[1482] | 1 | subroutine hydrol(ngrid,nq,ptimestep,rnat,tsurf, & |
---|
[253] | 2 | qsurf,dqsurf,dqs_hyd,pcapcal, & |
---|
[1482] | 3 | albedo,albedo_bareground, & |
---|
| 4 | albedo_snow_SPECTV,albedo_co2_ice_SPECTV, & |
---|
| 5 | mu0,pdtsurf,pdtsurf_hyd,hice, & |
---|
[1297] | 6 | pctsrf_sic,sea_ice) |
---|
[253] | 7 | |
---|
[1521] | 8 | use ioipsl_getin_p_mod, only: getin_p |
---|
[650] | 9 | use watercommon_h, only: T_h2O_ice_liq, RLFTT, rhowater, mx_eau_sol |
---|
[787] | 10 | USE surfdat_h |
---|
| 11 | use comdiurn_h |
---|
[1543] | 12 | USE geometry_mod, only: cell_area |
---|
[787] | 13 | USE tracer_h |
---|
[1297] | 14 | use slab_ice_h |
---|
[1482] | 15 | use callkeys_mod, only: albedosnow,albedoco2ice,ok_slab_ocean,Tsaldiff,maxicethick,co2cond |
---|
| 16 | use radinc_h, only : L_NSPECTV |
---|
[253] | 17 | |
---|
| 18 | implicit none |
---|
| 19 | |
---|
| 20 | !================================================================== |
---|
| 21 | ! |
---|
| 22 | ! Purpose |
---|
| 23 | ! ------- |
---|
| 24 | ! Calculate the surface hydrology and albedo changes. |
---|
| 25 | ! |
---|
| 26 | ! Authors |
---|
| 27 | ! ------- |
---|
| 28 | ! Adapted from LMDTERRE by B. Charnay (2010). Further |
---|
[1482] | 29 | ! Modifications by R. Wordsworth (2010). |
---|
| 30 | ! Spectral albedo by M. Turbet (2015). |
---|
[253] | 31 | ! |
---|
| 32 | ! Called by |
---|
| 33 | ! --------- |
---|
| 34 | ! physiq.F |
---|
| 35 | ! |
---|
| 36 | ! Calls |
---|
| 37 | ! ----- |
---|
| 38 | ! none |
---|
| 39 | ! |
---|
| 40 | ! Notes |
---|
| 41 | ! ----- |
---|
| 42 | ! rnat is terrain type: 0-ocean; 1-continent |
---|
| 43 | ! |
---|
| 44 | !================================================================== |
---|
| 45 | |
---|
[787] | 46 | integer ngrid,nq |
---|
| 47 | |
---|
[253] | 48 | ! Inputs |
---|
| 49 | ! ------ |
---|
| 50 | real snowlayer |
---|
| 51 | parameter (snowlayer=33.0) ! 33 kg/m^2 of snow, equal to a layer of 3.3 cm |
---|
| 52 | real oceantime |
---|
[305] | 53 | parameter (oceantime=10*24*3600) |
---|
[253] | 54 | |
---|
[875] | 55 | logical,save :: oceanbulkavg ! relax ocean temperatures to a GLOBAL mean value? |
---|
| 56 | logical,save :: activerunoff ! enable simple runoff scheme? |
---|
| 57 | logical,save :: oceanalbvary ! ocean albedo varies with the diurnal cycle? |
---|
[1315] | 58 | !$OMP THREADPRIVATE(oceanbulkavg,activerunoff,oceanalbvary) |
---|
[253] | 59 | |
---|
| 60 | ! Arguments |
---|
| 61 | ! --------- |
---|
[1297] | 62 | real rnat(ngrid) ! I changed this to integer (RW) |
---|
[787] | 63 | real,dimension(:),allocatable,save :: runoff |
---|
[253] | 64 | real totalrunoff, tsea, oceanarea |
---|
| 65 | save oceanarea |
---|
