| 1 | subroutine hydrol(ngrid,nq,ptimestep,rnat,tsurf, & |
|---|
| 2 | qsurf,dqsurf,dqs_hyd,pcapcal, & |
|---|
| 3 | albedo,albedo_bareground, & |
|---|
| 4 | albedo_snow_SPECTV,albedo_co2_ice_SPECTV, & |
|---|
| 5 | mu0,pdtsurf,pdtsurf_hyd,hice, & |
|---|
| 6 | pctsrf_sic,sea_ice) |
|---|
| 7 | |
|---|
| 8 | use ioipsl_getin_p_mod, only: getin_p |
|---|
| 9 | use mod_grid_phy_lmdz, only : klon_glo ! # of physics point on full grid |
|---|
| 10 | use mod_phys_lmdz_para, only : is_master, gather, scatter |
|---|
| 11 | use watercommon_h, only: T_h2O_ice_liq, RLFTT, rhowater, mx_eau_sol |
|---|
| 12 | USE surfdat_h |
|---|
| 13 | use comdiurn_h |
|---|
| 14 | USE geometry_mod, only: cell_area |
|---|
| 15 | USE tracer_h |
|---|
| 16 | ! use slab_ice_h |
|---|
| 17 | USE ocean_slab_mod, ONLY: alb_ice_min,h_alb_ice,snow_min |
|---|
| 18 | use callkeys_mod, only: albedosnow,alb_ocean,albedoco2ice,ok_slab_ocean,Tsaldiff,maxicethick,co2cond |
|---|
| 19 | use radinc_h, only : L_NSPECTV |
|---|
| 20 | |
|---|
| 21 | implicit none |
|---|
| 22 | |
|---|
| 23 | !================================================================== |
|---|
| 24 | ! |
|---|
| 25 | ! Purpose |
|---|
| 26 | ! ------- |
|---|
| 27 | ! Calculate the surface hydrology and albedo changes. |
|---|
| 28 | ! Both for oceanic and continental regions |
|---|
| 29 | ! |
|---|
| 30 | ! Authors |
|---|
| 31 | ! ------- |
|---|
| 32 | ! Adapted from LMDTERRE by B. Charnay (2010). Further |
|---|
| 33 | ! Modifications by R. Wordsworth (2010). |
|---|
| 34 | ! Spectral albedo by M. Turbet (2015). |
|---|
| 35 | ! |
|---|
| 36 | ! Called by |
|---|
| 37 | ! --------- |
|---|
| 38 | ! physiq.F |
|---|
| 39 | ! |
|---|
| 40 | ! Calls |
|---|
| 41 | ! ----- |
|---|
| 42 | ! none |
|---|
| 43 | ! |
|---|
| 44 | ! Notes |
|---|
| 45 | ! ----- |
|---|
| 46 | ! rnat is terrain type: 0-ocean; 1-continent |
|---|
| 47 | ! |
|---|
| 48 | !================================================================== |
|---|
| 49 | |
|---|
| 50 | integer ngrid,nq |
|---|
| 51 | |
|---|
| 52 | ! Inputs |
|---|
| 53 | ! ------ |
|---|
| 54 | real snowlayer |
|---|
| 55 | parameter (snowlayer=33.0) ! 33 kg/m^2 of snow, equal to a layer of 3.3 cm |
|---|
| 56 | |
|---|
| 57 | real oceantime ! this is a relaxation timescale for the oceanbulkavg parameterization |
|---|
| 58 | parameter (oceantime=10*24*3600) |
|---|
| 59 | logical,save :: oceanbulkavg ! simple parameterization to relax ocean temperatures to the global mean value (crude, 0th order parameterization to mimick ocean heat transport) |
|---|
| 60 | |
|---|
| 61 | logical,save :: activerunoff ! enable simple runoff scheme? |
|---|
| 62 | logical,save :: oceanalbvary ! simple parameterization to account for the effect of solar zenith angle on the ocean albedo (for the moment it is not used, but to be included in the future) |
