| 1 | subroutine condense_co2(ngrid,nlayer,nq,ptimestep, & |
|---|
| 2 | pcapcal,pplay,pplev,ptsrf,pt, & |
|---|
| 3 | pdt,pdtsrf,pq,pdq, & |
|---|
| 4 | pqsurf,pdqsurfc,albedo,pemisurf, & |
|---|
| 5 | albedo_bareground,albedo_co2_ice_SPECTV, & |
|---|
| 6 | pdtc,pdtsrfc,pdpsrfc,pdqc) |
|---|
| 7 | |
|---|
| 8 | use radinc_h, only : L_NSPECTV, naerkind |
|---|
| 9 | use gases_h, only: gfrac, igas_co2 |
|---|
| 10 | use radii_mod, only : co2_reffrad |
|---|
| 11 | use aerosol_mod, only : iaero_co2 |
|---|
| 12 | USE surfdat_h, only: emisice, emissiv |
|---|
| 13 | USE geometry_mod, only: latitude ! in radians |
|---|
| 14 | USE tracer_h, only: noms, rho_co2 |
|---|
| 15 | use comcstfi_mod, only: g, r, cpp |
|---|
| 16 | |
|---|
| 17 | implicit none |
|---|
| 18 | |
|---|
| 19 | !================================================================== |
|---|
| 20 | ! Purpose |
|---|
| 21 | ! ------- |
|---|
| 22 | ! Condense and/or sublime CO2 ice on the ground and in the atmosphere, and sediment the ice. |
|---|
| 23 | ! |
|---|
| 24 | ! Inputs |
|---|
| 25 | ! ------ |
|---|
| 26 | ! ngrid Number of vertical columns. |
|---|
| 27 | ! nlayer Number of vertical layers. |
|---|
| 28 | ! nq Number of tracers. |
|---|
| 29 | ! ptimestep Duration of the physical timestep (s). |
|---|
| 30 | ! pplay(ngrid,nlayer) Pressure layers (Pa). |
|---|
| 31 | ! pplev(ngrid,nlayer+1) Pressure levels (Pa). |
|---|
| 32 | ! pt(ngrid,nlayer) Atmospheric Temperatures (K). |
|---|
| 33 | ! ptsrf(ngrid) Surface temperatures (K). |
|---|
| 34 | ! pq(ngrid,nlayer,nq) Atmospheric tracers mixing ratios (kg/kg of air). |
|---|
| 35 | ! pqsurf(ngrid,nq) Surface tracers (kg/m2). |
|---|
| 36 | ! |
|---|
| 37 | ! pdt(ngrid,nlayer) Time derivative before condensation/sublimation of pt. |
|---|
| 38 | ! pdtsrf(ngrid) Time derivative before condensation/sublimation of ptsrf. |
|---|
| 39 | ! pdq(ngrid,nlayer,nq) Time derivative before condensation/sublimation of |
|---|
| 40 | ! |
|---|
| 41 | ! albedo_bareground(ngrid) Albedo of the bare ground. |
|---|
| 42 | ! albedo_co2_ice_SPECTV(L_NSPECTV) Spectral albedo of CO2 ice. |
|---|
| 43 | ! |
|---|
| 44 | ! Outputs |
|---|
| 45 | ! ------- |
|---|
| 46 | ! pdpsrfc(ngrid) \ Contribution of condensation/sublimation |
|---|
| 47 | ! pdtc(ngrid,nlayer) \ to the time derivatives of |
|---|
| 48 | ! pdtsrfc(ngrid) / Surface Pressure, Atmospheric Temperatures, |
|---|
| 49 | ! pdqsurfc(ngrid) / Surface Temperatures, Surface Tracers, |
|---|
| 50 | ! pdqc(ngrid,nlayer,nq) / and Atmospheric Tracers.* |
|---|
| 51 | ! |
|---|
| 52 | ! pemisurf(ngrid) Emissivity of the surface. |
|---|
| 53 | ! |
|---|
| 54 | ! Both |
|---|
| 55 | ! ---- |
|---|
| 56 | ! albedo(ngrid,L_NSPECTV) Spectral albedo of the surface. |
|---|
| 57 | ! |
|---|
| 58 | ! Authors |
|---|
| 59 | ! ------- |
|---|
| 60 | ! Francois Forget (1996) |
|---|