[1315] | 66 | !$OMP THREADPRIVATE(runoff,oceanarea) |
---|
[253] | 67 | |
---|
| 68 | real ptimestep |
---|
[787] | 69 | real mu0(ngrid) |
---|
| 70 | real qsurf(ngrid,nq), tsurf(ngrid) |
---|
| 71 | real dqsurf(ngrid,nq), pdtsurf(ngrid) |
---|
| 72 | real hice(ngrid) |
---|
[1482] | 73 | real albedo(ngrid,L_NSPECTV) |
---|
| 74 | real albedo_bareground(ngrid) |
---|
| 75 | real albedo_snow_SPECTV(L_NSPECTV) |
---|
| 76 | real albedo_co2_ice_SPECTV(L_NSPECTV) |
---|
[1297] | 77 | real pctsrf_sic(ngrid), sea_ice(ngrid) |
---|
[253] | 78 | |
---|
| 79 | real oceanarea2 |
---|
| 80 | |
---|
| 81 | ! Output |
---|
| 82 | ! ------ |
---|
[787] | 83 | real dqs_hyd(ngrid,nq) |
---|
| 84 | real pdtsurf_hyd(ngrid) |
---|
[253] | 85 | |
---|
| 86 | ! Local |
---|
| 87 | ! ----- |
---|
| 88 | real a,b,E |
---|
[1482] | 89 | integer ig,iq, nw |
---|
[253] | 90 | real fsnoi, subli, fauxo |
---|
[787] | 91 | real twater(ngrid) |
---|
| 92 | real pcapcal(ngrid) |
---|
| 93 | real hicebis(ngrid) |
---|
| 94 | real zqsurf(ngrid,nq) |
---|
| 95 | real ztsurf(ngrid) |
---|
[1297] | 96 | real albedo_sic, alb_ice |
---|
| 97 | real zfra |
---|
[253] | 98 | |
---|
[863] | 99 | integer, save :: ivap, iliq, iice |
---|
[1315] | 100 | !$OMP THREADPRIVATE(ivap,iliq,iice) |
---|
[253] | 101 | |
---|
[863] | 102 | logical, save :: firstcall |
---|
[1315] | 103 | !$OMP THREADPRIVATE(firstcall) |
---|
[253] | 104 | |
---|
| 105 | data firstcall /.true./ |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | if(firstcall)then |
---|
| 109 | |
---|
[875] | 110 | oceanbulkavg=.false. |
---|
| 111 | oceanalbvary=.false. |
---|
| 112 | write(*,*)"Activate runnoff into oceans?" |
---|
| 113 | activerunoff=.false. |
---|
[1315] | 114 | call getin_p("activerunoff",activerunoff) |
---|
[875] | 115 | write(*,*)" activerunoff = ",activerunoff |
---|
| 116 | |
---|
| 117 | |
---|
| 118 | |
---|
[1537] | 119 | if (activerunoff) then |
---|
| 120 | ALLOCATE(runoff(ngrid)) |
---|
| 121 | runoff(1:ngrid)=0 |
---|
| 122 | endif |
---|
[787] | 123 | |
---|
[253] | 124 | ivap=igcm_h2o_vap |
---|
| 125 | iliq=igcm_h2o_vap |
---|
| 126 | iice=igcm_h2o_ice |
---|
| 127 | |
---|
| 128 | write(*,*) "hydrol: ivap=",ivap |
---|
| 129 | write(*,*) " iliq=",iliq |
---|
| 130 | write(*,*) " iice=",iice |
---|
| 131 | |
---|
| 132 | ! Here's the deal: iice is used in place of igcm_h2o_ice both on the |
---|
| 133 | ! surface and in the atmosphere. ivap is used in |
---|
| 134 | ! place of igcm_h2o_vap ONLY in the atmosphere, while |
---|
| 135 | ! iliq is used in place of igcm_h2o_vap ONLY on the |
---|
| 136 | ! surface. |
---|
| 137 | ! Soon to be extended to the entire water cycle... |
---|
| 138 | |
---|
