| 1 | subroutine condense_cloud(ngrid,nlayer,nq,ptimestep, & |
|---|
| 2 | pcapcal,pplay,pplev,ptsrf,pt, & |
|---|
| 3 | pphi,pdt,pdu,pdv,pdtsrf,pu,pv,pq,pdq, & |
|---|
| 4 | piceco2,psolaralb,pemisurf, & |
|---|
| 5 | pdtc,pdtsrfc,pdpsrf,pduc,pdvc, & |
|---|
| 6 | pdqc) |
|---|
| 7 | |
|---|
| 8 | use radinc_h, only : naerkind |
|---|
| 9 | use gases_h, only: gfrac, igas_co2 |
|---|
| 10 | use radii_mod, only : co2_reffrad |
|---|
| 11 | use aerosol_mod, only : iaero_co2 |
|---|
| 12 | USE surfdat_h, only: albedodat, albedice, emisice, emissiv |
|---|
| 13 | USE comgeomfi_h, only: lati |
|---|
| 14 | USE tracer_h, only: noms, rho_co2 |
|---|
| 15 | |
|---|
| 16 | |
|---|
| 17 | implicit none |
|---|
| 18 | |
|---|
| 19 | !================================================================== |
|---|
| 20 | ! Purpose |
|---|
| 21 | ! ------- |
|---|
| 22 | ! Condense and/or sublime CO2 ice on the ground and in the |
|---|
| 23 | ! atmosphere, and sediment the ice. |
|---|
| 24 | ! |
|---|
| 25 | ! Inputs |
|---|
| 26 | ! ------ |
|---|
| 27 | ! ngrid Number of vertical columns |
|---|
| 28 | ! nlayer Number of layers |
|---|
| 29 | ! pplay(ngrid,nlayer) Pressure layers |
|---|
| 30 | ! pplev(ngrid,nlayer+1) Pressure levels |
|---|
| 31 | ! pt(ngrid,nlayer) Temperature (in K) |
|---|
| 32 | ! ptsrf(ngrid) Surface temperature |
|---|
| 33 | ! |
|---|
| 34 | ! pdt(ngrid,nlayermx) Time derivative before condensation/sublimation of pt |
|---|
| 35 | ! pdtsrf(ngrid) Time derivative before condensation/sublimation of ptsrf |
|---|
| 36 | ! pqsurf(ngrid,nq) Sedimentation flux at the surface (kg.m-2.s-1) |
|---|
| 37 | ! |
|---|
| 38 | ! Outputs |
|---|
| 39 | ! ------- |
|---|
| 40 | ! pdpsrf(ngrid) \ Contribution of condensation/sublimation |
|---|
| 41 | ! pdtc(ngrid,nlayermx) / to the time derivatives of Ps, pt, and ptsrf |
|---|
| 42 | ! pdtsrfc(ngrid) / |
|---|
| 43 | ! |
|---|
| 44 | ! Both |
|---|
| 45 | ! ---- |
|---|
| 46 | ! piceco2(ngrid) CO2 ice at the surface (kg/m2) |
|---|
| 47 | ! psolaralb(ngrid) Albedo at the surface |
|---|
| 48 | ! pemisurf(ngrid) Emissivity of the surface |
|---|
| 49 | ! |
|---|
| 50 | ! Authors |
|---|
| 51 | ! ------- |
|---|
| 52 | ! Francois Forget (1996) |
|---|
| 53 | ! Converted to Fortran 90 and slightly modified by R. Wordsworth (2009) |
|---|
| 54 | ! Includes simplifed nucleation by J. Leconte (2011) |
|---|
| 55 | ! |
|---|
| 56 | !================================================================== |
|---|
| 57 | |
|---|
| 58 | #include "dimensions.h" |
|---|
| 59 | #include "dimphys.h" |
|---|
| 60 | #include "comcstfi.h" |
|---|
| 61 | #include "comvert.h" |
|---|
| 62 | #include "callkeys.h" |
|---|
| 63 | |
|---|
