[1477] | 1 | subroutine condense_co2(ngrid,nlayer,nq,ptimestep, & |
---|
[1482] | 2 | pcapcal,pplay,pplev,ptsrf,pt, & |
---|
[1485] | 3 | pdt,pdtsrf,pq,pdq, & |
---|
| 4 | pqsurf,pdqsurfc,albedo,pemisurf, & |
---|
[1482] | 5 | albedo_bareground,albedo_co2_ice_SPECTV, & |
---|
[1485] | 6 | pdtc,pdtsrfc,pdpsrfc,pdqc) |
---|
[305] | 7 | |
---|
[2972] | 8 | use radinc_h, only : L_NSPECTV |
---|
[1216] | 9 | use gases_h, only: gfrac, igas_co2 |
---|
[728] | 10 | use radii_mod, only : co2_reffrad |
---|
| 11 | use aerosol_mod, only : iaero_co2 |
---|
[1482] | 12 | USE surfdat_h, only: emisice, emissiv |
---|
[1543] | 13 | USE geometry_mod, only: latitude ! in radians |
---|
[1216] | 14 | USE tracer_h, only: noms, rho_co2 |
---|
[1384] | 15 | use comcstfi_mod, only: g, r, cpp |
---|
[305] | 16 | |
---|
| 17 | implicit none |
---|
| 18 | |
---|
| 19 | !================================================================== |
---|
| 20 | ! Purpose |
---|
| 21 | ! ------- |
---|
[1485] | 22 | ! Condense and/or sublime CO2 ice on the ground and in the atmosphere, and sediment the ice. |
---|
[305] | 23 | ! |
---|
| 24 | ! Inputs |
---|
| 25 | ! ------ |
---|
[1485] | 26 | ! ngrid Number of vertical columns. |
---|
| 27 | ! nlayer Number of vertical layers. |
---|
| 28 | ! nq Number of tracers. |
---|
| 29 | ! ptimestep Duration of the physical timestep (s). |
---|
| 30 | ! pplay(ngrid,nlayer) Pressure layers (Pa). |
---|
| 31 | ! pplev(ngrid,nlayer+1) Pressure levels (Pa). |
---|
| 32 | ! pt(ngrid,nlayer) Atmospheric Temperatures (K). |
---|
| 33 | ! ptsrf(ngrid) Surface temperatures (K). |
---|
| 34 | ! pq(ngrid,nlayer,nq) Atmospheric tracers mixing ratios (kg/kg of air). |
---|
| 35 | ! pqsurf(ngrid,nq) Surface tracers (kg/m2). |
---|
[305] | 36 | ! |
---|
[1485] | 37 | ! pdt(ngrid,nlayer) Time derivative before condensation/sublimation of pt. |
---|
| 38 | ! pdtsrf(ngrid) Time derivative before condensation/sublimation of ptsrf. |
---|
| 39 | ! pdq(ngrid,nlayer,nq) Time derivative before condensation/sublimation of |
---|
| 40 | ! |
---|
| 41 | ! albedo_bareground(ngrid) Albedo of the bare ground. |
---|
| 42 | ! albedo_co2_ice_SPECTV(L_NSPECTV) Spectral albedo of CO2 ice. |
---|
[305] | 43 | ! |
---|
| 44 | ! Outputs |
---|
| 45 | ! ------- |
---|
[1485] | 46 | ! pdpsrfc(ngrid) \ Contribution of condensation/sublimation |
---|
| 47 | ! pdtc(ngrid,nlayer) \ to the time derivatives of |
---|
| 48 | ! pdtsrfc(ngrid) / Surface Pressure, Atmospheric Temperatures, |
---|
| 49 | ! pdqsurfc(ngrid) / Surface Temperatures, Surface Tracers, |
---|
| 50 | ! pdqc(ngrid,nlayer,nq) / and Atmospheric Tracers.* |
---|
| 51 | ! |
---|
| 52 | ! pemisurf(ngrid) Emissivity of the surface. |
---|
[305] | 53 | ! |
---|
| 54 | ! Both |
---|
| 55 | ! ---- |
---|
[1485] | 56 | ! albedo(ngrid,L_NSPECTV) Spectral albedo of the surface. |
---|
[305] | 57 | ! |
---|
| 58 | ! Authors |
---|
| 59 | ! ------- |
---|
| 60 | ! Francois Forget (1996) |
---|
