1 | subroutine condense_co2(ngrid,nlayer,nq,ptimestep, & |
---|
2 | pcapcal,pplay,pplev,ptsrf,pt, & |
---|
3 | pdt,pdtsrf,pq,pdq, & |
---|
4 | pqsurf,pdqsurfc,albedo,pemisurf, & |
---|
5 | albedo_bareground,albedo_co2_ice_SPECTV, & |
---|
6 | pdtc,pdtsrfc,pdpsrfc,pdqc) |
---|
7 | |
---|
8 | use radinc_h, only : L_NSPECTV, naerkind |
---|
9 | use gases_h, only: gfrac, igas_co2 |
---|
10 | use radii_mod, only : co2_reffrad |
---|
11 | use aerosol_mod, only : iaero_co2 |
---|
12 | USE surfdat_h, only: emisice, emissiv |
---|
13 | USE comgeomfi_h, only: lati |
---|
14 | USE tracer_h, only: noms, rho_co2 |
---|
15 | use comcstfi_mod, only: g, r, cpp |
---|
16 | |
---|
17 | implicit none |
---|
18 | |
---|
19 | !================================================================== |
---|
20 | ! Purpose |
---|
21 | ! ------- |
---|
22 | ! Condense and/or sublime CO2 ice on the ground and in the atmosphere, and sediment the ice. |
---|
23 | ! |
---|
24 | ! Inputs |
---|
25 | ! ------ |
---|
26 | ! ngrid Number of vertical columns. |
---|
27 | ! nlayer Number of vertical layers. |
---|
28 | ! nq Number of tracers. |
---|
29 | ! ptimestep Duration of the physical timestep (s). |
---|
30 | ! pplay(ngrid,nlayer) Pressure layers (Pa). |
---|
31 | ! pplev(ngrid,nlayer+1) Pressure levels (Pa). |
---|
32 | ! pt(ngrid,nlayer) Atmospheric Temperatures (K). |
---|
33 | ! ptsrf(ngrid) Surface temperatures (K). |
---|
34 | ! pq(ngrid,nlayer,nq) Atmospheric tracers mixing ratios (kg/kg of air). |
---|
35 | ! pqsurf(ngrid,nq) Surface tracers (kg/m2). |
---|
36 | ! |
---|
37 | ! pdt(ngrid,nlayer) Time derivative before condensation/sublimation of pt. |
---|
38 | ! pdtsrf(ngrid) Time derivative before condensation/sublimation of ptsrf. |
---|
39 | ! pdq(ngrid,nlayer,nq) Time derivative before condensation/sublimation of |
---|
40 | ! |
---|
41 | ! albedo_bareground(ngrid) Albedo of the bare ground. |
---|
42 | ! albedo_co2_ice_SPECTV(L_NSPECTV) Spectral albedo of CO2 ice. |
---|
43 | ! |
---|
44 | ! Outputs |
---|
45 | ! ------- |
---|
46 | ! pdpsrfc(ngrid) \ Contribution of condensation/sublimation |
---|
47 | ! pdtc(ngrid,nlayer) \ to the time derivatives of |
---|
48 | ! pdtsrfc(ngrid) / Surface Pressure, Atmospheric Temperatures, |
---|
49 | ! pdqsurfc(ngrid) / Surface Temperatures, Surface Tracers, |
---|
50 | ! pdqc(ngrid,nlayer,nq) / and Atmospheric Tracers.* |
---|
51 | ! |
---|
52 | ! pemisurf(ngrid) Emissivity of the surface. |
---|
53 | ! |
---|
54 | ! Both |
---|
55 | ! ---- |
---|
56 | ! albedo(ngrid,L_NSPECTV) Spectral albedo of the surface. |
---|
57 | ! |
---|
58 | ! Authors |
---|
59 | ! ------- |
---|
60 | ! Francois Forget (1996) |
---|
61 | ! Converted to Fortran 90 and slightly modified by R. Wordsworth (2009) |
---|
62 | ! Includes simplifed nucleation by J. Leconte (2011) |
---|
63 | ! |
---|
64 | !================================================================== |
---|
65 | |
---|
66 | !-------------------------- |
---|
67 | ! Arguments |
---|
68 | !-------------------------- |
---|
69 | |
---|
70 | |
---|