| 64 | !----------------------------------------------------------------------- |
|---|
| 65 | ! Arguments |
|---|
| 66 | |
|---|
| 67 | INTEGER,INTENT(IN) :: ngrid |
|---|
| 68 | INTEGER,INTENT(IN) :: nlayer |
|---|
| 69 | INTEGER,INTENT(IN) :: nq |
|---|
| 70 | REAL,INTENT(IN) :: ptimestep |
|---|
| 71 | REAL,INTENT(IN) :: pcapcal(ngrid) |
|---|
| 72 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) |
|---|
| 73 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) |
|---|
| 74 | REAL,INTENT(IN) :: ptsrf(ngrid) |
|---|
| 75 | REAL,INTENT(IN) :: pt(ngrid,nlayer) |
|---|
| 76 | REAL,INTENT(IN) :: pphi(ngrid,nlayer) |
|---|
| 77 | REAL,INTENT(IN) :: pdt(ngrid,nlayer) |
|---|
| 78 | REAL,INTENT(IN) :: pdu(ngrid,nlayer) |
|---|
| 79 | REAL,INTENT(IN) :: pdv(ngrid,nlayer) |
|---|
| 80 | REAL,INTENT(IN) :: pdtsrf(ngrid) |
|---|
| 81 | REAL,INTENT(IN) :: pu(ngrid,nlayer) |
|---|
| 82 | REAL,INTENT(IN) :: pv(ngrid,nlayer) |
|---|
| 83 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) |
|---|
| 84 | REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq) |
|---|
| 85 | REAL,INTENT(INOUT) :: piceco2(ngrid) |
|---|
| 86 | REAL,INTENT(OUT) :: psolaralb(ngrid) |
|---|
| 87 | REAL,INTENT(OUT) :: pemisurf(ngrid) |
|---|
| 88 | REAL,INTENT(OUT) :: pdtc(ngrid,nlayer) |
|---|
| 89 | REAL,INTENT(OUT) :: pdtsrfc(ngrid) |
|---|
| 90 | REAL,INTENT(OUT) :: pdpsrf(ngrid) |
|---|
| 91 | REAL,INTENT(OUT) :: pduc(ngrid,nlayer) |
|---|
| 92 | REAL,INTENT(OUT) :: pdvc(ngrid,nlayer) |
|---|
| 93 | REAL,INTENT(OUT) :: pdqc(ngrid,nlayer,nq) |
|---|
| 94 | |
|---|
| 95 | !----------------------------------------------------------------------- |
|---|
| 96 | ! Local variables |
|---|
| 97 | |
|---|
| 98 | INTEGER l,ig,icap,ilay,it,iq |
|---|
| 99 | |
|---|
| 100 | REAL reffrad(ngrid,nlayer) ! radius (m) of the co2 ice particles |
|---|
| 101 | REAL*8 zt(ngrid,nlayermx) |
|---|
| 102 | REAL zq(ngrid,nlayermx,nq) |
|---|
| 103 | REAL zcpi |
|---|
| 104 | REAL ztcond (ngrid,nlayermx) |
|---|
| 105 | REAL ztnuc (ngrid,nlayermx) |
|---|
| 106 | REAL ztcondsol(ngrid) |
|---|
| 107 | REAL zdiceco2(ngrid) |
|---|
| 108 | REAL zcondicea(ngrid,nlayermx), zcondices(ngrid) |
|---|
| 109 | REAL zfallice(ngrid), Mfallice(ngrid) |
|---|
| 110 | REAL zmflux(nlayermx+1) |
|---|
| 111 | REAL zu(nlayermx),zv(nlayermx) |
|---|
| 112 | REAL ztsrf(ngrid) |
|---|
| 113 | REAL ztc(nlayermx), ztm(nlayermx+1) |
|---|
| 114 | REAL zum(nlayermx+1) , zvm(nlayermx+1) |
|---|
| 115 | LOGICAL condsub(ngrid) |
|---|
| 116 | REAL subptimestep |
|---|
| 117 | Integer Ntime |
|---|
| 118 | real masse (ngrid,nlayermx), w(ngrid,nlayermx,nq) |
|---|
| 119 | real wq(ngrid,nlayermx+1) |
|---|
| 120 | real vstokes,reff |
|---|