| 61 | ! Converted to Fortran 90 and slightly modified by R. Wordsworth (2009) |
|---|
| 62 | ! Includes simplifed nucleation by J. Leconte (2011) |
|---|
| 63 | ! |
|---|
| 64 | !================================================================== |
|---|
| 65 | |
|---|
| 66 | !-------------------------- |
|---|
| 67 | ! Arguments |
|---|
| 68 | !-------------------------- |
|---|
| 69 | |
|---|
| 70 | |
|---|
| 71 | INTEGER,INTENT(IN) :: ngrid |
|---|
| 72 | INTEGER,INTENT(IN) :: nlayer |
|---|
| 73 | INTEGER,INTENT(IN) :: nq |
|---|
| 74 | REAL,INTENT(IN) :: ptimestep |
|---|
| 75 | REAL,INTENT(IN) :: pcapcal(ngrid) |
|---|
| 76 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) |
|---|
| 77 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) |
|---|
| 78 | REAL,INTENT(IN) :: ptsrf(ngrid) |
|---|
| 79 | REAL,INTENT(IN) :: pt(ngrid,nlayer) |
|---|
| 80 | REAL,INTENT(IN) :: pdt(ngrid,nlayer) |
|---|
| 81 | REAL,INTENT(IN) :: pdtsrf(ngrid) |
|---|
| 82 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) |
|---|
| 83 | REAL,INTENT(IN) :: pqsurf(ngrid,nq) |
|---|
| 84 | REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq) |
|---|
| 85 | REAL,INTENT(IN) :: albedo_bareground(ngrid) |
|---|
| 86 | REAL,INTENT(IN) :: albedo_co2_ice_SPECTV(L_NSPECTV) |
|---|
| 87 | REAL,INTENT(INOUT) :: albedo(ngrid,L_NSPECTV) |
|---|
| 88 | REAL,INTENT(OUT) :: pemisurf(ngrid) |
|---|
| 89 | REAL,INTENT(OUT) :: pdtc(ngrid,nlayer) |
|---|
| 90 | REAL,INTENT(OUT) :: pdtsrfc(ngrid) |
|---|
| 91 | REAL,INTENT(OUT) :: pdpsrfc(ngrid) |
|---|
| 92 | REAL,INTENT(OUT) :: pdqc(ngrid,nlayer,nq) |
|---|
| 93 | REAL,INTENT(OUT) :: pdqsurfc(ngrid) |
|---|
| 94 | |
|---|
| 95 | !------------------------------ |
|---|
| 96 | ! Local variables |
|---|
| 97 | !------------------------------ |
|---|
| 98 | |
|---|
| 99 | INTEGER l,ig,icap,ilay,iq,nw,igas,it |
|---|
| 100 | |
|---|
| 101 | REAL reffrad(ngrid,nlayer) ! Radius (m) of the CO2 ice particles. |
|---|
| 102 | REAL*8 zt(ngrid,nlayer) ! Updated Atmospheric Temperatures (K). |
|---|
| 103 | REAL ztsrf(ngrid) ! Updated Surface Temperatures (K). |
|---|
| 104 | REAL zq(ngrid,nlayer,nq) ! Updated Atmospheric tracers mixing ratios (kg/kg of air). |
|---|
| 105 | REAL piceco2(ngrid) ! Updated Surface Tracer (kg/m2). |
|---|
| 106 | REAL ztcond (ngrid,nlayer) ! Atmospheric Temperatures of condensation of CO2. |
|---|
| 107 | REAL ztnuc (ngrid,nlayer) ! Atmospheric Nucleation Temperatures. |
|---|
| 108 | REAL ztcondsol(ngrid) ! Temperatures of condensation of CO2 at the surface. |
|---|
| 109 | REAL zcondices(ngrid) ! Condensation rate on the ground (kg/m2/s). |
|---|
| 110 | REAL zfallice(ngrid) ! Flux of ice falling on the surface (kg/m2/s). |
|---|
| 111 | REAL Mfallice(ngrid) ! Total amount of ice fallen to the ground during the timestep (kg/m2). |
|---|
| 112 | REAL wq(ngrid,nlayer+1) ! Total amount of ice fallen to the ground during the timestep (kg/m2). |
