source: trunk/LMDZ.GENERIC/libf/phystd/gradients_kcm.F90 @ 837

Last change on this file since 837 was 716, checked in by rwordsworth, 13 years ago

Mainly updates to radiative transfer and gas management scheme.
Most CIA data now read from standard HITRAN datafiles. For the H2O
continuum, two options have been added: the standard CKD continuum,
and the empirical formula in PPC (Pierrehumbert 2010). Use the toggle
'H2Ocont_simple' in callphys.def to choose.

Note to Martians: I've changed the default values of 'sedimentation' and
'co2cond' in inifis to false. Both these are defined in the standard deftank
callphys.def file, so there shouldn't be any compatibility problems.

  • Property svn:executable set to *
File size: 3.2 KB
Line 
1subroutine gradients_kcm(profil_flag,rho_v,rho_n,T,dTdp,dPvdp,dPndp)
2
3  use params_h
4  use gases_h
5  implicit none
6
7  ! inputs
8  integer profil_flag ! 0 = dry, 1 = moist, 2 = isothermal
9  double precision rho_v,rho_n,T
10
11  ! outputs
12  double precision dTdp,dPndp,dPvdp
13  double precision a_v
14
15  ! internal
16  !double precision cp_n,cp_v
17  double precision cp_v
18
19  double precision press, rho_plus, rho_minus, dVdT, rho_c
20  double precision dlnr,dlna,dpsat,dsv
21  double precision s_minus,s_plus
22  double precision s_v,s_c,L
23  double precision psat_plus,psat_minus,Pn
24  double precision nul
25
26  ! functions
27  double precision cp_neutral
28
29  !cp_n = cp_neutral(T)
30
31  select case(profil_flag)
32  case(2) ! isothermal
33
34     dTdp  = 0.
35     a_v   = rho_v/rho_n ! constant here
36     dPndp = 1/(1d0+m_n/m_v*a_v)
37     dPvdp = 1 - dPndp
38
39  case(1) ! moist
40
41     Pn = rho_n*T*rmn
42
43     if(ngasmx.eq.1)then
44        print*,'Cannot have moist adiabat with one gas...'
45        stop
46     endif
47
48     if(gnom(ngasmx).eq.'H2O')then
49
50        call psat_H2O(T-2d-1,psat_minus)
51        call psat_H2O(T+2d-1,psat_plus)
52        call psat_H2O(T,press)
53
54        rho_minus = m_v*psat_minus*1d6/(Rc*(T-2d-1))
55        rho_plus  = m_v*psat_plus*1d6/(Rc*(T+2d-1))
56
57        call therm(T-2d-1,rho_minus*1d-3,nul,nul,nul,nul,nul,nul,nul,&
58                   nul,nul,press,s_minus,nul)
59        call therm(T+2d-1,rho_plus*1d-3,nul,nul,nul,nul,nul,nul,nul,&
60                   nul,nul,press,s_plus,nul)
61        s_c = 2.06 * log(T/273.15)
62
63        s_plus  = s_plus  * 1d3
64        s_minus = s_minus * 1d3
65        s_c     = s_c     * 1d3 ! convert to SI
66
67        if(T.lt.280.0)then
68           dpsat = press*1d6 * ( 1730.63*log(10.) / (T-39.714)**2 )
69        else
70           call tdpsdt(T,dpsat)
71           dpsat = dpsat * 1d6 / T
72        endif
73
74     elseif(gnom(ngasmx).eq.'NH3')then
75
76        call psat_NH3(T-2d-1,psat_minus)
77        call psat_NH3(T+2d-1,psat_plus)
78        call psat_NH3(T,press)
79
80        rho_minus = m_v*psat_minus*1d6/(Rc*(T-2d-1))
81        rho_plus  = m_v*psat_plus*1d6/(Rc*(T+2d-1))
82
83        call latheat_NH3(T-2d-1,nul,s_minus)
84        call latheat_NH3(T+2d-1,nul,s_plus)
85        call latheat_NH3(T,s_c,nul)
86
87        dpsat = press*1d6 * (-2*1.5609d-4*T + 0.1236)
88
89     endif
90
91     dsv  = (s_plus-s_minus)/4d-1  ! dsv*T = ds / d ln[T]
92     s_v  = (s_plus+s_minus)/2d0
93     dlnr = T/rho_v * (rho_plus-rho_minus)/4d-1  ! d ln[rho_v] / d ln[T]
94
95     if(rho_n/rho_v.lt.1e-5)then
96        dlna = -T*dsv/(s_v-s_c)
97     else
98        a_v  = rho_v/rho_n
99        dlna = (rmn*dlnr - cp_n + rmn - a_v*T*dsv)/(a_v*(s_v-s_c)+rmn) 
100        ! d ln[alpha_v] / d ln[T]
101        ! note cp_n + rmn = cv_n, which is what's required
102     endif
103
104     dTdp  = 1d0 / (dpsat + rho_n*rmn*(1d0 + dlnr - dlna)) ! c.f. Marcq S2.2.2
105     dPvdp = dTdp * dpsat
106     dPndp = 1d0 - dPvdp ! from p = p_v + p_n
107
108  case(0) ! dry
109
110     cp_v=0.0
111     if(gnom(ngasmx).eq.'H2O')then
112        cp_v = (32.24+1.923d-3*T+1.055d-5*T**2-3.511d-9*T**3)/m_v
113     elseif(gnom(ngasmx).eq.'NH3')then
114        cp_v = 2.058d3
115     elseif(gnom(ngasmx).eq.'CH4')then
116        cp_v = 2.226d3
117     endif
118
119     dTdp  = 1/(rho_n*cp_n+rho_v*cp_v)
120     dPndp = 1/(1d0+m_n/m_v*rho_v/rho_n)
121     dPvdp = 1/(1d0+m_v/m_n*rho_n/rho_v)
122     
123  end select
124
125
126end subroutine gradients_kcm
Note: See TracBrowser for help on using the repository browser.