| 121 | |
|---|
| 122 | ! Special diagnostic variables |
|---|
| 123 | real tconda1(ngrid,nlayermx) |
|---|
| 124 | real tconda2(ngrid,nlayermx) |
|---|
| 125 | real zdtsig (ngrid,nlayermx) |
|---|
| 126 | real zdt (ngrid,nlayermx) |
|---|
| 127 | |
|---|
| 128 | !----------------------------------------------------------------------- |
|---|
| 129 | ! Saved local variables |
|---|
| 130 | |
|---|
| 131 | REAL,SAVE :: latcond=5.9e5 |
|---|
| 132 | REAL,SAVE :: ccond |
|---|
| 133 | REAL,SAVE :: cpice=1000. |
|---|
| 134 | REAL,SAVE,ALLOCATABLE,DIMENSION(:) :: emisref |
|---|
| 135 | |
|---|
| 136 | LOGICAL,SAVE :: firstcall=.true. |
|---|
| 137 | REAL,EXTERNAL :: SSUM |
|---|
| 138 | |
|---|
| 139 | REAL,EXTERNAL :: CBRT |
|---|
| 140 | |
|---|
| 141 | INTEGER,SAVE :: i_co2ice=0 ! co2 ice |
|---|
| 142 | CHARACTER(LEN=20) :: tracername ! to temporarily store text |
|---|
| 143 | |
|---|
| 144 | integer igas |
|---|
| 145 | |
|---|
| 146 | real ppco2 |
|---|
| 147 | |
|---|
| 148 | !----------------------------------------------------------------------- |
|---|
| 149 | ! Initializations |
|---|
| 150 | |
|---|
| 151 | pdqc(1:ngrid,1:nlayer,1:nq)=0 |
|---|
| 152 | pdtc(1:ngrid,1:nlayer)=0 |
|---|
| 153 | zq(1:ngrid,1:nlayer,1:nq)=0 |
|---|
| 154 | zt(1:ngrid,1:nlayer)=0 |
|---|
| 155 | |
|---|
| 156 | ! Initialisation |
|---|
| 157 | IF (firstcall) THEN |
|---|
| 158 | |
|---|
| 159 | ALLOCATE(emisref(ngrid)) !! this should be deallocated in lastcall... |
|---|
| 160 | |
|---|
| 161 | ! find CO2 ice tracer |
|---|
| 162 | do iq=1,nq |
|---|
| 163 | tracername=noms(iq) |
|---|
| 164 | if (tracername.eq."co2_ice") then |
|---|
| 165 | i_co2ice=iq |
|---|
| 166 | endif |
|---|
| 167 | enddo |
|---|
| 168 | |
|---|
| 169 | write(*,*) "condense_cloud: i_co2ice=",i_co2ice |
|---|
| 170 | |
|---|
| 171 | if((i_co2ice.lt.1))then |
|---|
| 172 | print*,'In condens_cloud but no CO2 ice tracer, exiting.' |
|---|
| 173 | print*,'Still need generalisation to arbitrary species!' |
|---|
| 174 | stop |
|---|
| 175 | endif |
|---|
| 176 | |
|---|
| 177 | ccond=cpp/(g*latcond) |
|---|
| 178 | print*,'In condens_cloud: ccond=',ccond,' latcond=',latcond |
|---|
| 179 | |
|---|
| 180 | ! Prepare special treatment if gas is not pure CO2 |
|---|
| 181 | !if (addn2) then |
|---|
| 182 | ! m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
|---|
| 183 | ! m_noco2 = 28.02E-3 ! N2 molecular mass (kg/mol) |
|---|
| 184 | ! Compute A and B coefficient use to compute |
|---|
| 185 | ! mean molecular mass Mair defined by |
|---|
| 186 | ! 1/Mair = q(ico2)/m_co2 + (1-q(ico2))/m_noco2 |
|---|
| 187 | ! 1/Mair = A*q(ico2) + B |
|---|
| 188 | ! A = (1/m_co2 - 1/m_noco2) |
|---|
| 189 | ! B = 1/m_noco2 |