|---|
| 113 | REAL subptimestep ! Duration of the subtimestep (s) for the sedimentation. |
|---|
| 114 | Integer Ntime ! Number of subtimesteps. |
|---|
| 115 | REAL masse (ngrid,nlayer) ! Mass of atmospheric layers (kg/m2) |
|---|
| 116 | REAL w(ngrid,nlayer,nq) ! |
|---|
| 117 | REAL vstokes,reff ! |
|---|
| 118 | REAL ppco2 ! |
|---|
| 119 | |
|---|
| 120 | |
|---|
| 121 | !------------------------------------------ |
|---|
| 122 | ! Saved local variables |
|---|
| 123 | !------------------------------------------ |
|---|
| 124 | |
|---|
| 125 | |
|---|
| 126 | REAL,SAVE :: latcond=5.9e5 |
|---|
| 127 | REAL,SAVE :: ccond |
|---|
| 128 | REAL,SAVE,ALLOCATABLE,DIMENSION(:) :: emisref |
|---|
| 129 | !$OMP THREADPRIVATE(latcond,ccond,emisref) |
|---|
| 130 | LOGICAL,SAVE :: firstcall=.true. |
|---|
| 131 | !$OMP THREADPRIVATE(firstcall) |
|---|
| 132 | INTEGER,SAVE :: i_co2ice=0 ! co2 ice |
|---|
| 133 | !$OMP THREADPRIVATE(i_co2ice) |
|---|
| 134 | CHARACTER(LEN=20) :: tracername ! to temporarily store text |
|---|
| 135 | |
|---|
| 136 | |
|---|
| 137 | !------------------------------------------------ |
|---|
| 138 | ! Initialization at the first call |
|---|
| 139 | !------------------------------------------------ |
|---|
| 140 | |
|---|
| 141 | |
|---|
| 142 | IF (firstcall) THEN |
|---|
| 143 | |
|---|
| 144 | ALLOCATE(emisref(ngrid)) |
|---|
| 145 | ! Find CO2 ice tracer. |
|---|
| 146 | do iq=1,nq |
|---|
| 147 | tracername=noms(iq) |
|---|
| 148 | if (tracername.eq."co2_ice") then |
|---|
| 149 | i_co2ice=iq |
|---|
| 150 | endif |
|---|
| 151 | enddo |
|---|
| 152 | |
|---|
| 153 | write(*,*) "condense_co2: i_co2ice=",i_co2ice |
|---|
| 154 | |
|---|
| 155 | if((i_co2ice.lt.1))then |
|---|
| 156 | print*,'In condens_cloud but no CO2 ice tracer, exiting.' |
|---|
| 157 | print*,'Still need generalisation to arbitrary species!' |
|---|
| 158 | stop |
|---|
| 159 | endif |
|---|
| 160 | |
|---|
| 161 | ccond=cpp/(g*latcond) |
|---|
| 162 | print*,'In condens_cloud: ccond=',ccond,' latcond=',latcond |
|---|
| 163 | |
|---|
| 164 | ! Prepare special treatment if gas is not pure CO2 |
|---|
| 165 | ! if (addn2) then |
|---|
| 166 | ! m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
|---|
| 167 | ! m_noco2 = 28.02E-3 ! N2 molecular mass (kg/mol) |
|---|
| 168 | ! Compute A and B coefficient use to compute |
|---|
| 169 | ! mean molecular mass Mair defined by |
|---|
| 170 | ! 1/Mair = q(ico2)/m_co2 + (1-q(ico2))/m_noco2 |
|---|
| 171 | ! 1/Mair = A*q(ico2) + B |
|---|
| 172 | ! A = (1/m_co2 - 1/m_noco2) |
|---|
| 173 | ! B = 1/m_noco2 |
|---|
| 174 | ! endif |
|---|
| 175 | |
|---|
| 176 | ! Minimum CO2 mixing ratio below which mixing occurs with layer above : qco2min =0.75 |
|---|
| 177 | |
|---|
| 178 | firstcall=.false. |
|---|
| 179 | ENDIF |
|---|
| 180 | |