71 | INTEGER,INTENT(IN) :: ngrid |
---|
72 | INTEGER,INTENT(IN) :: nlayer |
---|
73 | INTEGER,INTENT(IN) :: nq |
---|
74 | REAL,INTENT(IN) :: ptimestep |
---|
75 | REAL,INTENT(IN) :: pcapcal(ngrid) |
---|
76 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) |
---|
77 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) |
---|
78 | REAL,INTENT(IN) :: ptsrf(ngrid) |
---|
79 | REAL,INTENT(IN) :: pt(ngrid,nlayer) |
---|
80 | REAL,INTENT(IN) :: pdt(ngrid,nlayer) |
---|
81 | REAL,INTENT(IN) :: pdtsrf(ngrid) |
---|
82 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) |
---|
83 | REAL,INTENT(IN) :: pqsurf(ngrid,nq) |
---|
84 | REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq) |
---|
85 | REAL,INTENT(IN) :: albedo_bareground(ngrid) |
---|
86 | REAL,INTENT(IN) :: albedo_co2_ice_SPECTV(L_NSPECTV) |
---|
87 | REAL,INTENT(INOUT) :: albedo(ngrid,L_NSPECTV) |
---|
88 | REAL,INTENT(OUT) :: pemisurf(ngrid) |
---|
89 | REAL,INTENT(OUT) :: pdtc(ngrid,nlayer) |
---|
90 | REAL,INTENT(OUT) :: pdtsrfc(ngrid) |
---|
91 | REAL,INTENT(OUT) :: pdpsrfc(ngrid) |
---|
92 | REAL,INTENT(OUT) :: pdqc(ngrid,nlayer,nq) |
---|
93 | REAL,INTENT(OUT) :: pdqsurfc(ngrid) |
---|
94 | |
---|
95 | !------------------------------ |
---|
96 | ! Local variables |
---|
97 | !------------------------------ |
---|
98 | |
---|
99 | INTEGER l,ig,icap,ilay,iq,nw,igas,it |
---|
100 | |
---|
101 | REAL reffrad(ngrid,nlayer) ! Radius (m) of the CO2 ice particles. |
---|
102 | REAL*8 zt(ngrid,nlayer) ! Updated Atmospheric Temperatures (K). |
---|
103 | REAL ztsrf(ngrid) ! Updated Surface Temperatures (K). |
---|
104 | REAL zq(ngrid,nlayer,nq) ! Updated Atmospheric tracers mixing ratios (kg/kg of air). |
---|
105 | REAL piceco2(ngrid) ! Updated Surface Tracer (kg/m2). |
---|
106 | REAL ztcond (ngrid,nlayer) ! Atmospheric Temperatures of condensation of CO2. |
---|
107 | REAL ztnuc (ngrid,nlayer) ! Atmospheric Nucleation Temperatures. |
---|
108 | REAL ztcondsol(ngrid) ! Temperatures of condensation of CO2 at the surface. |
---|
109 | REAL zcondices(ngrid) ! Condensation rate on the ground (kg/m2/s). |
---|
110 | REAL zfallice(ngrid) ! Flux of ice falling on the surface (kg/m2/s). |
---|
111 | REAL Mfallice(ngrid) ! Total amount of ice fallen to the ground during the timestep (kg/m2). |
---|
112 | REAL wq(ngrid,nlayer+1) ! Total amount of ice fallen to the ground during the timestep (kg/m2). |
---|
113 | REAL subptimestep ! Duration of the subtimestep (s) for the sedimentation. |
---|
114 | Integer Ntime ! Number of subtimesteps. |
---|
115 | REAL masse (ngrid,nlayer) ! Mass of atmospheric layers (kg/m2) |
---|
116 | REAL w(ngrid,nlayer,nq) ! |
---|
117 | REAL vstokes,reff ! |
---|
118 | REAL ppco2 ! |
---|
119 | |
---|
120 | |
---|
121 | !------------------------------------------ |
---|
122 | ! Saved local variables |
---|
123 | !------------------------------------------ |
---|
124 | |
---|
125 | |
---|
126 | REAL,SAVE :: latcond=5.9e5 |
---|
127 | REAL,SAVE :: ccond |
---|
128 | REAL,SAVE,ALLOCATABLE,DIMENSION(:) :: emisref |
---|