|---|
| 63 | !$OMP THREADPRIVATE(oceanbulkavg,activerunoff,oceanalbvary) |
|---|
| 64 | |
|---|
| 65 | ! Arguments |
|---|
| 66 | ! --------- |
|---|
| 67 | real rnat(ngrid) ! rnat is terrain type: 0-ocean; 1-continent |
|---|
| 68 | real,dimension(:),allocatable,save :: runoff |
|---|
| 69 | real totalrunoff, tsea, oceanarea |
|---|
| 70 | save oceanarea |
|---|
| 71 | !$OMP THREADPRIVATE(runoff,oceanarea) |
|---|
| 72 | |
|---|
| 73 | real ptimestep |
|---|
| 74 | real mu0(ngrid) |
|---|
| 75 | real qsurf(ngrid,nq), tsurf(ngrid) |
|---|
| 76 | real dqsurf(ngrid,nq), pdtsurf(ngrid) |
|---|
| 77 | real hice(ngrid) |
|---|
| 78 | real albedo(ngrid,L_NSPECTV) |
|---|
| 79 | real albedo_bareground(ngrid) |
|---|
| 80 | real albedo_snow_SPECTV(L_NSPECTV) |
|---|
| 81 | real albedo_co2_ice_SPECTV(L_NSPECTV) |
|---|
| 82 | real pctsrf_sic(ngrid), sea_ice(ngrid) |
|---|
| 83 | |
|---|
| 84 | real oceanarea2 |
|---|
| 85 | |
|---|
| 86 | ! Output |
|---|
| 87 | ! ------ |
|---|
| 88 | real dqs_hyd(ngrid,nq) |
|---|
| 89 | real pdtsurf_hyd(ngrid) |
|---|
| 90 | |
|---|
| 91 | ! Local |
|---|
| 92 | ! ----- |
|---|
| 93 | real a,b,E |
|---|
| 94 | integer ig,iq, nw |
|---|
| 95 | real fsnoi, subli, fauxo |
|---|
| 96 | real twater(ngrid) |
|---|
| 97 | real pcapcal(ngrid) |
|---|
| 98 | real hicebis(ngrid) |
|---|
| 99 | real zqsurf(ngrid,nq) |
|---|
| 100 | real ztsurf(ngrid) |
|---|
| 101 | real albedo_sic, alb_ice |
|---|
| 102 | real frac_snow |
|---|
| 103 | |
|---|
| 104 | integer, save :: ivap, iliq, iice |
|---|
| 105 | !$OMP THREADPRIVATE(ivap,iliq,iice) |
|---|
| 106 | |
|---|
| 107 | logical, save :: firstcall=.true. |
|---|
| 108 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 109 | |
|---|
| 110 | real :: runoffamount(ngrid) |
|---|
| 111 | !#ifdef CPP_PARA |
|---|
| 112 | real :: runoffamount_glo(klon_glo) |
|---|
| 113 | real :: zqsurf_iliq_glo(klon_glo) |
|---|
| 114 | real :: rnat_glo(klon_glo) |
|---|
| 115 | real :: oceanarea_glo |
|---|
| 116 | real :: cell_area_glo(klon_glo) |
|---|
| 117 | !#else |
|---|
| 118 | ! real :: runoffamount_glo(ngrid) |
|---|
| 119 | ! real :: zqsurf_iliq_glo(ngrid) |
|---|
| 120 | !#endif |
|---|
| 121 | |
|---|
| 122 | |
|---|
| 123 | if(firstcall)then |
|---|
| 124 | |
|---|
| 125 | oceanbulkavg=.false. |
|---|
| 126 | oceanalbvary=.false. |
|---|
| 127 | write(*,*)"Activate runnoff into oceans?" |
|---|
| 128 | activerunoff=.false. |
|---|
| 129 | call getin_p("activerunoff",activerunoff) |
|---|
| 130 | write(*,*)" activerunoff = ",activerunoff |
|---|
| 131 | |
|---|
| 132 | if (activerunoff) then |
|---|
| 133 | ALLOCATE(runoff(ngrid)) |
|---|
| 134 | runoff(1:ngrid)=0 |
|---|
| 135 | endif |
|---|