|---|
| 181 | |
|---|
| 182 | !------------------------------------------------ |
|---|
| 183 | ! Tendencies initially set to 0 |
|---|
| 184 | !------------------------------------------------ |
|---|
| 185 | |
|---|
| 186 | |
|---|
| 187 | pdqc(1:ngrid,1:nlayer,1:nq) = 0. |
|---|
| 188 | pdtc(1:ngrid,1:nlayer) = 0. |
|---|
| 189 | zq(1:ngrid,1:nlayer,1:nq) = 0. |
|---|
| 190 | zt(1:ngrid,1:nlayer) = 0. |
|---|
| 191 | Mfallice(1:ngrid) = 0. |
|---|
| 192 | zfallice(1:ngrid) = 0. |
|---|
| 193 | zcondices(1:ngrid) = 0. |
|---|
| 194 | pdtsrfc(1:ngrid) = 0. |
|---|
| 195 | pdpsrfc(1:ngrid) = 0. |
|---|
| 196 | pdqsurfc(1:ngrid) = 0. |
|---|
| 197 | |
|---|
| 198 | |
|---|
| 199 | !---------------------------------- |
|---|
| 200 | ! Atmospheric condensation |
|---|
| 201 | !---------------------------------- |
|---|
| 202 | |
|---|
| 203 | |
|---|
| 204 | ! Compute CO2 Volume mixing ratio |
|---|
| 205 | ! ------------------------------- |
|---|
| 206 | ! if (addn2) then |
|---|
| 207 | ! DO l=1,nlayer |
|---|
| 208 | ! DO ig=1,ngrid |
|---|
| 209 | ! qco2=pq(ig,l,ico2)+pdq(ig,l,ico2)*ptimestep |
|---|
| 210 | ! Mean air molecular mass = 1/(q(ico2)/m_co2 + (1-q(ico2))/m_noco2) |
|---|
| 211 | ! mmean=1/(A*qco2 +B) |
|---|
| 212 | ! vmr_co2(ig,l) = qco2*mmean/m_co2 |
|---|
| 213 | ! ENDDO |
|---|
| 214 | ! ENDDO |
|---|
| 215 | ! else |
|---|
| 216 | ! DO l=1,nlayer |
|---|
| 217 | ! DO ig=1,ngrid |
|---|
| 218 | ! vmr_co2(ig,l)=0.5 |
|---|
| 219 | ! ENDDO |
|---|
| 220 | ! ENDDO |
|---|
| 221 | ! end if |
|---|
| 222 | |
|---|
| 223 | |
|---|
| 224 | ! Forecast the atmospheric frost temperature 'ztcond' and nucleation temperature 'ztnuc'. |
|---|
| 225 | DO l=1,nlayer |
|---|
| 226 | DO ig=1,ngrid |
|---|
| 227 | ppco2=gfrac(igas_CO2)*pplay(ig,l) |
|---|
| 228 | call get_tcond_co2(ppco2,ztcond(ig,l)) |
|---|
| 229 | call get_tnuc_co2(ppco2,ztnuc(ig,l)) |
|---|
| 230 | ENDDO |
|---|
| 231 | ENDDO |
|---|
| 232 | |
|---|
| 233 | ! Initialize zq and zt at the beginning of the sub-timestep loop and qsurf. |
|---|
| 234 | DO ig=1,ngrid |
|---|
| 235 | piceco2(ig)=pqsurf(ig,i_co2ice) |
|---|
| 236 | DO l=1,nlayer |
|---|
| 237 | zt(ig,l)=pt(ig,l) |
|---|
| 238 | zq(ig,l,i_co2ice)=pq(ig,l,i_co2ice) |
|---|
| 239 | IF( zq(ig,l,i_co2ice).lt.-1.e-6 ) THEN |
|---|
| 240 | print*,'Uh-oh, zq = ',zq(ig,l,i_co2ice),'at ig,l=',ig,l |
|---|
| 241 | if(l.eq.1)then |
|---|
| 242 | print*,'Perhaps the atmosphere is collapsing on surface...?' |
|---|
| 243 | endif |
|---|
| 244 | END IF |
|---|
| 245 | ENDDO |
|---|
| 246 | ENDDO |
|---|
| 247 | |
|---|
| 248 | ! Calculate the mass of each atmospheric layer (kg.m-2) |
|---|
| 249 | do ilay=1,nlayer |
|---|
| 250 | DO ig=1,ngrid |
|---|
| 251 | masse(ig,ilay)=(pplev(ig,ilay) - pplev(ig,ilay+1)) /g |
|---|
| 252 | end do |
|---|
| 253 | end do |
|---|
| 254 | |
|---|
| 255 | |
|---|