| 61 | ! Converted to Fortran 90 and slightly modified by R. Wordsworth (2009) |
---|
[526] | 62 | ! Includes simplifed nucleation by J. Leconte (2011) |
---|
[305] | 63 | ! |
---|
| 64 | !================================================================== |
---|
| 65 | |
---|
[1485] | 66 | !-------------------------- |
---|
| 67 | ! Arguments |
---|
| 68 | !-------------------------- |
---|
[305] | 69 | |
---|
[1485] | 70 | |
---|
[858] | 71 | INTEGER,INTENT(IN) :: ngrid |
---|
| 72 | INTEGER,INTENT(IN) :: nlayer |
---|
| 73 | INTEGER,INTENT(IN) :: nq |
---|
| 74 | REAL,INTENT(IN) :: ptimestep |
---|
| 75 | REAL,INTENT(IN) :: pcapcal(ngrid) |
---|
| 76 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) |
---|
| 77 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) |
---|
| 78 | REAL,INTENT(IN) :: ptsrf(ngrid) |
---|
| 79 | REAL,INTENT(IN) :: pt(ngrid,nlayer) |
---|
| 80 | REAL,INTENT(IN) :: pdt(ngrid,nlayer) |
---|
| 81 | REAL,INTENT(IN) :: pdtsrf(ngrid) |
---|
| 82 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) |
---|
[1485] | 83 | REAL,INTENT(IN) :: pqsurf(ngrid,nq) |
---|
[858] | 84 | REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq) |
---|
[1482] | 85 | REAL,INTENT(IN) :: albedo_bareground(ngrid) |
---|
| 86 | REAL,INTENT(IN) :: albedo_co2_ice_SPECTV(L_NSPECTV) |
---|
[1485] | 87 | REAL,INTENT(INOUT) :: albedo(ngrid,L_NSPECTV) |
---|
[858] | 88 | REAL,INTENT(OUT) :: pemisurf(ngrid) |
---|
| 89 | REAL,INTENT(OUT) :: pdtc(ngrid,nlayer) |
---|
| 90 | REAL,INTENT(OUT) :: pdtsrfc(ngrid) |
---|
[1485] | 91 | REAL,INTENT(OUT) :: pdpsrfc(ngrid) |
---|
[858] | 92 | REAL,INTENT(OUT) :: pdqc(ngrid,nlayer,nq) |
---|
[1484] | 93 | REAL,INTENT(OUT) :: pdqsurfc(ngrid) |
---|
[305] | 94 | |
---|
[1485] | 95 | !------------------------------ |
---|
| 96 | ! Local variables |
---|
| 97 | !------------------------------ |
---|
[305] | 98 | |
---|
[1485] | 99 | INTEGER l,ig,icap,ilay,iq,nw,igas,it |
---|
[305] | 100 | |
---|
[1485] | 101 | REAL reffrad(ngrid,nlayer) ! Radius (m) of the CO2 ice particles. |
---|
| 102 | REAL*8 zt(ngrid,nlayer) ! Updated Atmospheric Temperatures (K). |
---|
| 103 | REAL ztsrf(ngrid) ! Updated Surface Temperatures (K). |
---|
| 104 | REAL zq(ngrid,nlayer,nq) ! Updated Atmospheric tracers mixing ratios (kg/kg of air). |
---|
| 105 | REAL piceco2(ngrid) ! Updated Surface Tracer (kg/m2). |
---|
| 106 | REAL ztcond (ngrid,nlayer) ! Atmospheric Temperatures of condensation of CO2. |
---|
| 107 | REAL ztnuc (ngrid,nlayer) ! Atmospheric Nucleation Temperatures. |
---|
| 108 | REAL ztcondsol(ngrid) ! Temperatures of condensation of CO2 at the surface. |
---|
| 109 | REAL zcondices(ngrid) ! Condensation rate on the ground (kg/m2/s). |
---|
| 110 | REAL zfallice(ngrid) ! Flux of ice falling on the surface (kg/m2/s). |
---|
| 111 | REAL Mfallice(ngrid) ! Total amount of ice fallen to the ground during the timestep (kg/m2). |
---|
| 112 | REAL wq(ngrid,nlayer+1) ! Total amount of ice fallen to the ground during the timestep (kg/m2). |