| 136 | |
|---|
| 137 | ivap=igcm_h2o_vap |
|---|
| 138 | iliq=igcm_h2o_vap |
|---|
| 139 | iice=igcm_h2o_ice |
|---|
| 140 | |
|---|
| 141 | write(*,*) "hydrol: ivap=",ivap |
|---|
| 142 | write(*,*) " iliq=",iliq |
|---|
| 143 | write(*,*) " iice=",iice |
|---|
| 144 | |
|---|
| 145 | ! Here's the deal: iice is used in place of igcm_h2o_ice both on the |
|---|
| 146 | ! surface and in the atmosphere. ivap is used in |
|---|
| 147 | ! place of igcm_h2o_vap ONLY in the atmosphere, while |
|---|
| 148 | ! iliq is used in place of igcm_h2o_vap ONLY on the |
|---|
| 149 | ! surface. |
|---|
| 150 | ! Soon to be extended to the entire water cycle... |
|---|
| 151 | |
|---|
| 152 | ! LOCAL ocean surface area |
|---|
| 153 | oceanarea=0. |
|---|
| 154 | do ig=1,ngrid |
|---|
| 155 | if(nint(rnat(ig)).eq.0)then |
|---|
| 156 | oceanarea=oceanarea+cell_area(ig) |
|---|
| 157 | endif |
|---|
| 158 | enddo |
|---|
| 159 | |
|---|
| 160 | if(oceanbulkavg.and.(oceanarea.le.0.))then |
|---|
| 161 | print*,'How are we supposed to average the ocean' |
|---|
| 162 | print*,'temperature, when there are no oceans?' |
|---|
| 163 | call abort |
|---|
| 164 | endif |
|---|
| 165 | |
|---|
| 166 | if(activerunoff.and.(oceanarea.le.0.))then |
|---|
| 167 | print*,'You have enabled runoff, but you have no oceans.' |
|---|
| 168 | print*,'Where did you think the water was going to go?' |
|---|
| 169 | call abort |
|---|
| 170 | endif |
|---|
| 171 | |
|---|
| 172 | firstcall = .false. |
|---|
| 173 | endif |
|---|
| 174 | |
|---|
| 175 | ! write (*,*) "oceanarea", oceanarea |
|---|
| 176 | |
|---|
| 177 | ! add physical tendencies already calculated |
|---|
| 178 | ! ------------------------------------------ |
|---|
| 179 | |
|---|
| 180 | do ig=1,ngrid |
|---|
| 181 | ztsurf(ig) = tsurf(ig) + ptimestep*pdtsurf(ig) |
|---|
| 182 | pdtsurf_hyd(ig)=0.0 |
|---|
| 183 | do iq=1,nq |
|---|
| 184 | zqsurf(ig,iq) = qsurf(ig,iq) + ptimestep*dqsurf(ig,iq) |
|---|
| 185 | enddo |
|---|
| 186 | enddo |
|---|
| 187 | |
|---|
| 188 | do ig=1,ngrid |
|---|
| 189 | do iq=1,nq |
|---|
| 190 | dqs_hyd(ig,iq) = 0.0 |
|---|
| 191 | enddo |
|---|
| 192 | enddo |
|---|
| 193 | |
|---|
| 194 | do ig = 1, ngrid |
|---|
| 195 | |
|---|
| 196 | ! Ocean regions (rnat = 0) |
|---|
| 197 | ! ----------------------- |
|---|
| 198 | if(nint(rnat(ig)).eq.0)then |
|---|
| 199 | |
|---|
| 200 | ! Parameterization (not used for the moment) to compute the effect of solar zenith angle on the albedo |
|---|
| 201 | ! -------------------------- |
|---|
| 202 | ! |
|---|
| 203 | ! if(diurnal.and.oceanalbvary)then |
|---|
| 204 | ! fauxo = ( 1.47 - ACOS( mu0(ig) ) )/0.15 ! where does this come from (Benjamin)? |
|---|
| 205 | ! albedo(ig) = 1.1*( .03 + .630/( 1. + fauxo*fauxo)) |
|---|