129 | !$OMP THREADPRIVATE(latcond,ccond,emisref) |
---|
130 | LOGICAL,SAVE :: firstcall=.true. |
---|
131 | !$OMP THREADPRIVATE(firstcall) |
---|
132 | INTEGER,SAVE :: i_co2ice=0 ! co2 ice |
---|
133 | !$OMP THREADPRIVATE(i_co2ice) |
---|
134 | CHARACTER(LEN=20) :: tracername ! to temporarily store text |
---|
135 | |
---|
136 | |
---|
137 | !------------------------------------------------ |
---|
138 | ! Initialization at the first call |
---|
139 | !------------------------------------------------ |
---|
140 | |
---|
141 | |
---|
142 | IF (firstcall) THEN |
---|
143 | |
---|
144 | ALLOCATE(emisref(ngrid)) |
---|
145 | ! Find CO2 ice tracer. |
---|
146 | do iq=1,nq |
---|
147 | tracername=noms(iq) |
---|
148 | if (tracername.eq."co2_ice") then |
---|
149 | i_co2ice=iq |
---|
150 | endif |
---|
151 | enddo |
---|
152 | |
---|
153 | write(*,*) "condense_co2: i_co2ice=",i_co2ice |
---|
154 | |
---|
155 | if((i_co2ice.lt.1))then |
---|
156 | print*,'In condens_cloud but no CO2 ice tracer, exiting.' |
---|
157 | print*,'Still need generalisation to arbitrary species!' |
---|
158 | stop |
---|
159 | endif |
---|
160 | |
---|
161 | ccond=cpp/(g*latcond) |
---|
162 | print*,'In condens_cloud: ccond=',ccond,' latcond=',latcond |
---|
163 | |
---|
164 | ! Prepare special treatment if gas is not pure CO2 |
---|
165 | ! if (addn2) then |
---|
166 | ! m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
---|
167 | ! m_noco2 = 28.02E-3 ! N2 molecular mass (kg/mol) |
---|
168 | ! Compute A and B coefficient use to compute |
---|
169 | ! mean molecular mass Mair defined by |
---|
170 | ! 1/Mair = q(ico2)/m_co2 + (1-q(ico2))/m_noco2 |
---|
171 | ! 1/Mair = A*q(ico2) + B |
---|
172 | ! A = (1/m_co2 - 1/m_noco2) |
---|
173 | ! B = 1/m_noco2 |
---|
174 | ! endif |
---|
175 | |
---|
176 | ! Minimum CO2 mixing ratio below which mixing occurs with layer above : qco2min =0.75 |
---|
177 | |
---|
178 | firstcall=.false. |
---|
179 | ENDIF |
---|
180 | |
---|
181 | |
---|
182 | !------------------------------------------------ |
---|
183 | ! Tendencies initially set to 0 |
---|
184 | !------------------------------------------------ |
---|
185 | |
---|
186 | |
---|
187 | pdqc(1:ngrid,1:nlayer,1:nq) = 0. |
---|
188 | pdtc(1:ngrid,1:nlayer) = 0. |
---|
189 | zq(1:ngrid,1:nlayer,1:nq) = 0. |
---|
190 | zt(1:ngrid,1:nlayer) = 0. |
---|
191 | Mfallice(1:ngrid) = 0. |
---|
192 | zfallice(1:ngrid) = 0. |
---|
193 | zcondices(1:ngrid) = 0. |
---|
194 | pdtsrfc(1:ngrid) = 0. |
---|
195 | pdpsrfc(1:ngrid) = 0. |
---|
196 | pdqsurfc(1:ngrid) = 0. |
---|
197 | |
---|
198 | |
---|
199 | !---------------------------------- |
---|
200 | ! Atmospheric condensation |
---|
201 | !---------------------------------- |
---|
202 | |
---|
203 | |
---|
204 | ! Compute CO2 Volume mixing ratio |
---|
205 | ! ------------------------------- |
---|
206 | ! if (addn2) then |
---|
207 | ! DO l=1,nlayer |
---|
208 | ! DO ig=1,ngrid |
---|
209 | ! qco2=pq(ig,l,ico2)+pdq(ig,l,ico2)*ptimestep |
---|
210 | ! Mean air molecular mass = 1/(q(ico2)/m_co2 + (1-q(ico2))/m_noco2) |