---|
| 113 | REAL subptimestep ! Duration of the subtimestep (s) for the sedimentation. |
---|
| 114 | Integer Ntime ! Number of subtimesteps. |
---|
| 115 | REAL masse (ngrid,nlayer) ! Mass of atmospheric layers (kg/m2) |
---|
| 116 | REAL w(ngrid,nlayer,nq) ! |
---|
| 117 | REAL vstokes,reff ! |
---|
| 118 | REAL ppco2 ! |
---|
[305] | 119 | |
---|
| 120 | |
---|
[1485] | 121 | !------------------------------------------ |
---|
| 122 | ! Saved local variables |
---|
| 123 | !------------------------------------------ |
---|
[305] | 124 | |
---|
[1485] | 125 | |
---|
[858] | 126 | REAL,SAVE :: latcond=5.9e5 |
---|
| 127 | REAL,SAVE :: ccond |
---|
[787] | 128 | REAL,SAVE,ALLOCATABLE,DIMENSION(:) :: emisref |
---|
[1485] | 129 | !$OMP THREADPRIVATE(latcond,ccond,emisref) |
---|
[858] | 130 | LOGICAL,SAVE :: firstcall=.true. |
---|
[1315] | 131 | !$OMP THREADPRIVATE(firstcall) |
---|
[305] | 132 | INTEGER,SAVE :: i_co2ice=0 ! co2 ice |
---|
[1315] | 133 | !$OMP THREADPRIVATE(i_co2ice) |
---|
[305] | 134 | CHARACTER(LEN=20) :: tracername ! to temporarily store text |
---|
| 135 | |
---|
| 136 | |
---|
[1485] | 137 | !------------------------------------------------ |
---|
| 138 | ! Initialization at the first call |
---|
| 139 | !------------------------------------------------ |
---|
[305] | 140 | |
---|
| 141 | |
---|
| 142 | IF (firstcall) THEN |
---|
| 143 | |
---|
[1485] | 144 | ALLOCATE(emisref(ngrid)) |
---|
| 145 | ! Find CO2 ice tracer. |
---|
[787] | 146 | do iq=1,nq |
---|
[305] | 147 | tracername=noms(iq) |
---|
| 148 | if (tracername.eq."co2_ice") then |
---|
| 149 | i_co2ice=iq |
---|
| 150 | endif |
---|
| 151 | enddo |
---|
| 152 | |
---|
[1485] | 153 | write(*,*) "condense_co2: i_co2ice=",i_co2ice |
---|
[305] | 154 | |
---|
[1485] | 155 | if((i_co2ice.lt.1))then |
---|
| 156 | print*,'In condens_cloud but no CO2 ice tracer, exiting.' |
---|
| 157 | print*,'Still need generalisation to arbitrary species!' |
---|
| 158 | stop |
---|
| 159 | endif |
---|
[305] | 160 | |
---|
| 161 | ccond=cpp/(g*latcond) |
---|
[486] | 162 | print*,'In condens_cloud: ccond=',ccond,' latcond=',latcond |
---|
[305] | 163 | |
---|
[1485] | 164 | ! Prepare special treatment if gas is not pure CO2 |
---|
| 165 | ! if (addn2) then |
---|
| 166 | ! m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
---|
| 167 | ! m_noco2 = 28.02E-3 ! N2 molecular mass (kg/mol) |
---|
| 168 | ! Compute A and B coefficient use to compute |
---|
| 169 | ! mean molecular mass Mair defined by |
---|
| 170 | ! 1/Mair = q(ico2)/m_co2 + (1-q(ico2))/m_noco2 |
---|
| 171 | ! 1/Mair = A*q(ico2) + B |
---|
| 172 | ! A = (1/m_co2 - 1/m_noco2) |
---|
| 173 | ! B = 1/m_noco2 |
---|
| 174 | ! endif |
---|
[305] | 175 | |
---|
[1485] | 176 | ! Minimum CO2 mixing ratio below which mixing occurs with layer above : qco2min =0.75 |
---|
[305] | 177 | |
---|
| 178 | firstcall=.false. |
---|
| 179 | ENDIF |
---|
| 180 | |
---|
| 181 | |