| 206 | ! albedo(ig) = MAX(MIN(albedo(ig),0.60),0.04) |
|---|
| 207 | ! else |
|---|
| 208 | ! |
|---|
| 209 | ! do nw=1,L_NSPECTV |
|---|
| 210 | ! albedo(ig,nw) = alb_ocean ! For now, alb_ocean is defined in inifis_mod.F90. Later we could introduce spectral dependency for alb_ocean. |
|---|
| 211 | ! enddo |
|---|
| 212 | ! end if |
|---|
| 213 | |
|---|
| 214 | ! we first start by fixing the albedo of oceanic grid to that of the ocean |
|---|
| 215 | do nw=1,L_NSPECTV |
|---|
| 216 | albedo(ig,nw) = alb_ocean ! For now, alb_ocean is defined in inifis_mod.F90. Later we could introduce spectral dependency for alb_ocean. |
|---|
| 217 | enddo |
|---|
| 218 | |
|---|
| 219 | if(ok_slab_ocean) then ! if ocean heat transport param activated |
|---|
| 220 | |
|---|
| 221 | frac_snow = MAX(0.0,MIN(1.0,zqsurf(ig,iice)/snow_min)) ! Critical snow height (in kg/m2) from ocean_slab_ice routine. |
|---|
| 222 | ! Standard value should be 15kg/m2 (i.e. about 5 cm). Note that in the previous ocean param. (from BC2014), this value was 45kg/m2 (i.e. about 15cm). |
|---|
| 223 | |
|---|
| 224 | ! Albedo final calculation : |
|---|
| 225 | do nw=1,L_NSPECTV |
|---|
| 226 | alb_ice=albedo_snow_SPECTV(nw)-(albedo_snow_SPECTV(nw)-alb_ice_min)*exp(-sea_ice(ig)/h_alb_ice) ! this replaces the formulation from BC2014 |
|---|
| 227 | ! More details on the parameterization of sea ice albedo vs thickness is provided in the wiki : |
|---|
| 228 | ! https://lmdz-forge.lmd.jussieu.fr/mediawiki/Planets/index.php/Slab_ocean_model |
|---|
| 229 | ! sea_ice is the ice thickness (calculated in ocean_slab routine) in kg/m2 ; h_alb_ice is fixed to 275.1kg/m2 i.e. 30cm based on comparisons with Brandt et al. 2005 |
|---|
| 230 | albedo(ig,nw) = pctsrf_sic(ig)* & |
|---|
| 231 | (albedo_snow_SPECTV(nw)*frac_snow + alb_ice*(1.0-frac_snow)) & |
|---|
| 232 | + (1.-pctsrf_sic(ig))*alb_ocean |
|---|
| 233 | enddo |
|---|
| 234 | |
|---|
| 235 | ! Oceanic ice height, just for diagnostics |
|---|
| 236 | hice(ig) = MIN(10.,sea_ice(ig)/rhowater) |
|---|
| 237 | else !ok_slab_ocean ; here this is the case where we are dealing with a static ocean |
|---|
| 238 | |
|---|
| 239 | |
|---|
| 240 | ! calculate oceanic ice height including the latent heat of ice formation |
|---|
| 241 | ! hice is the height of oceanic ice with a maximum of maxicethick. |
|---|
| 242 | hice(ig) = zqsurf(ig,iice)/rhowater ! update hice to include recent snowfall |
|---|
| 243 | twater(ig) = ztsurf(ig) - hice(ig)*RLFTT*rhowater/pcapcal(ig) ! this is the temperature water would have if we melted the entire ocean ice layer |
|---|
| 244 | hicebis(ig) = hice(ig) |
|---|
| 245 | hice(ig) = 0. |
|---|
| 246 | |
|---|
| 247 | if(twater(ig) .lt. T_h2O_ice_liq)then |
|---|
| 248 | E=min((T_h2O_ice_liq+Tsaldiff-twater(ig))*pcapcal(ig),RLFTT*rhowater*maxicethick) |