---|
211 | ! mmean=1/(A*qco2 +B) |
---|
212 | ! vmr_co2(ig,l) = qco2*mmean/m_co2 |
---|
213 | ! ENDDO |
---|
214 | ! ENDDO |
---|
215 | ! else |
---|
216 | ! DO l=1,nlayer |
---|
217 | ! DO ig=1,ngrid |
---|
218 | ! vmr_co2(ig,l)=0.5 |
---|
219 | ! ENDDO |
---|
220 | ! ENDDO |
---|
221 | ! end if |
---|
222 | |
---|
223 | |
---|
224 | ! Forecast the atmospheric frost temperature 'ztcond' and nucleation temperature 'ztnuc'. |
---|
225 | DO l=1,nlayer |
---|
226 | DO ig=1,ngrid |
---|
227 | ppco2=gfrac(igas_CO2)*pplay(ig,l) |
---|
228 | call get_tcond_co2(ppco2,ztcond(ig,l)) |
---|
229 | call get_tnuc_co2(ppco2,ztnuc(ig,l)) |
---|
230 | ENDDO |
---|
231 | ENDDO |
---|
232 | |
---|
233 | ! Initialize zq and zt at the beginning of the sub-timestep loop and qsurf. |
---|
234 | DO ig=1,ngrid |
---|
235 | piceco2(ig)=pqsurf(ig,i_co2ice) |
---|
236 | DO l=1,nlayer |
---|
237 | zt(ig,l)=pt(ig,l) |
---|
238 | zq(ig,l,i_co2ice)=pq(ig,l,i_co2ice) |
---|
239 | IF( zq(ig,l,i_co2ice).lt.-1.e-6 ) THEN |
---|
240 | print*,'Uh-oh, zq = ',zq(ig,l,i_co2ice),'at ig,l=',ig,l |
---|
241 | if(l.eq.1)then |
---|
242 | print*,'Perhaps the atmosphere is collapsing on surface...?' |
---|
243 | endif |
---|
244 | END IF |
---|
245 | ENDDO |
---|
246 | ENDDO |
---|
247 | |
---|
248 | ! Calculate the mass of each atmospheric layer (kg.m-2) |
---|
249 | do ilay=1,nlayer |
---|
250 | DO ig=1,ngrid |
---|
251 | masse(ig,ilay)=(pplev(ig,ilay) - pplev(ig,ilay+1)) /g |
---|
252 | end do |
---|
253 | end do |
---|
254 | |
---|
255 | |
---|
256 | !----------------------------------------------------------- |
---|
257 | ! START CONDENSATION/SEDIMENTATION SUB-TIME LOOP |
---|
258 | !----------------------------------------------------------- |
---|
259 | |
---|
260 | |
---|
261 | Ntime = 20 ! number of sub-timestep |
---|
262 | subptimestep = ptimestep/float(Ntime) |
---|
263 | |
---|
264 | ! Add the tendencies from other physical processes at each subtimstep. |
---|
265 | DO it=1,Ntime |
---|
266 | DO l=1,nlayer |
---|
267 | DO ig=1,ngrid |
---|
268 | zt(ig,l) = zt(ig,l) + pdt(ig,l) * subptimestep |
---|
269 | zq(ig,l,i_co2ice) = zq(ig,l,i_co2ice) + pdq(ig,l,i_co2ice) * subptimestep |
---|
270 | END DO |
---|
271 | END DO |
---|
272 | |
---|
273 | ! Gravitational sedimentation starts. |
---|
274 | |
---|
275 | ! Sedimentation computed from radius computed from q in module radii_mod. |
---|
276 | call co2_reffrad(ngrid,nlayer,nq,zq,reffrad) |
---|
277 | |
---|
278 | DO ilay=1,nlayer |
---|
279 | DO ig=1,ngrid |
---|
280 | |
---|
281 | reff = reffrad(ig,ilay) |
---|
282 | |
---|
283 | call stokes & |
---|
284 | (pplev(ig,ilay),pt(ig,ilay), & |
---|
285 | reff,vstokes,rho_co2) |
---|
286 | |
---|
287 | !w(ig,ilay,i_co2ice) = 0.0 |
---|
288 | w(ig,ilay,i_co2ice) = vstokes * subptimestep * & |
---|
289 | pplev(ig,ilay)/(r*pt(ig,ilay)) |
---|
290 | |
---|
291 | END DO |
---|
292 | END DO |
---|
293 | |
---|
294 | ! Computing q after sedimentation |
---|
295 | call vlz_fi(ngrid,nlayer,zq(1,1,i_co2ice),2.,masse,w(1,1,i_co2ice),wq) |
---|
296 | |
---|
297 | |