| 256 | !----------------------------------------------------------- |
|---|
| 257 | ! START CONDENSATION/SEDIMENTATION SUB-TIME LOOP |
|---|
| 258 | !----------------------------------------------------------- |
|---|
| 259 | |
|---|
| 260 | |
|---|
| 261 | Ntime = 20 ! number of sub-timestep |
|---|
| 262 | subptimestep = ptimestep/float(Ntime) |
|---|
| 263 | |
|---|
| 264 | ! Add the tendencies from other physical processes at each subtimstep. |
|---|
| 265 | DO it=1,Ntime |
|---|
| 266 | DO l=1,nlayer |
|---|
| 267 | DO ig=1,ngrid |
|---|
| 268 | zt(ig,l) = zt(ig,l) + pdt(ig,l) * subptimestep |
|---|
| 269 | zq(ig,l,i_co2ice) = zq(ig,l,i_co2ice) + pdq(ig,l,i_co2ice) * subptimestep |
|---|
| 270 | END DO |
|---|
| 271 | END DO |
|---|
| 272 | |
|---|
| 273 | ! Gravitational sedimentation starts. |
|---|
| 274 | |
|---|
| 275 | ! Sedimentation computed from radius computed from q in module radii_mod. |
|---|
| 276 | call co2_reffrad(ngrid,nlayer,nq,zq,reffrad) |
|---|
| 277 | |
|---|
| 278 | DO ilay=1,nlayer |
|---|
| 279 | DO ig=1,ngrid |
|---|
| 280 | |
|---|
| 281 | reff = reffrad(ig,ilay) |
|---|
| 282 | |
|---|
| 283 | call stokes & |
|---|
| 284 | (pplev(ig,ilay),pt(ig,ilay), & |
|---|
| 285 | reff,vstokes,rho_co2) |
|---|
| 286 | |
|---|
| 287 | !w(ig,ilay,i_co2ice) = 0.0 |
|---|
| 288 | w(ig,ilay,i_co2ice) = vstokes * subptimestep * & |
|---|
| 289 | pplev(ig,ilay)/(r*pt(ig,ilay)) |
|---|
| 290 | |
|---|
| 291 | END DO |
|---|
| 292 | END DO |
|---|
| 293 | |
|---|
| 294 | ! Computing q after sedimentation |
|---|
| 295 | call vlz_fi(ngrid,nlayer,zq(1,1,i_co2ice),2.,masse,w(1,1,i_co2ice),wq) |
|---|
| 296 | |
|---|
| 297 | |
|---|
| 298 | ! Progressively accumulating the flux to the ground. |
|---|
| 299 | ! Mfallice is the total amount of ice fallen to the ground. |
|---|
| 300 | DO ig=1,ngrid |
|---|
| 301 | Mfallice(ig) = Mfallice(ig) + wq(ig,i_co2ice) |
|---|
| 302 | END DO |
|---|
| 303 | |
|---|
| 304 | !---------------------------------------------------------- |
|---|
| 305 | ! Condensation / sublimation in the atmosphere |
|---|
| 306 | !---------------------------------------------------------- |
|---|
| 307 | ! (MODIFICATIONS FOR EARLY MARS: falling heat neglected, condensation of CO2 into tracer i_co2ice) |
|---|
| 308 | |
|---|
| 309 | |
|---|
| 310 | DO l=nlayer , 1, -1 |
|---|
| 311 | DO ig=1,ngrid |
|---|
| 312 | pdtc(ig,l)=0. |
|---|
| 313 | |
|---|
| 314 | ! ztcond-> ztnuc in test beneath to nucleate only when super saturation occurs(JL 2011) |
|---|
| 315 | IF ((zt(ig,l).LT.ztnuc(ig,l)).or.(zq(ig,l,i_co2ice).gt.1.E-10)) THEN |
|---|
| 316 | pdtc(ig,l) = (ztcond(ig,l) - zt(ig,l))/subptimestep |
|---|
| 317 | pdqc(ig,l,i_co2ice) = pdtc(ig,l)*ccond*g |
|---|
| 318 | |
|---|
| 319 | ! Case when the ice from above sublimes entirely |
|---|
| 320 | IF ((zq(ig,l,i_co2ice).lt.-pdqc(ig,l,i_co2ice)*subptimestep) & |
|---|