|---|
| 249 | hice(ig) = E/(RLFTT*rhowater) |
|---|
| 250 | hice(ig) = max(hice(ig),0.0) |
|---|
| 251 | hice(ig) = min(hice(ig),maxicethick) |
|---|
| 252 | pdtsurf_hyd(ig) = (hice(ig) - hicebis(ig))*RLFTT*rhowater/pcapcal(ig)/ptimestep |
|---|
| 253 | do nw=1,L_NSPECTV |
|---|
| 254 | albedo(ig,nw) = albedo_snow_SPECTV(nw) ! Albedo of ice has been replaced by albedo of snow here. MT2015. |
|---|
| 255 | enddo |
|---|
| 256 | |
|---|
| 257 | ! if (zqsurf(ig,iice).ge.snowlayer) then |
|---|
| 258 | ! albedo(ig) = albedoice |
|---|
| 259 | ! else |
|---|
| 260 | ! albedo(ig) = albedoocean & |
|---|
| 261 | ! + (albedosnow - albedoocean)*zqsurf(ig,iice)/snowlayer |
|---|
| 262 | ! endif |
|---|
| 263 | |
|---|
| 264 | else |
|---|
| 265 | |
|---|
| 266 | pdtsurf_hyd(ig) = -hicebis(ig)*RLFTT*rhowater/pcapcal(ig)/ptimestep |
|---|
| 267 | DO nw=1,L_NSPECTV |
|---|
| 268 | albedo(ig,nw) = alb_ocean |
|---|
| 269 | ENDDO |
|---|
| 270 | |
|---|
| 271 | endif |
|---|
| 272 | |
|---|
| 273 | zqsurf(ig,iliq) = zqsurf(ig,iliq)-(hice(ig)*rhowater-zqsurf(ig,iice)) |
|---|
| 274 | zqsurf(ig,iice) = hice(ig)*rhowater |
|---|
| 275 | |
|---|
| 276 | endif!(ok_slab_ocean) |
|---|
| 277 | |
|---|
| 278 | |
|---|
| 279 | ! Continental regions (rnat = 1) |
|---|
| 280 | ! ----------------------- |
|---|
| 281 | elseif (nint(rnat(ig)).eq.1) then |
|---|
| 282 | |
|---|
| 283 | ! melt the snow |
|---|
| 284 | if(ztsurf(ig).gt.T_h2O_ice_liq)then |
|---|
| 285 | if(zqsurf(ig,iice).gt.1.0e-8)then |
|---|
| 286 | |
|---|
| 287 | a = (ztsurf(ig)-T_h2O_ice_liq)*pcapcal(ig)/RLFTT |
|---|
| 288 | b = zqsurf(ig,iice) |
|---|
| 289 | fsnoi = min(a,b) |
|---|
| 290 | |
|---|
| 291 | zqsurf(ig,iice) = zqsurf(ig,iice) - fsnoi |
|---|
| 292 | zqsurf(ig,iliq) = zqsurf(ig,iliq) + fsnoi |
|---|
| 293 | |
|---|
| 294 | ! thermal effects |
|---|
| 295 | pdtsurf_hyd(ig) = -fsnoi*RLFTT/pcapcal(ig)/ptimestep |
|---|
| 296 | |
|---|
| 297 | endif |
|---|
| 298 | else |
|---|
| 299 | |
|---|
| 300 | ! freeze the water |
|---|
| 301 | if(zqsurf(ig,iliq).gt.1.0e-8)then |
|---|
| 302 | |
|---|
| 303 | a = -(ztsurf(ig)-T_h2O_ice_liq)*pcapcal(ig)/RLFTT |
|---|
| 304 | b = zqsurf(ig,iliq) |
|---|
| 305 | |
|---|
| 306 | fsnoi = min(a,b) |
|---|
| 307 | |
|---|
| 308 | zqsurf(ig,iice) = zqsurf(ig,iice) + fsnoi |
|---|
| 309 | zqsurf(ig,iliq) = zqsurf(ig,iliq) - fsnoi |
|---|
| 310 | |
|---|
| 311 | ! thermal effects |
|---|
| 312 | pdtsurf_hyd(ig) = +fsnoi*RLFTT/pcapcal(ig)/ptimestep |
|---|
| 313 | |
|---|
| 314 | endif |
|---|
| 315 | endif |
|---|
| 316 | |
|---|
| 317 | ! add runoff (to simulate transport of water from continental regions to oceanic regions ; in practice, this prevents liquid water to build up too much on continental regions) |