---|
[1485] | 182 | !------------------------------------------------ |
---|
| 183 | ! Tendencies initially set to 0 |
---|
| 184 | !------------------------------------------------ |
---|
[305] | 185 | |
---|
[1485] | 186 | |
---|
| 187 | pdqc(1:ngrid,1:nlayer,1:nq) = 0. |
---|
| 188 | pdtc(1:ngrid,1:nlayer) = 0. |
---|
| 189 | zq(1:ngrid,1:nlayer,1:nq) = 0. |
---|
| 190 | zt(1:ngrid,1:nlayer) = 0. |
---|
| 191 | Mfallice(1:ngrid) = 0. |
---|
| 192 | zfallice(1:ngrid) = 0. |
---|
| 193 | zcondices(1:ngrid) = 0. |
---|
| 194 | pdtsrfc(1:ngrid) = 0. |
---|
| 195 | pdpsrfc(1:ngrid) = 0. |
---|
| 196 | pdqsurfc(1:ngrid) = 0. |
---|
| 197 | |
---|
| 198 | |
---|
| 199 | !---------------------------------- |
---|
[305] | 200 | ! Atmospheric condensation |
---|
[1485] | 201 | !---------------------------------- |
---|
[305] | 202 | |
---|
| 203 | |
---|
| 204 | ! Compute CO2 Volume mixing ratio |
---|
| 205 | ! ------------------------------- |
---|
| 206 | ! if (addn2) then |
---|
| 207 | ! DO l=1,nlayer |
---|
| 208 | ! DO ig=1,ngrid |
---|
| 209 | ! qco2=pq(ig,l,ico2)+pdq(ig,l,ico2)*ptimestep |
---|
[1485] | 210 | ! Mean air molecular mass = 1/(q(ico2)/m_co2 + (1-q(ico2))/m_noco2) |
---|
[305] | 211 | ! mmean=1/(A*qco2 +B) |
---|
| 212 | ! vmr_co2(ig,l) = qco2*mmean/m_co2 |
---|
| 213 | ! ENDDO |
---|
| 214 | ! ENDDO |
---|
| 215 | ! else |
---|
| 216 | ! DO l=1,nlayer |
---|
| 217 | ! DO ig=1,ngrid |
---|
| 218 | ! vmr_co2(ig,l)=0.5 |
---|
| 219 | ! ENDDO |
---|
| 220 | ! ENDDO |
---|
| 221 | ! end if |
---|
| 222 | |
---|
[1485] | 223 | |
---|
| 224 | ! Forecast the atmospheric frost temperature 'ztcond' and nucleation temperature 'ztnuc'. |
---|
[305] | 225 | DO l=1,nlayer |
---|
| 226 | DO ig=1,ngrid |
---|
[869] | 227 | ppco2=gfrac(igas_CO2)*pplay(ig,l) |
---|
[305] | 228 | call get_tcond_co2(ppco2,ztcond(ig,l)) |
---|
[526] | 229 | call get_tnuc_co2(ppco2,ztnuc(ig,l)) |
---|
[305] | 230 | ENDDO |
---|
| 231 | ENDDO |
---|
| 232 | |
---|
[1485] | 233 | ! Initialize zq and zt at the beginning of the sub-timestep loop and qsurf. |
---|
| 234 | DO ig=1,ngrid |
---|
| 235 | piceco2(ig)=pqsurf(ig,i_co2ice) |
---|
| 236 | DO l=1,nlayer |
---|
[305] | 237 | zt(ig,l)=pt(ig,l) |
---|
| 238 | zq(ig,l,i_co2ice)=pq(ig,l,i_co2ice) |
---|
| 239 | IF( zq(ig,l,i_co2ice).lt.-1.e-6 ) THEN |
---|
| 240 | print*,'Uh-oh, zq = ',zq(ig,l,i_co2ice),'at ig,l=',ig,l |
---|
| 241 | if(l.eq.1)then |
---|
| 242 | print*,'Perhaps the atmosphere is collapsing on surface...?' |
---|
| 243 | endif |
---|
| 244 | END IF |
---|
| 245 | ENDDO |
---|
| 246 | ENDDO |
---|
| 247 | |
---|
[1485] | 248 | ! Calculate the mass of each atmospheric layer (kg.m-2) |
---|
[305] | 249 | do ilay=1,nlayer |
---|
[787] | 250 | DO ig=1,ngrid |
---|
[305] | 251 | masse(ig,ilay)=(pplev(ig,ilay) - pplev(ig,ilay+1)) /g |
---|
| 252 | end do |
---|
| 253 | end do |
---|
| 254 | |
---|
[1485] | 255 | |
---|
| 256 | !----------------------------------------------------------- |