| 321 | .AND. (zq(ig,l,i_co2ice).gt.0)) THEN |
|---|
| 322 | |
|---|
| 323 | pdqc(ig,l,i_co2ice) = -zq(ig,l,i_co2ice)/subptimestep |
|---|
| 324 | pdtc(ig,l) =-zq(ig,l,i_co2ice)/(ccond*g*subptimestep) |
|---|
| 325 | |
|---|
| 326 | END IF |
|---|
| 327 | |
|---|
| 328 | ! Temperature and q after condensation |
|---|
| 329 | zt(ig,l) = zt(ig,l) + pdtc(ig,l) * subptimestep |
|---|
| 330 | zq(ig,l,i_co2ice) = zq(ig,l,i_co2ice) + pdqc(ig,l,i_co2ice) * subptimestep |
|---|
| 331 | END IF |
|---|
| 332 | |
|---|
| 333 | ENDDO |
|---|
| 334 | ENDDO |
|---|
| 335 | |
|---|
| 336 | ENDDO! end of subtimestep loop. |
|---|
| 337 | |
|---|
| 338 | ! Computing global tendencies after the subtimestep. |
|---|
| 339 | DO l=1,nlayer |
|---|
| 340 | DO ig=1,ngrid |
|---|
| 341 | pdtc(ig,l) = & |
|---|
| 342 | (zt(ig,l) - (pt(ig,l) + pdt(ig,l)*ptimestep))/ptimestep |
|---|
| 343 | pdqc(ig,l,i_co2ice) = & |
|---|
| 344 | (zq(ig,l,i_co2ice)-(pq(ig,l,i_co2ice)+pdq(ig,l,i_co2ice)*ptimestep))/ptimestep |
|---|
| 345 | END DO |
|---|
| 346 | END DO |
|---|
| 347 | DO ig=1,ngrid |
|---|
| 348 | zfallice(ig) = Mfallice(ig)/ptimestep |
|---|
| 349 | END DO |
|---|
| 350 | |
|---|
| 351 | |
|---|
| 352 | !----------------------------------------------------------------------- |
|---|
| 353 | ! Condensation/sublimation on the ground |
|---|
| 354 | !----------------------------------------------------------------------- |
|---|
| 355 | |
|---|
| 356 | |
|---|
| 357 | ! Forecast of ground temperature ztsrf and frost temperature ztcondsol. |
|---|
| 358 | DO ig=1,ngrid |
|---|
| 359 | ppco2=gfrac(igas_CO2)*pplay(ig,1) |
|---|
| 360 | call get_tcond_co2(ppco2,ztcondsol(ig)) |
|---|
| 361 | |
|---|
| 362 | ztsrf(ig) = ptsrf(ig) |
|---|
| 363 | |
|---|
| 364 | if((ztsrf(ig).le.ztcondsol(ig)+2.0).and.(ngrid.eq.1))then |
|---|
| 365 | print*,'CO2 is condensing on the surface in 1D. This atmosphere is doomed.' |
|---|
| 366 | print*,'T_surf = ',ztsrf,'K' |
|---|
| 367 | print*,'T_cond = ',ztcondsol,'K' |
|---|
| 368 | open(116,file='surf_vals.out') |
|---|
| 369 | write(116,*) 0.0, pplev(1,1), 0.0, 0.0 |
|---|
| 370 | close(116) |
|---|
| 371 | call abort |
|---|
| 372 | endif |
|---|
| 373 | |
|---|
| 374 | ztsrf(ig) = ptsrf(ig) + pdtsrf(ig)*ptimestep |
|---|
| 375 | |
|---|
| 376 | ENDDO |
|---|
| 377 | |
|---|
| 378 | DO ig=1,ngrid |
|---|
| 379 | |
|---|
| 380 | IF(ig.GT.ngrid/2+1) THEN |
|---|
| 381 | icap=2 |
|---|
| 382 | ELSE |
|---|
| 383 | icap=1 |
|---|
| 384 | ENDIF |
|---|
| 385 | |
|---|
| 386 | ! Loop over where we have condensation / sublimation |
|---|
| 387 | IF ((ztsrf(ig) .LT. ztcondsol(ig)) .OR. & ! ground condensation |
|---|
| 388 | (zfallice(ig).NE.0.) .OR. & ! falling snow |
|---|
| 389 | ((ztsrf(ig) .GT. ztcondsol(ig)) .AND. & ! ground sublimation |
|---|
| 390 | ((piceco2(ig)+zfallice(ig)*ptimestep) .NE. 0.))) THEN |
|---|
| 391 | |
|---|