|---|
| 190 | !endif |
|---|
| 191 | |
|---|
| 192 | ! Minimum CO2 mixing ratio below which mixing occurs with layer above: |
|---|
| 193 | !qco2min =0.75 |
|---|
| 194 | |
|---|
| 195 | firstcall=.false. |
|---|
| 196 | ENDIF |
|---|
| 197 | zcpi=1./cpp |
|---|
| 198 | |
|---|
| 199 | !----------------------------------------------------------------------- |
|---|
| 200 | ! Calculation of CO2 condensation / sublimation |
|---|
| 201 | ! |
|---|
| 202 | ! Variables used: |
|---|
| 203 | ! piceco2(ngrid) amount of co2 ice on the ground (kg/m2) |
|---|
| 204 | ! zcondicea(ngrid,l) condensation rate in layer l (kg/m2/s) |
|---|
| 205 | ! zcondices(ngrid) condensation rate on the ground (kg/m2/s) |
|---|
| 206 | ! zfallice(ngrid) flux of ice falling on surface (kg/m2/s) |
|---|
| 207 | ! pdtc(ngrid,nlayermx) dT/dt due to phase changes (K/s) |
|---|
| 208 | |
|---|
| 209 | |
|---|
| 210 | ! Tendencies initially set to 0 (except pdtc) |
|---|
| 211 | DO l=1,nlayer |
|---|
| 212 | DO ig=1,ngrid |
|---|
| 213 | zcondicea(ig,l) = 0. |
|---|
| 214 | pduc(ig,l) = 0 |
|---|
| 215 | pdvc(ig,l) = 0 |
|---|
| 216 | pdqc(ig,l,i_co2ice) = 0 |
|---|
| 217 | END DO |
|---|
| 218 | END DO |
|---|
| 219 | |
|---|
| 220 | DO ig=1,ngrid |
|---|
| 221 | Mfallice(ig) = 0. |
|---|
| 222 | zfallice(ig) = 0. |
|---|
| 223 | zcondices(ig) = 0. |
|---|
| 224 | pdtsrfc(ig) = 0. |
|---|
| 225 | pdpsrf(ig) = 0. |
|---|
| 226 | condsub(ig) = .false. |
|---|
| 227 | zdiceco2(ig) = 0. |
|---|
| 228 | ENDDO |
|---|
| 229 | |
|---|
| 230 | !----------------------------------------------------------------------- |
|---|
| 231 | ! Atmospheric condensation |
|---|
| 232 | |
|---|
| 233 | |
|---|
| 234 | ! Compute CO2 Volume mixing ratio |
|---|
| 235 | ! ------------------------------- |
|---|
| 236 | ! if (addn2) then |
|---|
| 237 | ! DO l=1,nlayer |
|---|
| 238 | ! DO ig=1,ngrid |
|---|
| 239 | ! qco2=pq(ig,l,ico2)+pdq(ig,l,ico2)*ptimestep |
|---|
| 240 | !! Mean air molecular mass = 1/(q(ico2)/m_co2 + (1-q(ico2))/m_noco2) |
|---|
| 241 | ! mmean=1/(A*qco2 +B) |
|---|
| 242 | ! vmr_co2(ig,l) = qco2*mmean/m_co2 |
|---|
| 243 | ! ENDDO |
|---|
| 244 | ! ENDDO |
|---|
| 245 | ! else |
|---|
| 246 | ! DO l=1,nlayer |
|---|
| 247 | ! DO ig=1,ngrid |
|---|
| 248 | ! vmr_co2(ig,l)=0.5 |
|---|
| 249 | ! ENDDO |
|---|
| 250 | ! ENDDO |
|---|
| 251 | ! end if |
|---|
| 252 | |
|---|
| 253 | ! Forecast the atmospheric frost temperature 'ztcond' and nucleation temperature 'ztnuc' |
|---|
| 254 | DO l=1,nlayer |
|---|
| 255 | DO ig=1,ngrid |
|---|
| 256 | ppco2=gfrac(igas_CO2)*pplay(ig,l) |
|---|
| 257 | call get_tcond_co2(ppco2,ztcond(ig,l)) |
|---|
| 258 | call get_tnuc_co2(ppco2,ztnuc(ig,l)) |
|---|