---|
[305] | 257 | ! START CONDENSATION/SEDIMENTATION SUB-TIME LOOP |
---|
[1485] | 258 | !----------------------------------------------------------- |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | Ntime = 20 ! number of sub-timestep |
---|
[305] | 262 | subptimestep = ptimestep/float(Ntime) |
---|
| 263 | |
---|
[1485] | 264 | ! Add the tendencies from other physical processes at each subtimstep. |
---|
[305] | 265 | DO it=1,Ntime |
---|
| 266 | DO l=1,nlayer |
---|
| 267 | DO ig=1,ngrid |
---|
| 268 | zt(ig,l) = zt(ig,l) + pdt(ig,l) * subptimestep |
---|
| 269 | zq(ig,l,i_co2ice) = zq(ig,l,i_co2ice) + pdq(ig,l,i_co2ice) * subptimestep |
---|
| 270 | END DO |
---|
| 271 | END DO |
---|
| 272 | |
---|
[1485] | 273 | ! Gravitational sedimentation starts. |
---|
[305] | 274 | |
---|
[1485] | 275 | ! Sedimentation computed from radius computed from q in module radii_mod. |
---|
[1308] | 276 | call co2_reffrad(ngrid,nlayer,nq,zq,reffrad) |
---|
[728] | 277 | |
---|
[1485] | 278 | DO ilay=1,nlayer |
---|
[787] | 279 | DO ig=1,ngrid |
---|
[305] | 280 | |
---|
[858] | 281 | reff = reffrad(ig,ilay) |
---|
[305] | 282 | |
---|
| 283 | call stokes & |
---|
| 284 | (pplev(ig,ilay),pt(ig,ilay), & |
---|
| 285 | reff,vstokes,rho_co2) |
---|
| 286 | |
---|
| 287 | !w(ig,ilay,i_co2ice) = 0.0 |
---|
| 288 | w(ig,ilay,i_co2ice) = vstokes * subptimestep * & |
---|
| 289 | pplev(ig,ilay)/(r*pt(ig,ilay)) |
---|
| 290 | |
---|
[1485] | 291 | END DO |
---|
| 292 | END DO |
---|
[305] | 293 | |
---|
[1485] | 294 | ! Computing q after sedimentation |
---|
[1308] | 295 | call vlz_fi(ngrid,nlayer,zq(1,1,i_co2ice),2.,masse,w(1,1,i_co2ice),wq) |
---|
[305] | 296 | |
---|
| 297 | |
---|
[1485] | 298 | ! Progressively accumulating the flux to the ground. |
---|
| 299 | ! Mfallice is the total amount of ice fallen to the ground. |
---|
[787] | 300 | DO ig=1,ngrid |
---|
[305] | 301 | Mfallice(ig) = Mfallice(ig) + wq(ig,i_co2ice) |
---|
[1485] | 302 | END DO |
---|
[305] | 303 | |
---|
[1485] | 304 | !---------------------------------------------------------- |
---|
| 305 | ! Condensation / sublimation in the atmosphere |
---|
| 306 | !---------------------------------------------------------- |
---|
| 307 | ! (MODIFICATIONS FOR EARLY MARS: falling heat neglected, condensation of CO2 into tracer i_co2ice) |
---|
[305] | 308 | |
---|
| 309 | |
---|
| 310 | DO l=nlayer , 1, -1 |
---|
| 311 | DO ig=1,ngrid |
---|
| 312 | pdtc(ig,l)=0. |
---|
| 313 | |
---|
[1485] | 314 | ! ztcond-> ztnuc in test beneath to nucleate only when super saturation occurs(JL 2011) |
---|
[526] | 315 | IF ((zt(ig,l).LT.ztnuc(ig,l)).or.(zq(ig,l,i_co2ice).gt.1.E-10)) THEN |
---|
[305] | 316 | pdtc(ig,l) = (ztcond(ig,l) - zt(ig,l))/subptimestep |
---|
| 317 | pdqc(ig,l,i_co2ice) = pdtc(ig,l)*ccond*g |
---|
| 318 | |
---|
[1485] | 319 | ! Case when the ice from above sublimes entirely |
---|
[305] | 320 | IF ((zq(ig,l,i_co2ice).lt.-pdqc(ig,l,i_co2ice)*subptimestep) & |
---|