| 392 | |
|---|
| 393 | ! Condensation or partial sublimation of CO2 ice |
|---|
| 394 | zcondices(ig)=pcapcal(ig)*(ztcondsol(ig)-ztsrf(ig)) & |
|---|
| 395 | /(latcond*ptimestep) |
|---|
| 396 | pdtsrfc(ig) = (ztcondsol(ig) - ztsrf(ig))/ptimestep |
|---|
| 397 | |
|---|
| 398 | ! If the entire CO_2 ice layer sublimes |
|---|
| 399 | ! (including what has just condensed in the atmosphere) |
|---|
| 400 | IF((piceco2(ig)/ptimestep+zfallice(ig)).LE. & |
|---|
| 401 | -zcondices(ig))THEN |
|---|
| 402 | zcondices(ig) = -piceco2(ig)/ptimestep - zfallice(ig) |
|---|
| 403 | pdtsrfc(ig)=(latcond/pcapcal(ig))* & |
|---|
| 404 | (zcondices(ig)) |
|---|
| 405 | END IF |
|---|
| 406 | |
|---|
| 407 | ! Changing CO2 ice amount and pressure |
|---|
| 408 | piceco2(ig) = piceco2(ig) + pdqsurfc(ig)*ptimestep |
|---|
| 409 | pdqsurfc(ig) = zcondices(ig) + zfallice(ig) |
|---|
| 410 | pdpsrfc(ig) = -pdqsurfc(ig)*g |
|---|
| 411 | |
|---|
| 412 | IF(ABS(pdpsrfc(ig)*ptimestep).GT.pplev(ig,1)) THEN |
|---|
| 413 | PRINT*,'STOP in condens in condense_co2' |
|---|
| 414 | PRINT*,'condensing more than total mass' |
|---|
| 415 | PRINT*,'Grid point ',ig |
|---|
| 416 | PRINT*,'Ps = ',pplev(ig,1) |
|---|
| 417 | PRINT*,'d Ps = ',pdpsrfc(ig) |
|---|
| 418 | STOP |
|---|
| 419 | ENDIF |
|---|
| 420 | END IF |
|---|
| 421 | |
|---|
| 422 | ENDDO ! end of ngrid loop. |
|---|
| 423 | |
|---|
| 424 | |
|---|
| 425 | !--------------------------------------------------------------------------------------------- |
|---|
| 426 | ! Surface albedo and emissivity of the ground below the snow (emisref) |
|---|
| 427 | !--------------------------------------------------------------------------------------------- |
|---|
| 428 | |
|---|
| 429 | |
|---|
| 430 | DO ig=1,ngrid |
|---|
| 431 | |
|---|
| 432 | IF(latitude(ig).LT.0.) THEN |
|---|
| 433 | icap=2 ! Southern Hemisphere |
|---|
| 434 | ELSE |
|---|
| 435 | icap=1 ! Nortnern hemisphere |
|---|
| 436 | ENDIF |
|---|
| 437 | |
|---|
| 438 | if(.not.piceco2(ig).ge.0.) THEN |
|---|
| 439 | if(piceco2(ig).le.-1.e-8) print*, & |
|---|
| 440 | 'WARNING : in condense_co2cloud: piceco2(',ig,')=', piceco2(ig) |
|---|
| 441 | piceco2(ig)=0. |
|---|
| 442 | endif |
|---|
| 443 | if (piceco2(ig) .gt. 1.) then ! CO2 Albedo condition changed to ~1 mm coverage. Change by MT2015. |
|---|
| 444 | DO nw=1,L_NSPECTV |
|---|
| 445 | albedo(ig,nw) = albedo_co2_ice_SPECTV(nw) |
|---|
| 446 | ENDDO |
|---|
| 447 | emisref(ig) = emisice(icap) |
|---|
| 448 | else |
|---|
| 449 | DO nw=1,L_NSPECTV |
|---|
| 450 | albedo(ig,nw) = albedo_bareground(ig) ! Note : If you have some water, it will be taken into account in the "hydrol" routine. |
|---|
| 451 | ENDDO |
|---|
| 452 | emisref(ig) = emissiv |
|---|
| 453 | pemisurf(ig) = emissiv |
|---|
| 454 | end if |
|---|
| 455 | |
|---|
| 456 | END DO |
|---|
| 457 | |
|---|
| 458 | return |