| 259 | ENDDO |
|---|
| 260 | ENDDO |
|---|
| 261 | |
|---|
| 262 | ! Initialize zq and zt at the beginning of the sub-timestep loop |
|---|
| 263 | DO l=1,nlayer |
|---|
| 264 | DO ig=1,ngrid |
|---|
| 265 | zt(ig,l)=pt(ig,l) |
|---|
| 266 | zq(ig,l,i_co2ice)=pq(ig,l,i_co2ice) |
|---|
| 267 | IF( zq(ig,l,i_co2ice).lt.-1.e-6 ) THEN |
|---|
| 268 | print*,'Uh-oh, zq = ',zq(ig,l,i_co2ice),'at ig,l=',ig,l |
|---|
| 269 | if(l.eq.1)then |
|---|
| 270 | print*,'Perhaps the atmosphere is collapsing on surface...?' |
|---|
| 271 | endif |
|---|
| 272 | END IF |
|---|
| 273 | ENDDO |
|---|
| 274 | ENDDO |
|---|
| 275 | |
|---|
| 276 | ! Calculate the mass of each atmospheric layer (kg.m-2) |
|---|
| 277 | do ilay=1,nlayer |
|---|
| 278 | DO ig=1,ngrid |
|---|
| 279 | masse(ig,ilay)=(pplev(ig,ilay) - pplev(ig,ilay+1)) /g |
|---|
| 280 | end do |
|---|
| 281 | end do |
|---|
| 282 | |
|---|
| 283 | ! ----------------------------------------------- |
|---|
| 284 | ! START CONDENSATION/SEDIMENTATION SUB-TIME LOOP |
|---|
| 285 | ! ----------------------------------------------- |
|---|
| 286 | Ntime = 20 ! number of sub-timestep |
|---|
| 287 | subptimestep = ptimestep/float(Ntime) |
|---|
| 288 | |
|---|
| 289 | DO it=1,Ntime |
|---|
| 290 | |
|---|
| 291 | ! Add the tendencies from other physical processes at each subtimstep |
|---|
| 292 | DO l=1,nlayer |
|---|
| 293 | DO ig=1,ngrid |
|---|
| 294 | zt(ig,l) = zt(ig,l) + pdt(ig,l) * subptimestep |
|---|
| 295 | zq(ig,l,i_co2ice) = zq(ig,l,i_co2ice) + pdq(ig,l,i_co2ice) * subptimestep |
|---|
| 296 | END DO |
|---|
| 297 | END DO |
|---|
| 298 | |
|---|
| 299 | |
|---|
| 300 | ! Gravitational sedimentation |
|---|
| 301 | |
|---|
| 302 | ! sedimentation computed from radius computed from q in module radii_mod |
|---|
| 303 | call co2_reffrad(ngrid,nq,zq,reffrad) |
|---|
| 304 | |
|---|
| 305 | do ilay=1,nlayer |
|---|
| 306 | DO ig=1,ngrid |
|---|
| 307 | |
|---|
| 308 | reff = reffrad(ig,ilay) |
|---|
| 309 | |
|---|
| 310 | call stokes & |
|---|
| 311 | (pplev(ig,ilay),pt(ig,ilay), & |
|---|
| 312 | reff,vstokes,rho_co2) |
|---|
| 313 | |
|---|
| 314 | !w(ig,ilay,i_co2ice) = 0.0 |
|---|
| 315 | w(ig,ilay,i_co2ice) = vstokes * subptimestep * & |
|---|
| 316 | pplev(ig,ilay)/(r*pt(ig,ilay)) |
|---|
| 317 | |
|---|
| 318 | end do |
|---|
| 319 | end do |
|---|
| 320 | |
|---|
| 321 | ! Computing q after sedimentation |
|---|
| 322 | |
|---|
| 323 | call vlz_fi(ngrid,zq(1,1,i_co2ice),2.,masse,w(1,1,i_co2ice),wq) |
|---|
| 324 | |
|---|
| 325 | |
|---|
| 326 | ! Progressively accumulating the flux to the ground |
|---|
| 327 | ! Mfallice is the total amount of ice fallen to the ground |
|---|
| 328 | DO ig=1,ngrid |
|---|
