[787] | 1 | subroutine evap(ngrid,nq,dtime,pt, pq, pdq, pdt, |
---|
[253] | 2 | $ dqevap,dtevap, qevap, tevap) |
---|
| 3 | |
---|
| 4 | use watercommon_h |
---|
[787] | 5 | USE tracer_h |
---|
[253] | 6 | |
---|
| 7 | implicit none |
---|
| 8 | |
---|
| 9 | #include "dimensions.h" |
---|
| 10 | #include "dimphys.h" |
---|
| 11 | #include "comcstfi.h" |
---|
| 12 | |
---|
| 13 | !================================================================== |
---|
| 14 | ! |
---|
| 15 | ! Purpose |
---|
| 16 | ! ------- |
---|
| 17 | ! Evaporation of all water in the atmopshere. |
---|
| 18 | ! |
---|
| 19 | ! Authors |
---|
| 20 | ! ------- |
---|
| 21 | ! Adapted from the LMDTERRE code by B. Charnay (2010) |
---|
| 22 | ! Original author Z. X. Li (1993) |
---|
| 23 | ! |
---|
| 24 | !================================================================== |
---|
| 25 | |
---|
[787] | 26 | INTEGER ngrid,nq |
---|
| 27 | |
---|
[253] | 28 | ! Arguments: |
---|
[787] | 29 | REAL pt(ngrid,nlayermx) |
---|
| 30 | REAL pq(ngrid,nlayermx,nq) |
---|
| 31 | REAL pdt(ngrid,nlayermx) |
---|
| 32 | REAL pdq(ngrid,nlayermx,nq) |
---|
| 33 | REAL dqevap(ngrid,nlayermx) |
---|
| 34 | REAL dtevap(ngrid,nlayermx) |
---|
| 35 | REAL qevap(ngrid,nlayermx,nq) |
---|
[253] | 36 | REAL dtime |
---|
| 37 | |
---|
| 38 | ! Local: |
---|
[787] | 39 | REAL tevap(ngrid,nlayermx) |
---|
[253] | 40 | REAL zlvdcp |
---|
| 41 | REAL zlsdcp |
---|
| 42 | REAL zdelta |
---|
| 43 | INTEGER l,ig |
---|
| 44 | |
---|
| 45 | ! |
---|
| 46 | ! Re-evaporer l'eau liquide nuageuse |
---|
| 47 | ! |
---|
| 48 | |
---|
| 49 | DO l=1,nlayermx |
---|
[787] | 50 | DO ig=1,ngrid |
---|
[253] | 51 | qevap(ig,l,igcm_h2o_vap)=pq(ig,l,igcm_h2o_vap) |
---|
| 52 | s +pdq(ig,l,igcm_h2o_vap)*dtime |
---|
| 53 | qevap(ig,l,igcm_h2o_ice)=pq(ig,l,igcm_h2o_ice) |
---|
| 54 | s +pdq(ig,l,igcm_h2o_ice)*dtime |
---|
| 55 | tevap(ig,l)=pt(ig,l)+pdt(ig,l)*dtime |
---|
| 56 | ENDDO |
---|
| 57 | ENDDO |
---|
| 58 | |
---|
| 59 | DO l = 1, nlayermx |
---|
[787] | 60 | DO ig = 1, ngrid |
---|
[253] | 61 | zlvdcp=RLVTT/RCPD!/(1.0+RVTMP2*qevap(ig,l,igcm_h2o_vap)) |
---|
| 62 | zlsdcp=RLSTT/RCPD!/(1.0+RVTMP2*qevap(ig,l,igcm_h2o_vap)) |
---|
| 63 | ! ignoring qevap term creates huge difference when qevap large!!! |
---|
| 64 | |
---|
[650] | 65 | zdelta = MAX(0.,SIGN(1.,T_h2O_ice_liq-tevap(ig,l))) ! what is this? |
---|
[253] | 66 | ! for division between water / liquid |
---|
| 67 | dqevap(ig,l) = MAX(0.0,qevap(ig,l,igcm_h2o_ice))/dtime |
---|
| 68 | dtevap(ig,l) = - dqevap(ig,l)*RLVTT/RCPD ! exactly as in largescale.F |
---|
| 69 | ! dtevap(ig,l) = - dqevap(ig,l) |
---|
| 70 | ! s * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta) |
---|
| 71 | qevap(ig,l,igcm_h2o_vap) = qevap(ig,l,igcm_h2o_vap) |
---|
| 72 | s +dqevap(ig,l)*dtime |
---|
| 73 | qevap(ig,l,igcm_h2o_ice) = 0.0 |
---|
| 74 | tevap(ig,l) = tevap(ig,l)+dtevap(ig,l)*dtime |
---|
| 75 | |
---|
| 76 | ENDDO |
---|
| 77 | ENDDO |
---|
| 78 | |
---|
| 79 | RETURN |
---|
| 80 | END |
---|