|---|
| 459 | |
|---|
| 460 | end subroutine condense_co2 |
|---|
| 461 | |
|---|
| 462 | |
|---|
| 463 | |
|---|
| 464 | !------------------------------------------------------------------------- |
|---|
| 465 | !------------------------------------------------------------------------- |
|---|
| 466 | !------------------------------------------------------------------------- |
|---|
| 467 | !------------------------------------------------------------------------- |
|---|
| 468 | !------------------------------------------------------------------------- |
|---|
| 469 | !------------------------------------------------------------------------- |
|---|
| 470 | |
|---|
| 471 | |
|---|
| 472 | |
|---|
| 473 | subroutine get_tcond_co2(p,tcond) ! Calculates the condensation temperature for CO2 |
|---|
| 474 | |
|---|
| 475 | |
|---|
| 476 | implicit none |
|---|
| 477 | |
|---|
| 478 | real p, peff, tcond |
|---|
| 479 | real, parameter :: ptriple=518000.0 |
|---|
| 480 | |
|---|
| 481 | peff=p |
|---|
| 482 | |
|---|
| 483 | if(peff.lt.ptriple) then |
|---|
| 484 | tcond = (-3167.8)/(log(.01*peff)-23.23) ! Fanale's formula. |
|---|
| 485 | else |
|---|
| 486 | tcond = 684.2-92.3*log(peff)+4.32*log(peff)**2 ! liquid-vapour transition (based on CRC handbook 2003 data) |
|---|
| 487 | endif |
|---|
| 488 | return |
|---|
| 489 | |
|---|
| 490 | end subroutine get_tcond_co2 |
|---|
| 491 | |
|---|
| 492 | |
|---|
| 493 | |
|---|
| 494 | !------------------------------------------------------------------------- |
|---|
| 495 | !------------------------------------------------------------------------- |
|---|
| 496 | !------------------------------------------------------------------------- |
|---|
| 497 | !------------------------------------------------------------------------- |
|---|
| 498 | !------------------------------------------------------------------------- |
|---|
| 499 | !------------------------------------------------------------------------- |
|---|
| 500 | |
|---|
| 501 | |
|---|
| 502 | |
|---|
| 503 | subroutine get_tnuc_co2(p,tnuc) |
|---|
| 504 | ! Calculates the nucleation temperature for CO2, based on a simple super saturation criterion. JL 2011. |
|---|
| 505 | |
|---|
| 506 | use callkeys_mod, only: co2supsat |
|---|
| 507 | |
|---|
| 508 | implicit none |
|---|
| 509 | |
|---|
| 510 | real p, peff, tnuc |
|---|
| 511 | real, parameter :: ptriple=518000.0 |
|---|
| 512 | |
|---|
| 513 | peff=p/co2supsat |
|---|
| 514 | |
|---|
| 515 | if(peff.lt.ptriple) then |
|---|
| 516 | tnuc = (-3167.8)/(log(.01*peff)-23.23) ! Fanale's formula |
|---|
| 517 | else |
|---|
| 518 | tnuc = 684.2-92.3*log(peff)+4.32*log(peff)**2 |
|---|
| 519 | ! liquid-vapour transition (based on CRC handbook 2003 data) |
|---|
| 520 | endif |
|---|
| 521 | |
|---|
| 522 | return |
|---|
| 523 | |
|---|
| 524 | end subroutine get_tnuc_co2 |
|---|