| 329 | Mfallice(ig) = Mfallice(ig) + wq(ig,i_co2ice) |
|---|
| 330 | end do |
|---|
| 331 | |
|---|
| 332 | |
|---|
| 333 | ! Condensation / sublimation in the atmosphere |
|---|
| 334 | ! -------------------------------------------- |
|---|
| 335 | ! (calculation of zcondicea, zfallice and pdtc) |
|---|
| 336 | ! (MODIFICATIONS FOR EARLY MARS: falling heat neglected, condensation |
|---|
| 337 | ! of CO2 into tracer i_co2ice) |
|---|
| 338 | |
|---|
| 339 | DO l=nlayer , 1, -1 |
|---|
| 340 | DO ig=1,ngrid |
|---|
| 341 | pdtc(ig,l)=0. |
|---|
| 342 | |
|---|
| 343 | |
|---|
| 344 | ! ztcond-> ztnuc in test beneath to nucleate only when super saturation occurs(JL 2011) |
|---|
| 345 | IF ((zt(ig,l).LT.ztnuc(ig,l)).or.(zq(ig,l,i_co2ice).gt.1.E-10)) THEN |
|---|
| 346 | condsub(ig)=.true. |
|---|
| 347 | pdtc(ig,l) = (ztcond(ig,l) - zt(ig,l))/subptimestep |
|---|
| 348 | pdqc(ig,l,i_co2ice) = pdtc(ig,l)*ccond*g |
|---|
| 349 | |
|---|
| 350 | ! Case when the ice from above sublimes entirely |
|---|
| 351 | IF ((zq(ig,l,i_co2ice).lt.-pdqc(ig,l,i_co2ice)*subptimestep) & |
|---|
| 352 | .AND. (zq(ig,l,i_co2ice).gt.0)) THEN |
|---|
| 353 | |
|---|
| 354 | pdqc(ig,l,i_co2ice) = -zq(ig,l,i_co2ice)/subptimestep |
|---|
| 355 | pdtc(ig,l) =-zq(ig,l,i_co2ice)/(ccond*g*subptimestep) |
|---|
| 356 | |
|---|
| 357 | END IF |
|---|
| 358 | |
|---|
| 359 | ! Temperature and q after condensation |
|---|
| 360 | zt(ig,l) = zt(ig,l) + pdtc(ig,l) * subptimestep |
|---|
| 361 | zq(ig,l,i_co2ice) = zq(ig,l,i_co2ice) + pdqc(ig,l,i_co2ice) * subptimestep |
|---|
| 362 | END IF |
|---|
| 363 | |
|---|
| 364 | ENDDO |
|---|
| 365 | ENDDO |
|---|
| 366 | ENDDO ! end of subtimestep loop |
|---|
| 367 | |
|---|
| 368 | ! Computing global tendencies after the subtimestep |
|---|
| 369 | DO l=1,nlayer |
|---|
| 370 | DO ig=1,ngrid |
|---|
| 371 | pdtc(ig,l) = & |
|---|
| 372 | (zt(ig,l) - (pt(ig,l) + pdt(ig,l)*ptimestep))/ptimestep |
|---|
| 373 | pdqc(ig,l,i_co2ice) = & |
|---|
| 374 | (zq(ig,l,i_co2ice)-(pq(ig,l,i_co2ice)+pdq(ig,l,i_co2ice)*ptimestep))/ptimestep |
|---|
| 375 | END DO |
|---|
| 376 | END DO |
|---|
| 377 | DO ig=1,ngrid |
|---|
| 378 | zfallice(ig) = Mfallice(ig)/ptimestep |
|---|
| 379 | END DO |
|---|
| 380 | |
|---|
| 381 | |
|---|
| 382 | !----------------------------------------------------------------------- |
|---|
| 383 | ! Condensation/sublimation on the ground |
|---|
| 384 | ! (calculation of zcondices and pdtsrfc) |
|---|
| 385 | |
|---|
| 386 | ! forecast of ground temperature ztsrf and frost temperature ztcondsol |
|---|
| 387 | DO ig=1,ngrid |
|---|
| 388 | ppco2=gfrac(igas_CO2)*pplay(ig,1) |
|---|
| 389 | call get_tcond_co2(ppco2,ztcondsol(ig)) |
|---|
| 390 | |
|---|