| 321 | .AND. (zq(ig,l,i_co2ice).gt.0)) THEN |
---|
| 322 | |
---|
| 323 | pdqc(ig,l,i_co2ice) = -zq(ig,l,i_co2ice)/subptimestep |
---|
| 324 | pdtc(ig,l) =-zq(ig,l,i_co2ice)/(ccond*g*subptimestep) |
---|
| 325 | |
---|
| 326 | END IF |
---|
| 327 | |
---|
[1485] | 328 | ! Temperature and q after condensation |
---|
[305] | 329 | zt(ig,l) = zt(ig,l) + pdtc(ig,l) * subptimestep |
---|
| 330 | zq(ig,l,i_co2ice) = zq(ig,l,i_co2ice) + pdqc(ig,l,i_co2ice) * subptimestep |
---|
| 331 | END IF |
---|
| 332 | |
---|
| 333 | ENDDO |
---|
| 334 | ENDDO |
---|
[1485] | 335 | |
---|
| 336 | ENDDO! end of subtimestep loop. |
---|
[305] | 337 | |
---|
[1485] | 338 | ! Computing global tendencies after the subtimestep. |
---|
[305] | 339 | DO l=1,nlayer |
---|
| 340 | DO ig=1,ngrid |
---|
| 341 | pdtc(ig,l) = & |
---|
| 342 | (zt(ig,l) - (pt(ig,l) + pdt(ig,l)*ptimestep))/ptimestep |
---|
| 343 | pdqc(ig,l,i_co2ice) = & |
---|
| 344 | (zq(ig,l,i_co2ice)-(pq(ig,l,i_co2ice)+pdq(ig,l,i_co2ice)*ptimestep))/ptimestep |
---|
| 345 | END DO |
---|
| 346 | END DO |
---|
| 347 | DO ig=1,ngrid |
---|
| 348 | zfallice(ig) = Mfallice(ig)/ptimestep |
---|
| 349 | END DO |
---|
| 350 | |
---|
| 351 | |
---|
| 352 | !----------------------------------------------------------------------- |
---|
[1485] | 353 | ! Condensation/sublimation on the ground |
---|
| 354 | !----------------------------------------------------------------------- |
---|
[305] | 355 | |
---|
[1485] | 356 | |
---|
| 357 | ! Forecast of ground temperature ztsrf and frost temperature ztcondsol. |
---|
[305] | 358 | DO ig=1,ngrid |
---|
[869] | 359 | ppco2=gfrac(igas_CO2)*pplay(ig,1) |
---|
[305] | 360 | call get_tcond_co2(ppco2,ztcondsol(ig)) |
---|
| 361 | |
---|
| 362 | ztsrf(ig) = ptsrf(ig) |
---|
| 363 | |
---|
| 364 | if((ztsrf(ig).le.ztcondsol(ig)+2.0).and.(ngrid.eq.1))then |
---|
| 365 | print*,'CO2 is condensing on the surface in 1D. This atmosphere is doomed.' |
---|
| 366 | print*,'T_surf = ',ztsrf,'K' |
---|
| 367 | print*,'T_cond = ',ztcondsol,'K' |
---|
| 368 | open(116,file='surf_vals.out') |
---|
| 369 | write(116,*) 0.0, pplev(1,1), 0.0, 0.0 |
---|
| 370 | close(116) |
---|
| 371 | call abort |
---|
| 372 | endif |
---|
| 373 | |
---|
| 374 | ztsrf(ig) = ptsrf(ig) + pdtsrf(ig)*ptimestep |
---|
| 375 | |
---|
| 376 | ENDDO |
---|
| 377 | |
---|
| 378 | DO ig=1,ngrid |
---|
[1485] | 379 | |
---|
[305] | 380 | IF(ig.GT.ngrid/2+1) THEN |
---|
| 381 | icap=2 |
---|
| 382 | ELSE |
---|
| 383 | icap=1 |
---|
| 384 | ENDIF |
---|
| 385 | |
---|
[1485] | 386 | ! Loop over where we have condensation / sublimation |
---|
[305] | 387 | IF ((ztsrf(ig) .LT. ztcondsol(ig)) .OR. & ! ground condensation |
---|
| 388 | (zfallice(ig).NE.0.) .OR. & ! falling snow |
---|
| 389 | ((ztsrf(ig) .GT. ztcondsol(ig)) .AND. & ! ground sublimation |
---|
| 390 | ((piceco2(ig)+zfallice(ig)*ptimestep) .NE. 0.))) THEN |
---|
| 391 | |
---|
[1485] | 392 | |
---|
| 393 | ! Condensation or partial sublimation of CO2 ice |