| 139 | ! Total ocean surface area |
---|
| 140 | oceanarea=0. |
---|
[787] | 141 | do ig=1,ngrid |
---|
[1297] | 142 | if(nint(rnat(ig)).eq.0)then |
---|
[1542] | 143 | oceanarea=oceanarea+cell_area(ig) |
---|
[253] | 144 | endif |
---|
| 145 | enddo |
---|
| 146 | |
---|
| 147 | if(oceanbulkavg.and.(oceanarea.le.0.))then |
---|
| 148 | print*,'How are we supposed to average the ocean' |
---|
| 149 | print*,'temperature, when there are no oceans?' |
---|
| 150 | call abort |
---|
| 151 | endif |
---|
| 152 | |
---|
| 153 | if(activerunoff.and.(oceanarea.le.0.))then |
---|
| 154 | print*,'You have enabled runoff, but you have no oceans.' |
---|
| 155 | print*,'Where did you think the water was going to go?' |
---|
| 156 | call abort |
---|
| 157 | endif |
---|
| 158 | |
---|
| 159 | firstcall = .false. |
---|
| 160 | endif |
---|
| 161 | |
---|
| 162 | ! add physical tendencies already calculated |
---|
| 163 | ! ------------------------------------------ |
---|
| 164 | |
---|
[787] | 165 | do ig=1,ngrid |
---|
[253] | 166 | ztsurf(ig) = tsurf(ig) + ptimestep*pdtsurf(ig) |
---|
| 167 | pdtsurf_hyd(ig)=0.0 |
---|
[787] | 168 | do iq=1,nq |
---|
[253] | 169 | zqsurf(ig,iq) = qsurf(ig,iq) + ptimestep*dqsurf(ig,iq) |
---|
| 170 | enddo |
---|
| 171 | enddo |
---|
| 172 | |
---|
[787] | 173 | do ig=1,ngrid |
---|
| 174 | do iq=1,nq |
---|
[253] | 175 | dqs_hyd(ig,iq) = 0.0 |
---|
| 176 | enddo |
---|
| 177 | enddo |
---|
| 178 | |
---|
[787] | 179 | do ig = 1, ngrid |
---|
[253] | 180 | |
---|
| 181 | ! Ocean |
---|
| 182 | ! ----- |
---|
[1297] | 183 | if(nint(rnat(ig)).eq.0)then |
---|
[253] | 184 | |
---|
| 185 | ! re-calculate oceanic albedo |
---|
[1297] | 186 | ! if(diurnal.and.oceanalbvary)then |
---|
| 187 | ! fauxo = ( 1.47 - ACOS( mu0(ig) ) )/0.15 ! where does this come from (Benjamin)? |
---|
| 188 | ! albedo(ig) = 1.1*( .03 + .630/( 1. + fauxo*fauxo)) |
---|
| 189 | ! albedo(ig) = MAX(MIN(albedo(ig),0.60),0.04) |
---|
| 190 | ! else |
---|
[1482] | 191 | do nw=1,L_NSPECTV |
---|
| 192 | albedo(ig,nw) = alb_ocean ! For now, alb_ocean is defined in slab_ice_h.F90. Later we could introduce spectral dependency for alb_ocean. |
---|
| 193 | enddo |
---|
[1297] | 194 | ! end if |
---|
[253] | 195 | |
---|
[1297] | 196 | |
---|
[1482] | 197 | if(ok_slab_ocean) then |
---|
| 198 | |
---|
| 199 | zfra = MAX(0.0,MIN(1.0,zqsurf(ig,iice)/45.0)) ! Snow Fraction (Critical height 45kg/m2~15cm) |
---|
| 200 | alb_ice=alb_ice_max-(alb_ice_max-alb_ice_min) & ! Ice Albedo |
---|
| 201 | *exp(-sea_ice(ig)/h_alb_ice) |
---|
| 202 | ! Albedo final calculation : |
---|
| 203 | do nw=1,L_NSPECTV |
---|
| 204 | albedo(ig,nw) = pctsrf_sic(ig)* & |
---|
| 205 | (albedo_snow_SPECTV(nw)*zfra + alb_ice*(1.0-zfra)) & |