---|
298 | ! Progressively accumulating the flux to the ground. |
---|
299 | ! Mfallice is the total amount of ice fallen to the ground. |
---|
300 | DO ig=1,ngrid |
---|
301 | Mfallice(ig) = Mfallice(ig) + wq(ig,i_co2ice) |
---|
302 | END DO |
---|
303 | |
---|
304 | !---------------------------------------------------------- |
---|
305 | ! Condensation / sublimation in the atmosphere |
---|
306 | !---------------------------------------------------------- |
---|
307 | ! (MODIFICATIONS FOR EARLY MARS: falling heat neglected, condensation of CO2 into tracer i_co2ice) |
---|
308 | |
---|
309 | |
---|
310 | DO l=nlayer , 1, -1 |
---|
311 | DO ig=1,ngrid |
---|
312 | pdtc(ig,l)=0. |
---|
313 | |
---|
314 | ! ztcond-> ztnuc in test beneath to nucleate only when super saturation occurs(JL 2011) |
---|
315 | IF ((zt(ig,l).LT.ztnuc(ig,l)).or.(zq(ig,l,i_co2ice).gt.1.E-10)) THEN |
---|
316 | pdtc(ig,l) = (ztcond(ig,l) - zt(ig,l))/subptimestep |
---|
317 | pdqc(ig,l,i_co2ice) = pdtc(ig,l)*ccond*g |
---|
318 | |
---|
319 | ! Case when the ice from above sublimes entirely |
---|
320 | IF ((zq(ig,l,i_co2ice).lt.-pdqc(ig,l,i_co2ice)*subptimestep) & |
---|
321 | .AND. (zq(ig,l,i_co2ice).gt.0)) THEN |
---|
322 | |
---|
323 | pdqc(ig,l,i_co2ice) = -zq(ig,l,i_co2ice)/subptimestep |
---|
324 | pdtc(ig,l) =-zq(ig,l,i_co2ice)/(ccond*g*subptimestep) |
---|
325 | |
---|
326 | END IF |
---|
327 | |
---|
328 | ! Temperature and q after condensation |
---|
329 | zt(ig,l) = zt(ig,l) + pdtc(ig,l) * subptimestep |
---|
330 | zq(ig,l,i_co2ice) = zq(ig,l,i_co2ice) + pdqc(ig,l,i_co2ice) * subptimestep |
---|
331 | END IF |
---|
332 | |
---|
333 | ENDDO |
---|
334 | ENDDO |
---|
335 | |
---|
336 | ENDDO! end of subtimestep loop. |
---|
337 | |
---|
338 | ! Computing global tendencies after the subtimestep. |
---|
339 | DO l=1,nlayer |
---|
340 | DO ig=1,ngrid |
---|
341 | pdtc(ig,l) = & |
---|
342 | (zt(ig,l) - (pt(ig,l) + pdt(ig,l)*ptimestep))/ptimestep |
---|
343 | pdqc(ig,l,i_co2ice) = & |
---|
344 | (zq(ig,l,i_co2ice)-(pq(ig,l,i_co2ice)+pdq(ig,l,i_co2ice)*ptimestep))/ptimestep |
---|
345 | END DO |
---|
346 | END DO |
---|
347 | DO ig=1,ngrid |
---|
348 | zfallice(ig) = Mfallice(ig)/ptimestep |
---|
349 | END DO |
---|
350 | |
---|
351 | |
---|
352 | !----------------------------------------------------------------------- |
---|
353 | ! Condensation/sublimation on the ground |
---|
354 | !----------------------------------------------------------------------- |
---|
355 | |
---|
356 | |
---|
357 | ! Forecast of ground temperature ztsrf and frost temperature ztcondsol. |
---|
358 | DO ig=1,ngrid |
---|
359 | ppco2=gfrac(igas_CO2)*pplay(ig,1) |
---|
360 | call get_tcond_co2(ppco2,ztcondsol(ig)) |
---|
361 | |
---|
362 | ztsrf(ig) = ptsrf(ig) |
---|
363 | |
---|
364 | if((ztsrf(ig).le.ztcondsol(ig)+2.0).and.(ngrid.eq.1))then |
---|
365 | print*,'CO2 is condensing on the surface in 1D. This atmosphere is doomed.' |
---|
366 | print*,'T_surf = ',ztsrf,'K' |
---|
367 | print*,'T_cond = ',ztcondsol,'K' |
---|
368 | open(116,file='surf_vals.out') |