---|
[305] | 394 | zcondices(ig)=pcapcal(ig)*(ztcondsol(ig)-ztsrf(ig)) & |
---|
| 395 | /(latcond*ptimestep) |
---|
| 396 | pdtsrfc(ig) = (ztcondsol(ig) - ztsrf(ig))/ptimestep |
---|
| 397 | |
---|
[1485] | 398 | ! If the entire CO_2 ice layer sublimes |
---|
| 399 | ! (including what has just condensed in the atmosphere) |
---|
[305] | 400 | IF((piceco2(ig)/ptimestep+zfallice(ig)).LE. & |
---|
| 401 | -zcondices(ig))THEN |
---|
| 402 | zcondices(ig) = -piceco2(ig)/ptimestep - zfallice(ig) |
---|
| 403 | pdtsrfc(ig)=(latcond/pcapcal(ig))* & |
---|
| 404 | (zcondices(ig)) |
---|
| 405 | END IF |
---|
| 406 | |
---|
[1485] | 407 | ! Changing CO2 ice amount and pressure |
---|
| 408 | piceco2(ig) = piceco2(ig) + pdqsurfc(ig)*ptimestep |
---|
| 409 | pdqsurfc(ig) = zcondices(ig) + zfallice(ig) |
---|
| 410 | pdpsrfc(ig) = -pdqsurfc(ig)*g |
---|
[305] | 411 | |
---|
[1485] | 412 | IF(ABS(pdpsrfc(ig)*ptimestep).GT.pplev(ig,1)) THEN |
---|
[1526] | 413 | PRINT*,'STOP in condens in condense_co2' |
---|
[305] | 414 | PRINT*,'condensing more than total mass' |
---|
| 415 | PRINT*,'Grid point ',ig |
---|
| 416 | PRINT*,'Ps = ',pplev(ig,1) |
---|
[1485] | 417 | PRINT*,'d Ps = ',pdpsrfc(ig) |
---|
[305] | 418 | STOP |
---|
| 419 | ENDIF |
---|
| 420 | END IF |
---|
[1485] | 421 | |
---|
| 422 | ENDDO ! end of ngrid loop. |
---|
[305] | 423 | |
---|
[1485] | 424 | |
---|
| 425 | !--------------------------------------------------------------------------------------------- |
---|
[305] | 426 | ! Surface albedo and emissivity of the ground below the snow (emisref) |
---|
[1485] | 427 | !--------------------------------------------------------------------------------------------- |
---|
| 428 | |
---|
| 429 | |
---|
[787] | 430 | DO ig=1,ngrid |
---|
[1485] | 431 | |
---|
[1542] | 432 | IF(latitude(ig).LT.0.) THEN |
---|
[1216] | 433 | icap=2 ! Southern Hemisphere |
---|
[305] | 434 | ELSE |
---|
[1216] | 435 | icap=1 ! Nortnern hemisphere |
---|
[305] | 436 | ENDIF |
---|
| 437 | |
---|
| 438 | if(.not.piceco2(ig).ge.0.) THEN |
---|
| 439 | if(piceco2(ig).le.-1.e-8) print*, & |
---|
[1484] | 440 | 'WARNING : in condense_co2cloud: piceco2(',ig,')=', piceco2(ig) |
---|
[305] | 441 | piceco2(ig)=0. |
---|
| 442 | endif |
---|
[1484] | 443 | if (piceco2(ig) .gt. 1.) then ! CO2 Albedo condition changed to ~1 mm coverage. Change by MT2015. |
---|
[1482] | 444 | DO nw=1,L_NSPECTV |
---|
| 445 | albedo(ig,nw) = albedo_co2_ice_SPECTV(nw) |
---|
| 446 | ENDDO |
---|
[305] | 447 | emisref(ig) = emisice(icap) |
---|
| 448 | else |
---|
[1482] | 449 | DO nw=1,L_NSPECTV |
---|
| 450 | albedo(ig,nw) = albedo_bareground(ig) ! Note : If you have some water, it will be taken into account in the "hydrol" routine. |
---|
| 451 | ENDDO |
---|
[305] | 452 | emisref(ig) = emissiv |
---|
| 453 | pemisurf(ig) = emissiv |
---|
| 454 | end if |
---|
[1484] | 455 | |
---|
[1485] | 456 | END DO |
---|
[305] | 457 | |
---|
| 458 | return |
---|