| 391 | ztsrf(ig) = ptsrf(ig) |
|---|
| 392 | |
|---|
| 393 | if((ztsrf(ig).le.ztcondsol(ig)+2.0).and.(ngrid.eq.1))then |
|---|
| 394 | print*,'CO2 is condensing on the surface in 1D. This atmosphere is doomed.' |
|---|
| 395 | print*,'T_surf = ',ztsrf,'K' |
|---|
| 396 | print*,'T_cond = ',ztcondsol,'K' |
|---|
| 397 | open(116,file='surf_vals.out') |
|---|
| 398 | write(116,*) 0.0, pplev(1,1), 0.0, 0.0 |
|---|
| 399 | close(116) |
|---|
| 400 | call abort |
|---|
| 401 | endif |
|---|
| 402 | |
|---|
| 403 | ztsrf(ig) = ptsrf(ig) + pdtsrf(ig)*ptimestep |
|---|
| 404 | |
|---|
| 405 | ENDDO |
|---|
| 406 | |
|---|
| 407 | DO ig=1,ngrid |
|---|
| 408 | IF(ig.GT.ngrid/2+1) THEN |
|---|
| 409 | icap=2 |
|---|
| 410 | ELSE |
|---|
| 411 | icap=1 |
|---|
| 412 | ENDIF |
|---|
| 413 | |
|---|
| 414 | ! Loop over where we have condensation / sublimation |
|---|
| 415 | IF ((ztsrf(ig) .LT. ztcondsol(ig)) .OR. & ! ground condensation |
|---|
| 416 | (zfallice(ig).NE.0.) .OR. & ! falling snow |
|---|
| 417 | ((ztsrf(ig) .GT. ztcondsol(ig)) .AND. & ! ground sublimation |
|---|
| 418 | ((piceco2(ig)+zfallice(ig)*ptimestep) .NE. 0.))) THEN |
|---|
| 419 | condsub(ig) = .true. |
|---|
| 420 | |
|---|
| 421 | ! Condensation or partial sublimation of CO2 ice |
|---|
| 422 | zcondices(ig)=pcapcal(ig)*(ztcondsol(ig)-ztsrf(ig)) & |
|---|
| 423 | /(latcond*ptimestep) |
|---|
| 424 | pdtsrfc(ig) = (ztcondsol(ig) - ztsrf(ig))/ptimestep |
|---|
| 425 | |
|---|
| 426 | ! If the entire CO_2 ice layer sublimes |
|---|
| 427 | ! (including what has just condensed in the atmosphere) |
|---|
| 428 | IF((piceco2(ig)/ptimestep+zfallice(ig)).LE. & |
|---|
| 429 | -zcondices(ig))THEN |
|---|
| 430 | zcondices(ig) = -piceco2(ig)/ptimestep - zfallice(ig) |
|---|
| 431 | pdtsrfc(ig)=(latcond/pcapcal(ig))* & |
|---|
| 432 | (zcondices(ig)) |
|---|
| 433 | END IF |
|---|
| 434 | |
|---|
| 435 | ! Changing CO2 ice amount and pressure |
|---|
| 436 | |
|---|
| 437 | zdiceco2(ig) = zcondices(ig) + zfallice(ig) |
|---|
| 438 | piceco2(ig) = piceco2(ig) + zdiceco2(ig)*ptimestep |
|---|
| 439 | pdpsrf(ig) = -zdiceco2(ig)*g |
|---|
| 440 | |
|---|
| 441 | IF(ABS(pdpsrf(ig)*ptimestep).GT.pplev(ig,1)) THEN |
|---|
| 442 | PRINT*,'STOP in condens' |
|---|
| 443 | PRINT*,'condensing more than total mass' |
|---|
| 444 | PRINT*,'Grid point ',ig |
|---|
| 445 | PRINT*,'Ps = ',pplev(ig,1) |
|---|
| 446 | PRINT*,'d Ps = ',pdpsrf(ig) |
|---|
| 447 | STOP |
|---|
| 448 | ENDIF |
|---|
| 449 | END IF |
|---|
| 450 | ENDDO |
|---|
| 451 | |
|---|
| 452 | ! Surface albedo and emissivity of the ground below the snow (emisref) |
|---|
| 453 | ! -------------------------------------------------------------------- |
|---|
