450 | |
---|
451 | |
---|
452 | do ig=1,ngrid ! We calculate here the tracer tendencies. Don't forget that we have to retrieve the dqsurf tendencies we added at the beginning of the routine ! |
---|
453 | dqs_hyd(ig,iliq)=(zqsurf(ig,iliq) - qsurf(ig,iliq))/ptimestep - dqsurf(ig,iliq) |
---|
454 | dqs_hyd(ig,iice)=(zqsurf(ig,iice) - qsurf(ig,iice))/ptimestep - dqsurf(ig,iice) |
---|
455 | enddo |
---|
456 | |
---|
457 | if (activerunoff) then |
---|
458 | call writediagfi(ngrid,'runoff','Runoff amount',' ',2,runoff) |
---|
459 | endif |
---|
460 | |
---|
461 | return |
---|
462 | end subroutine hydrol |
---|