|---|
| 318 | if(activerunoff)then |
|---|
| 319 | runoff(ig) = max(zqsurf(ig,iliq) - mx_eau_sol, 0.0) |
|---|
| 320 | if(ngrid.gt.1)then ! runoff only exists in 3D |
|---|
| 321 | if(runoff(ig).ne.0.0)then |
|---|
| 322 | zqsurf(ig,iliq) = mx_eau_sol |
|---|
| 323 | ! note: runoff is added to ocean at end |
|---|
| 324 | endif |
|---|
| 325 | end if |
|---|
| 326 | |
|---|
| 327 | endif |
|---|
| 328 | |
|---|
| 329 | ! re-calculate continental albedo |
|---|
| 330 | DO nw=1,L_NSPECTV |
|---|
| 331 | albedo(ig,nw) = albedo_bareground(ig) |
|---|
| 332 | ENDDO |
|---|
| 333 | if (zqsurf(ig,iice).ge.snowlayer) then |
|---|
| 334 | DO nw=1,L_NSPECTV |
|---|
| 335 | albedo(ig,nw) = albedo_snow_SPECTV(nw) |
|---|
| 336 | ENDDO |
|---|
| 337 | else |
|---|
| 338 | DO nw=1,L_NSPECTV |
|---|
| 339 | albedo(ig,nw) = albedo_bareground(ig) & |
|---|
| 340 | + (albedo_snow_SPECTV(nw) - albedo_bareground(ig)) & |
|---|
| 341 | *zqsurf(ig,iice)/snowlayer |
|---|
| 342 | ENDDO |
|---|
| 343 | endif |
|---|
| 344 | |
|---|
| 345 | else |
|---|
| 346 | |
|---|
| 347 | print*,'Surface type not recognised in hydrol.F!' |
|---|
| 348 | print*,'Exiting...' |
|---|
| 349 | call abort |
|---|
| 350 | |
|---|
| 351 | endif |
|---|
| 352 | |
|---|
| 353 | end do ! ig=1,ngrid |
|---|
| 354 | |
|---|
| 355 | |
|---|
| 356 | ! simple parameterization to perform crude bulk averaging of temperature in ocean |
|---|
| 357 | ! ---------------------------------------------------- |
|---|
| 358 | if(oceanbulkavg)then |
|---|
| 359 | |
|---|
| 360 | oceanarea2=0. |
|---|
| 361 | DO ig=1,ngrid |
|---|
| 362 | if((nint(rnat(ig)).eq.0).and.(hice(ig).eq.0.))then |
|---|
| 363 | oceanarea2=oceanarea2+cell_area(ig)*pcapcal(ig) |
|---|
| 364 | end if |
|---|
| 365 | END DO |
|---|
| 366 | |
|---|
| 367 | tsea=0. |
|---|
| 368 | DO ig=1,ngrid |
|---|
| 369 | if((nint(rnat(ig)).eq.0).and.(hice(ig).eq.0.))then |
|---|
| 370 | tsea=tsea+ztsurf(ig)*cell_area(ig)*pcapcal(ig)/oceanarea2 |
|---|
| 371 | end if |
|---|
| 372 | END DO |
|---|
| 373 | |
|---|
| 374 | DO ig=1,ngrid |
|---|
| 375 | if((nint(rnat(ig)).eq.0).and.(hice(ig).eq.0))then |
|---|
| 376 | pdtsurf_hyd(ig) = pdtsurf_hyd(ig) + (tsea-ztsurf(ig))/oceantime |
|---|
| 377 | end if |
|---|
| 378 | END DO |
|---|
| 379 | |
|---|
| 380 | print*,'Mean ocean temperature = ',tsea,' K' |
|---|
| 381 | |
|---|
| 382 | endif |
|---|
| 383 | |
|---|
| 384 | ! shove all the runoff water into the ocean |
|---|
| 385 | ! ----------------------------------------- |
|---|
| 386 | if(activerunoff)then |
|---|
| 387 | |
|---|
| 388 | ! totalrunoff=0. |
|---|
| 389 | do ig=1,ngrid |
|---|
| 390 | runoffamount(ig) = cell_area(ig)*runoff(ig) |
|---|
| 391 | ! if (nint(rnat(ig)).eq.1) then |
|---|
| 392 | ! totalrunoff = totalrunoff + cell_area(ig)*runoff(ig) |