---|
| 206 | + (1.-pctsrf_sic(ig))*alb_ocean |
---|
| 207 | enddo |
---|
[1297] | 208 | |
---|
[1482] | 209 | ! Oceanic ice height, just for diagnostics |
---|
| 210 | hice(ig) = MIN(10.,sea_ice(ig)/rhowater) |
---|
| 211 | else !ok_slab_ocean |
---|
[1297] | 212 | |
---|
| 213 | |
---|
[253] | 214 | ! calculate oceanic ice height including the latent heat of ice formation |
---|
| 215 | ! hice is the height of oceanic ice with a maximum of maxicethick. |
---|
[1482] | 216 | hice(ig) = zqsurf(ig,iice)/rhowater ! update hice to include recent snowfall |
---|
[253] | 217 | |
---|
[1482] | 218 | ! twater(ig) = tsurf(ig) + ptimestep*zdtsurf(ig) & |
---|
| 219 | twater(ig) = ztsurf(ig) - hice(ig)*RLFTT*rhowater/pcapcal(ig) |
---|
| 220 | ! this is temperature water would have if we melted entire ocean ice layer |
---|
| 221 | hicebis(ig) = hice(ig) |
---|
| 222 | hice(ig) = 0. |
---|
[253] | 223 | |
---|
[1482] | 224 | if(twater(ig) .lt. T_h2O_ice_liq)then |
---|
| 225 | E=min((T_h2O_ice_liq+Tsaldiff-twater(ig))*pcapcal(ig),RLFTT*rhowater*maxicethick) |
---|
| 226 | hice(ig) = E/(RLFTT*rhowater) |
---|
| 227 | hice(ig) = max(hice(ig),0.0) |
---|
| 228 | hice(ig) = min(hice(ig),maxicethick) |
---|
| 229 | pdtsurf_hyd(ig) = (hice(ig) - hicebis(ig))*RLFTT*rhowater/pcapcal(ig)/ptimestep |
---|
| 230 | do nw=1,L_NSPECTV |
---|
| 231 | albedo(ig,nw) = albedo_snow_SPECTV(nw) ! Albedo of ice has been replaced by albedo of snow here. MT2015. |
---|
| 232 | enddo |
---|
[253] | 233 | |
---|
[1482] | 234 | ! if (zqsurf(ig,iice).ge.snowlayer) then |
---|
| 235 | ! albedo(ig) = albedoice |
---|
| 236 | ! else |
---|
| 237 | ! albedo(ig) = albedoocean & |
---|
| 238 | ! + (albedosnow - albedoocean)*zqsurf(ig,iice)/snowlayer |
---|
| 239 | ! endif |
---|
[253] | 240 | |
---|
[1482] | 241 | else |
---|
[253] | 242 | |
---|
[1482] | 243 | pdtsurf_hyd(ig) = -hicebis(ig)*RLFTT*rhowater/pcapcal(ig)/ptimestep |
---|
| 244 | DO nw=1,L_NSPECTV |
---|
| 245 | albedo(ig,nw) = alb_ocean |
---|
| 246 | ENDDO |
---|
[253] | 247 | |
---|
[1482] | 248 | endif |
---|
[253] | 249 | |
---|
[1482] | 250 | zqsurf(ig,iliq) = zqsurf(ig,iliq)-(hice(ig)*rhowater-zqsurf(ig,iice)) |
---|
| 251 | zqsurf(ig,iice) = hice(ig)*rhowater |
---|
[253] | 252 | |
---|
[1482] | 253 | endif!(ok_slab_ocean) |
---|
[253] | 254 | |
---|
[1297] | 255 | |
---|
[253] | 256 | ! Continent |
---|
| 257 | ! --------- |
---|
[1297] | 258 | elseif (nint(rnat(ig)).eq.1) then |
---|
[253] | 259 | |
---|
| 260 | ! melt the snow |
---|
[650] | 261 | if(ztsurf(ig).gt.T_h2O_ice_liq)then |
---|
[253] | 262 | if(zqsurf(ig,iice).gt.1.0e-8)then |
---|
| 263 | |
---|
[650] | 264 | a = (ztsurf(ig)-T_h2O_ice_liq)*pcapcal(ig)/RLFTT |