---|
369 | write(116,*) 0.0, pplev(1,1), 0.0, 0.0 |
---|
370 | close(116) |
---|
371 | call abort |
---|
372 | endif |
---|
373 | |
---|
374 | ztsrf(ig) = ptsrf(ig) + pdtsrf(ig)*ptimestep |
---|
375 | |
---|
376 | ENDDO |
---|
377 | |
---|
378 | DO ig=1,ngrid |
---|
379 | |
---|
380 | IF(ig.GT.ngrid/2+1) THEN |
---|
381 | icap=2 |
---|
382 | ELSE |
---|
383 | icap=1 |
---|
384 | ENDIF |
---|
385 | |
---|
386 | ! Loop over where we have condensation / sublimation |
---|
387 | IF ((ztsrf(ig) .LT. ztcondsol(ig)) .OR. & ! ground condensation |
---|
388 | (zfallice(ig).NE.0.) .OR. & ! falling snow |
---|
389 | ((ztsrf(ig) .GT. ztcondsol(ig)) .AND. & ! ground sublimation |
---|
390 | ((piceco2(ig)+zfallice(ig)*ptimestep) .NE. 0.))) THEN |
---|
391 | |
---|
392 | |
---|
393 | ! Condensation or partial sublimation of CO2 ice |
---|
394 | zcondices(ig)=pcapcal(ig)*(ztcondsol(ig)-ztsrf(ig)) & |
---|
395 | /(latcond*ptimestep) |
---|
396 | pdtsrfc(ig) = (ztcondsol(ig) - ztsrf(ig))/ptimestep |
---|
397 | |
---|
398 | ! If the entire CO_2 ice layer sublimes |
---|
399 | ! (including what has just condensed in the atmosphere) |
---|
400 | IF((piceco2(ig)/ptimestep+zfallice(ig)).LE. & |
---|
401 | -zcondices(ig))THEN |
---|
402 | zcondices(ig) = -piceco2(ig)/ptimestep - zfallice(ig) |
---|
403 | pdtsrfc(ig)=(latcond/pcapcal(ig))* & |
---|
404 | (zcondices(ig)) |
---|
405 | END IF |
---|
406 | |
---|
407 | ! Changing CO2 ice amount and pressure |
---|
408 | piceco2(ig) = piceco2(ig) + pdqsurfc(ig)*ptimestep |
---|
409 | pdqsurfc(ig) = zcondices(ig) + zfallice(ig) |
---|
410 | pdpsrfc(ig) = -pdqsurfc(ig)*g |
---|
411 | |
---|
412 | IF(ABS(pdpsrfc(ig)*ptimestep).GT.pplev(ig,1)) THEN |
---|
413 | PRINT*,'STOP in condens in condense_co2' |
---|
414 | PRINT*,'condensing more than total mass' |
---|
415 | PRINT*,'Grid point ',ig |
---|
416 | PRINT*,'Ps = ',pplev(ig,1) |
---|
417 | PRINT*,'d Ps = ',pdpsrfc(ig) |
---|
418 | STOP |
---|
419 | ENDIF |
---|
420 | END IF |
---|
421 | |
---|
422 | ENDDO ! end of ngrid loop. |
---|
423 | |
---|
424 | |
---|
425 | !--------------------------------------------------------------------------------------------- |
---|
426 | ! Surface albedo and emissivity of the ground below the snow (emisref) |
---|
427 | !--------------------------------------------------------------------------------------------- |
---|
428 | |
---|
429 | |
---|
430 | DO ig=1,ngrid |
---|
431 | |
---|
432 | IF(lati(ig).LT.0.) THEN |
---|
433 | icap=2 ! Southern Hemisphere |
---|
434 | ELSE |
---|
435 | icap=1 ! Nortnern hemisphere |
---|
436 | ENDIF |
---|
437 | |
---|
438 | if(.not.piceco2(ig).ge.0.) THEN |
---|
439 | if(piceco2(ig).le.-1.e-8) print*, & |
---|
440 | 'WARNING : in condense_co2cloud: piceco2(',ig,')=', piceco2(ig) |
---|
441 | piceco2(ig)=0. |
---|
442 | endif |
---|
443 | if (piceco2(ig) .gt. 1.) then ! CO2 Albedo condition changed to ~1 mm coverage. Change by MT2015. |
---|
444 | DO nw=1,L_NSPECTV |
---|
445 | albedo(ig,nw) = albedo_co2_ice_SPECTV(nw) |
---|
446 | ENDDO |
---|
447 | emisref(ig) = emisice(icap) |