|---|
| 393 | ! endif |
|---|
| 394 | enddo |
|---|
| 395 | |
|---|
| 396 | ! collect on the full grid |
|---|
| 397 | call gather(runoffamount,runoffamount_glo) |
|---|
| 398 | call gather(zqsurf(1:ngrid,iliq),zqsurf_iliq_glo) |
|---|
| 399 | call gather(rnat,rnat_glo) |
|---|
| 400 | call gather(cell_area,cell_area_glo) |
|---|
| 401 | |
|---|
| 402 | if (is_master) then |
|---|
| 403 | totalrunoff=0. |
|---|
| 404 | oceanarea_glo=0. |
|---|
| 405 | do ig=1,klon_glo |
|---|
| 406 | if (nint(rnat_glo(ig)).eq.1) then |
|---|
| 407 | totalrunoff = totalrunoff + runoffamount_glo(ig) |
|---|
| 408 | endif |
|---|
| 409 | if (nint(rnat_glo(ig)).eq.0) then |
|---|
| 410 | oceanarea_glo = oceanarea_glo + cell_area_glo(ig) |
|---|
| 411 | endif |
|---|
| 412 | enddo |
|---|
| 413 | |
|---|
| 414 | do ig=1,klon_glo |
|---|
| 415 | if (nint(rnat_glo(ig)).eq.0) then |
|---|
| 416 | zqsurf_iliq_glo(ig) = zqsurf_iliq_glo(ig) + & |
|---|
| 417 | totalrunoff/oceanarea_glo |
|---|
| 418 | endif |
|---|
| 419 | enddo |
|---|
| 420 | |
|---|
| 421 | endif! is_master |
|---|
| 422 | |
|---|
| 423 | ! scatter the field back on all processes |
|---|
| 424 | call scatter(zqsurf_iliq_glo,zqsurf(1:ngrid,iliq)) |
|---|
| 425 | |
|---|
| 426 | |
|---|
| 427 | |
|---|
| 428 | ! do ig=1,ngrid |
|---|
| 429 | ! if (nint(rnat(ig)).eq.0) then |
|---|
| 430 | ! zqsurf(ig,iliq) = zqsurf(ig,iliq) + & |
|---|
| 431 | ! totalrunoff/oceanarea |
|---|
| 432 | ! endif |
|---|
| 433 | ! enddo |
|---|
| 434 | |
|---|
| 435 | endif !activerunoff |
|---|
| 436 | |
|---|
| 437 | ! Re-add the albedo effects of CO2 ice if necessary |
|---|
| 438 | ! ------------------------------------------------- |
|---|
| 439 | if(co2cond)then |
|---|
| 440 | |
|---|
| 441 | do ig=1,ngrid |
|---|
| 442 | if (qsurf(ig,igcm_co2_ice).gt.1.) then ! Condition changed - Need now ~1 mm CO2 ice coverage. MT2015 |
|---|
| 443 | DO nw=1,L_NSPECTV |
|---|
| 444 | albedo(ig,nw) = albedo_co2_ice_SPECTV(nw) |
|---|
| 445 | ENDDO |
|---|
| 446 | endif |
|---|
| 447 | enddo ! ngrid |
|---|
| 448 | |
|---|
| 449 | endif ! co2cond |
|---|
| 450 | |
|---|
| 451 | |
|---|
| 452 | do ig=1,ngrid ! We calculate here the tracer tendencies. Don't forget that we have to retrieve the dqsurf tendencies we added at the beginning of the routine ! |
|---|
| 453 | dqs_hyd(ig,iliq)=(zqsurf(ig,iliq) - qsurf(ig,iliq))/ptimestep - dqsurf(ig,iliq) |
|---|
| 454 | dqs_hyd(ig,iice)=(zqsurf(ig,iice) - qsurf(ig,iice))/ptimestep - dqsurf(ig,iice) |
|---|
| 455 | enddo |
|---|
| 456 | |
|---|
| 457 | if (activerunoff) then |
|---|
| 458 | call writediagfi(ngrid,'runoff','Runoff amount',' ',2,runoff) |
|---|
| 459 | endif |
|---|
| 460 | |
|---|
| 461 | return |
|---|
| 462 | end subroutine hydrol |
|---|