[1485] | 459 | |
---|
| 460 | end subroutine condense_co2 |
---|
[305] | 461 | |
---|
[1485] | 462 | |
---|
| 463 | |
---|
[305] | 464 | !------------------------------------------------------------------------- |
---|
[1485] | 465 | !------------------------------------------------------------------------- |
---|
| 466 | !------------------------------------------------------------------------- |
---|
| 467 | !------------------------------------------------------------------------- |
---|
| 468 | !------------------------------------------------------------------------- |
---|
| 469 | !------------------------------------------------------------------------- |
---|
[305] | 470 | |
---|
[1485] | 471 | |
---|
| 472 | |
---|
| 473 | subroutine get_tcond_co2(p,tcond) ! Calculates the condensation temperature for CO2 |
---|
| 474 | |
---|
| 475 | |
---|
[305] | 476 | implicit none |
---|
| 477 | |
---|
| 478 | real p, peff, tcond |
---|
| 479 | real, parameter :: ptriple=518000.0 |
---|
| 480 | |
---|
[526] | 481 | peff=p |
---|
[305] | 482 | |
---|
[1485] | 483 | if(peff.lt.ptriple) then |
---|
| 484 | tcond = (-3167.8)/(log(.01*peff)-23.23) ! Fanale's formula. |
---|
[305] | 485 | else |
---|
[1485] | 486 | tcond = 684.2-92.3*log(peff)+4.32*log(peff)**2 ! liquid-vapour transition (based on CRC handbook 2003 data) |
---|
[305] | 487 | endif |
---|
| 488 | return |
---|
| 489 | |
---|
[1485] | 490 | end subroutine get_tcond_co2 |
---|
| 491 | |
---|
| 492 | |
---|
| 493 | |
---|
[526] | 494 | !------------------------------------------------------------------------- |
---|
[1485] | 495 | !------------------------------------------------------------------------- |
---|
| 496 | !------------------------------------------------------------------------- |
---|
| 497 | !------------------------------------------------------------------------- |
---|
| 498 | !------------------------------------------------------------------------- |
---|
| 499 | !------------------------------------------------------------------------- |
---|
[526] | 500 | |
---|
[1485] | 501 | |
---|
| 502 | |
---|
| 503 | subroutine get_tnuc_co2(p,tnuc) |
---|
| 504 | ! Calculates the nucleation temperature for CO2, based on a simple super saturation criterion. JL 2011. |
---|
| 505 | |
---|
[1397] | 506 | use callkeys_mod, only: co2supsat |
---|
| 507 | |
---|
[526] | 508 | implicit none |
---|
| 509 | |
---|
| 510 | real p, peff, tnuc |
---|
| 511 | real, parameter :: ptriple=518000.0 |
---|
| 512 | |
---|
| 513 | peff=p/co2supsat |
---|
| 514 | |
---|
[1485] | 515 | if(peff.lt.ptriple) then |
---|
[526] | 516 | tnuc = (-3167.8)/(log(.01*peff)-23.23) ! Fanale's formula |
---|
| 517 | else |
---|
| 518 | tnuc = 684.2-92.3*log(peff)+4.32*log(peff)**2 |
---|
| 519 | ! liquid-vapour transition (based on CRC handbook 2003 data) |
---|
| 520 | endif |
---|
[1485] | 521 | |
---|
[526] | 522 | return |
---|
| 523 | |
---|
[1485] | 524 | end subroutine get_tnuc_co2 |
---|