---|
448 | else |
---|
449 | DO nw=1,L_NSPECTV |
---|
450 | albedo(ig,nw) = albedo_bareground(ig) ! Note : If you have some water, it will be taken into account in the "hydrol" routine. |
---|
451 | ENDDO |
---|
452 | emisref(ig) = emissiv |
---|
453 | pemisurf(ig) = emissiv |
---|
454 | end if |
---|
455 | |
---|
456 | END DO |
---|
457 | |
---|
458 | return |
---|
459 | |
---|
460 | end subroutine condense_co2 |
---|
461 | |
---|
462 | |
---|
463 | |
---|
464 | !------------------------------------------------------------------------- |
---|
465 | !------------------------------------------------------------------------- |
---|
466 | !------------------------------------------------------------------------- |
---|
467 | !------------------------------------------------------------------------- |
---|
468 | !------------------------------------------------------------------------- |
---|
469 | !------------------------------------------------------------------------- |
---|
470 | |
---|
471 | |
---|
472 | |
---|
473 | subroutine get_tcond_co2(p,tcond) ! Calculates the condensation temperature for CO2 |
---|
474 | |
---|
475 | |
---|
476 | implicit none |
---|
477 | |
---|
478 | real p, peff, tcond |
---|
479 | real, parameter :: ptriple=518000.0 |
---|
480 | |
---|
481 | peff=p |
---|
482 | |
---|
483 | if(peff.lt.ptriple) then |
---|
484 | tcond = (-3167.8)/(log(.01*peff)-23.23) ! Fanale's formula. |
---|
485 | else |
---|
486 | tcond = 684.2-92.3*log(peff)+4.32*log(peff)**2 ! liquid-vapour transition (based on CRC handbook 2003 data) |
---|
487 | endif |
---|
488 | return |
---|
489 | |
---|
490 | end subroutine get_tcond_co2 |
---|
491 | |
---|
492 | |
---|
493 | |
---|
494 | !------------------------------------------------------------------------- |
---|
495 | !------------------------------------------------------------------------- |
---|
496 | !------------------------------------------------------------------------- |
---|
497 | !------------------------------------------------------------------------- |
---|
498 | !------------------------------------------------------------------------- |
---|
499 | !------------------------------------------------------------------------- |
---|
500 | |
---|
501 | |
---|
502 | |
---|
503 | subroutine get_tnuc_co2(p,tnuc) |
---|
504 | ! Calculates the nucleation temperature for CO2, based on a simple super saturation criterion. JL 2011. |
---|
505 | |
---|
506 | use callkeys_mod, only: co2supsat |
---|
507 | |
---|
508 | implicit none |
---|
509 | |
---|
510 | real p, peff, tnuc |
---|
511 | real, parameter :: ptriple=518000.0 |
---|
512 | |
---|
513 | peff=p/co2supsat |
---|
514 | |
---|
515 | if(peff.lt.ptriple) then |
---|
516 | tnuc = (-3167.8)/(log(.01*peff)-23.23) ! Fanale's formula |
---|
517 | else |
---|
518 | tnuc = 684.2-92.3*log(peff)+4.32*log(peff)**2 |
---|
519 | ! liquid-vapour transition (based on CRC handbook 2003 data) |
---|
520 | endif |
---|
521 | |
---|
522 | return |
---|
523 | |
---|
524 | end subroutine get_tnuc_co2 |
---|