---|
[253] | 265 | b = zqsurf(ig,iice) |
---|
| 266 | fsnoi = min(a,b) |
---|
| 267 | |
---|
| 268 | zqsurf(ig,iice) = zqsurf(ig,iice) - fsnoi |
---|
| 269 | zqsurf(ig,iliq) = zqsurf(ig,iliq) + fsnoi |
---|
| 270 | |
---|
| 271 | ! thermal effects |
---|
| 272 | pdtsurf_hyd(ig) = -fsnoi*RLFTT/pcapcal(ig)/ptimestep |
---|
| 273 | |
---|
| 274 | endif |
---|
| 275 | else |
---|
| 276 | |
---|
| 277 | ! freeze the water |
---|
| 278 | if(zqsurf(ig,iliq).gt.1.0e-8)then |
---|
| 279 | |
---|
[650] | 280 | a = -(ztsurf(ig)-T_h2O_ice_liq)*pcapcal(ig)/RLFTT |
---|
[253] | 281 | b = zqsurf(ig,iliq) |
---|
| 282 | |
---|
| 283 | fsnoi = min(a,b) |
---|
| 284 | |
---|
| 285 | zqsurf(ig,iice) = zqsurf(ig,iice) + fsnoi |
---|
| 286 | zqsurf(ig,iliq) = zqsurf(ig,iliq) - fsnoi |
---|
| 287 | |
---|
| 288 | ! thermal effects |
---|
| 289 | pdtsurf_hyd(ig) = +fsnoi*RLFTT/pcapcal(ig)/ptimestep |
---|
| 290 | |
---|
| 291 | endif |
---|
| 292 | endif |
---|
| 293 | |
---|
| 294 | ! deal with runoff |
---|
| 295 | if(activerunoff)then |
---|
| 296 | |
---|
| 297 | runoff(ig) = max(zqsurf(ig,iliq) - mx_eau_sol, 0.0) |
---|
[787] | 298 | if(ngrid.gt.1)then ! runoff only exists in 3D |
---|
[253] | 299 | if(runoff(ig).ne.0.0)then |
---|
| 300 | zqsurf(ig,iliq) = mx_eau_sol |
---|
| 301 | ! runoff is added to ocean at end |
---|
| 302 | endif |
---|
| 303 | end if |
---|
| 304 | |
---|
| 305 | endif |
---|
| 306 | |
---|
| 307 | ! re-calculate continental albedo |
---|
[1482] | 308 | DO nw=1,L_NSPECTV |
---|
| 309 | albedo(ig,nw) = albedo_bareground(ig) |
---|
| 310 | ENDDO |
---|
[253] | 311 | if (zqsurf(ig,iice).ge.snowlayer) then |
---|
[1482] | 312 | DO nw=1,L_NSPECTV |
---|
| 313 | albedo(ig,nw) = albedo_snow_SPECTV(nw) |
---|
| 314 | ENDDO |
---|
[253] | 315 | else |
---|
[1482] | 316 | DO nw=1,L_NSPECTV |
---|
| 317 | albedo(ig,nw) = albedo_bareground(ig) & |
---|
| 318 | + (albedo_snow_SPECTV(nw) - albedo_bareground(ig)) & |
---|
| 319 | *zqsurf(ig,iice)/snowlayer |
---|
| 320 | ENDDO |
---|
[253] | 321 | endif |
---|
| 322 | |
---|
| 323 | else |
---|
| 324 | |
---|
| 325 | print*,'Surface type not recognised in hydrol.F!' |
---|
| 326 | print*,'Exiting...' |
---|
| 327 | call abort |
---|
| 328 | |
---|
| 329 | endif |
---|
| 330 | |
---|
[787] | 331 | end do ! ig=1,ngrid |
---|
[253] | 332 | |
---|
| 333 | ! perform crude bulk averaging of temperature in ocean |
---|
| 334 | ! ---------------------------------------------------- |
---|
| 335 | if(oceanbulkavg)then |
---|
| 336 | |
---|
| 337 | oceanarea2=0. |
---|
[787] | 338 | DO ig=1,ngrid |
---|
[1297] | 339 | if((nint(rnat(ig)).eq.0).and.(hice(ig).eq.0.))then |
---|
[1542] | 340 | oceanarea2=oceanarea2+cell_area(ig)*pcapcal(ig) |