| 454 | DO ig=1,ngrid |
|---|
| 455 | IF(lati(ig).LT.0.) THEN |
|---|
| 456 | icap=2 ! Southern Hemisphere |
|---|
| 457 | ELSE |
|---|
| 458 | icap=1 ! Nortnern hemisphere |
|---|
| 459 | ENDIF |
|---|
| 460 | |
|---|
| 461 | if(.not.piceco2(ig).ge.0.) THEN |
|---|
| 462 | if(piceco2(ig).le.-1.e-8) print*, & |
|---|
| 463 | 'WARNING in condense_co2cloud: piceco2(',ig,')=', piceco2(ig) |
|---|
| 464 | piceco2(ig)=0. |
|---|
| 465 | endif |
|---|
| 466 | if (piceco2(ig).gt.0) then |
|---|
| 467 | psolaralb(ig) = albedice(icap) |
|---|
| 468 | emisref(ig) = emisice(icap) |
|---|
| 469 | else |
|---|
| 470 | psolaralb(ig) = albedodat(ig) |
|---|
| 471 | emisref(ig) = emissiv |
|---|
| 472 | pemisurf(ig) = emissiv |
|---|
| 473 | end if |
|---|
| 474 | end do |
|---|
| 475 | |
|---|
| 476 | return |
|---|
| 477 | end subroutine condense_cloud |
|---|
| 478 | |
|---|
| 479 | !------------------------------------------------------------------------- |
|---|
| 480 | subroutine get_tcond_co2(p,tcond) |
|---|
| 481 | ! Calculates the condensation temperature for CO2 |
|---|
| 482 | |
|---|
| 483 | implicit none |
|---|
| 484 | |
|---|
| 485 | #include "callkeys.h" |
|---|
| 486 | |
|---|
| 487 | real p, peff, tcond |
|---|
| 488 | real, parameter :: ptriple=518000.0 |
|---|
| 489 | |
|---|
| 490 | peff=p |
|---|
| 491 | |
|---|
| 492 | if(peff.lt.ptriple)then |
|---|
| 493 | tcond = (-3167.8)/(log(.01*peff)-23.23) ! Fanale's formula |
|---|
| 494 | else |
|---|
| 495 | tcond = 684.2-92.3*log(peff)+4.32*log(peff)**2 |
|---|
| 496 | ! liquid-vapour transition (based on CRC handbook 2003 data) |
|---|
| 497 | endif |
|---|
| 498 | return |
|---|
| 499 | |
|---|
| 500 | end subroutine get_tcond_co2 |
|---|
| 501 | |
|---|
| 502 | |
|---|
| 503 | |
|---|
| 504 | |
|---|
| 505 | !------------------------------------------------------------------------- |
|---|
| 506 | subroutine get_tnuc_co2(p,tnuc) |
|---|
| 507 | ! Calculates the nucleation temperature for CO2, based on a simple super saturation criterion |
|---|
| 508 | ! (JL 2011) |
|---|
| 509 | |
|---|
| 510 | implicit none |
|---|
| 511 | |
|---|
| 512 | #include "callkeys.h" |
|---|
| 513 | |
|---|
| 514 | real p, peff, tnuc |
|---|
| 515 | real, parameter :: ptriple=518000.0 |
|---|
| 516 | |
|---|
| 517 | peff=p/co2supsat |
|---|
| 518 | |
|---|
| 519 | if(peff.lt.ptriple)then |
|---|
| 520 | tnuc = (-3167.8)/(log(.01*peff)-23.23) ! Fanale's formula |
|---|
| 521 | else |
|---|
| 522 | tnuc = 684.2-92.3*log(peff)+4.32*log(peff)**2 |
|---|
| 523 | ! liquid-vapour transition (based on CRC handbook 2003 data) |
|---|
| 524 | endif |
|---|
| 525 | return |
|---|
| 526 | |
|---|
| 527 | end subroutine get_tnuc_co2 |
|---|