---|
[253] | 341 | end if |
---|
| 342 | END DO |
---|
| 343 | |
---|
| 344 | tsea=0. |
---|
[787] | 345 | DO ig=1,ngrid |
---|
[1297] | 346 | if((nint(rnat(ig)).eq.0).and.(hice(ig).eq.0.))then |
---|
[1542] | 347 | tsea=tsea+ztsurf(ig)*cell_area(ig)*pcapcal(ig)/oceanarea2 |
---|
[253] | 348 | end if |
---|
| 349 | END DO |
---|
| 350 | |
---|
[787] | 351 | DO ig=1,ngrid |
---|
[1297] | 352 | if((nint(rnat(ig)).eq.0).and.(hice(ig).eq.0))then |
---|
[253] | 353 | pdtsurf_hyd(ig) = pdtsurf_hyd(ig) + (tsea-ztsurf(ig))/oceantime |
---|
| 354 | end if |
---|
| 355 | END DO |
---|
| 356 | |
---|
[305] | 357 | print*,'Mean ocean temperature = ',tsea,' K' |
---|
[253] | 358 | |
---|
| 359 | endif |
---|
| 360 | |
---|
| 361 | ! shove all the runoff water into the ocean |
---|
| 362 | ! ----------------------------------------- |
---|
| 363 | if(activerunoff)then |
---|
| 364 | |
---|
| 365 | totalrunoff=0. |
---|
[787] | 366 | do ig=1,ngrid |
---|
[1297] | 367 | if (nint(rnat(ig)).eq.1) then |
---|
[1542] | 368 | totalrunoff = totalrunoff + cell_area(ig)*runoff(ig) |
---|
[253] | 369 | endif |
---|
| 370 | enddo |
---|
| 371 | |
---|
[787] | 372 | do ig=1,ngrid |
---|
[1297] | 373 | if (nint(rnat(ig)).eq.0) then |
---|
[253] | 374 | zqsurf(ig,iliq) = zqsurf(ig,iliq) + & |
---|
| 375 | totalrunoff/oceanarea |
---|
| 376 | endif |
---|
| 377 | enddo |
---|
| 378 | |
---|
[863] | 379 | endif |
---|
[253] | 380 | |
---|
[863] | 381 | |
---|
[253] | 382 | ! Re-add the albedo effects of CO2 ice if necessary |
---|
| 383 | ! ------------------------------------------------- |
---|
| 384 | if(co2cond)then |
---|
| 385 | |
---|
[787] | 386 | do ig=1,ngrid |
---|
[1482] | 387 | if (qsurf(ig,igcm_co2_ice).gt.1.) then ! Condition changed - Need now ~1 mm CO2 ice coverage. MT2015 |
---|
| 388 | DO nw=1,L_NSPECTV |
---|
| 389 | albedo(ig,nw) = albedo_co2_ice_SPECTV(nw) |
---|
| 390 | ENDDO |
---|
[253] | 391 | endif |
---|
[1482] | 392 | enddo ! ngrid |
---|
[253] | 393 | |
---|
[1482] | 394 | endif ! co2cond |
---|
[253] | 395 | |
---|
| 396 | |
---|
[1484] | 397 | do ig=1,ngrid ! We calculate here the tracer tendencies. Don't forget that we have to retrieve the dqsurf tendencies we added at the beginning of the routine ! |
---|
| 398 | dqs_hyd(ig,iliq)=(zqsurf(ig,iliq) - qsurf(ig,iliq))/ptimestep - dqsurf(ig,iliq) |
---|
| 399 | dqs_hyd(ig,iice)=(zqsurf(ig,iice) - qsurf(ig,iice))/ptimestep - dqsurf(ig,iice) |
---|
[253] | 400 | enddo |
---|
| 401 | |
---|
[965] | 402 | if (activerunoff) then |
---|
| 403 | call writediagfi(ngrid,'runoff','Runoff amount',' ',2,runoff) |
---|
| 404 | endif |
---|
[253] | 405 | |
---|
| 406 | return |
---|
| 407 | end subroutine hydrol |
---|