[305] | 1 | subroutine condense_cloud(ngrid,nlayer,nq,ptimestep, & |
---|
| 2 | pcapcal,pplay,pplev,ptsrf,pt, & |
---|
| 3 | pphi,pdt,pdu,pdv,pdtsrf,pu,pv,pq,pdq, & |
---|
| 4 | piceco2,psolaralb,pemisurf, & |
---|
| 5 | pdtc,pdtsrfc,pdpsrf,pduc,pdvc, & |
---|
[858] | 6 | pdqc) |
---|
[305] | 7 | |
---|
| 8 | use radinc_h, only : naerkind |
---|
[1216] | 9 | use gases_h, only: gfrac, igas_co2 |
---|
[728] | 10 | use radii_mod, only : co2_reffrad |
---|
| 11 | use aerosol_mod, only : iaero_co2 |
---|
[1216] | 12 | USE surfdat_h, only: albedodat, albedice, emisice, emissiv |
---|
| 13 | USE comgeomfi_h, only: lati |
---|
| 14 | USE tracer_h, only: noms, rho_co2 |
---|
[305] | 15 | |
---|
[787] | 16 | |
---|
[305] | 17 | implicit none |
---|
| 18 | |
---|
| 19 | !================================================================== |
---|
| 20 | ! Purpose |
---|
| 21 | ! ------- |
---|
| 22 | ! Condense and/or sublime CO2 ice on the ground and in the |
---|
| 23 | ! atmosphere, and sediment the ice. |
---|
| 24 | ! |
---|
| 25 | ! Inputs |
---|
| 26 | ! ------ |
---|
| 27 | ! ngrid Number of vertical columns |
---|
| 28 | ! nlayer Number of layers |
---|
| 29 | ! pplay(ngrid,nlayer) Pressure layers |
---|
| 30 | ! pplev(ngrid,nlayer+1) Pressure levels |
---|
| 31 | ! pt(ngrid,nlayer) Temperature (in K) |
---|
| 32 | ! ptsrf(ngrid) Surface temperature |
---|
| 33 | ! |
---|
[1308] | 34 | ! pdt(ngrid,nlayer) Time derivative before condensation/sublimation of pt |
---|
[305] | 35 | ! pdtsrf(ngrid) Time derivative before condensation/sublimation of ptsrf |
---|
| 36 | ! pqsurf(ngrid,nq) Sedimentation flux at the surface (kg.m-2.s-1) |
---|
| 37 | ! |
---|
| 38 | ! Outputs |
---|
| 39 | ! ------- |
---|
[1308] | 40 | ! pdpsrf(ngrid) \ Contribution of condensation/sublimation |
---|
| 41 | ! pdtc(ngrid,nlayer) / to the time derivatives of Ps, pt, and ptsrf |
---|
| 42 | ! pdtsrfc(ngrid) / |
---|
[305] | 43 | ! |
---|
| 44 | ! Both |
---|
| 45 | ! ---- |
---|
| 46 | ! piceco2(ngrid) CO2 ice at the surface (kg/m2) |
---|
| 47 | ! psolaralb(ngrid) Albedo at the surface |
---|
| 48 | ! pemisurf(ngrid) Emissivity of the surface |
---|
| 49 | ! |
---|
| 50 | ! Authors |
---|
| 51 | ! ------- |
---|
| 52 | ! Francois Forget (1996) |
---|
| 53 | ! Converted to Fortran 90 and slightly modified by R. Wordsworth (2009) |
---|
[526] | 54 | ! Includes simplifed nucleation by J. Leconte (2011) |
---|
[305] | 55 | ! |
---|
| 56 | !================================================================== |
---|
| 57 | |
---|
[1308] | 58 | !#include "dimensions.h" |
---|
| 59 | !#include "dimphys.h" |
---|
[305] | 60 | #include "comcstfi.h" |
---|
[1308] | 61 | !#include "comvert.h" |
---|
[305] | 62 | #include "callkeys.h" |
---|
| 63 | |
---|
| 64 | !----------------------------------------------------------------------- |
---|
| 65 | ! Arguments |
---|
| 66 | |
---|
[858] | 67 | INTEGER,INTENT(IN) :: ngrid |
---|
| 68 | INTEGER,INTENT(IN) :: nlayer |
---|
| 69 | INTEGER,INTENT(IN) :: nq |
---|
| 70 | REAL,INTENT(IN) :: ptimestep |
---|
| 71 | REAL,INTENT(IN) :: pcapcal(ngrid) |
---|
| 72 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) |
---|
| 73 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) |
---|
| 74 | REAL,INTENT(IN) :: ptsrf(ngrid) |
---|
| 75 | REAL,INTENT(IN) :: pt(ngrid,nlayer) |
---|
| 76 | REAL,INTENT(IN) :: pphi(ngrid,nlayer) |
---|
| 77 | REAL,INTENT(IN) :: pdt(ngrid,nlayer) |
---|
| 78 | REAL,INTENT(IN) :: pdu(ngrid,nlayer) |
---|
| 79 | REAL,INTENT(IN) :: pdv(ngrid,nlayer) |
---|
| 80 | REAL,INTENT(IN) :: pdtsrf(ngrid) |
---|
| 81 | REAL,INTENT(IN) :: pu(ngrid,nlayer) |
---|
| 82 | REAL,INTENT(IN) :: pv(ngrid,nlayer) |
---|
| 83 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) |
---|
| 84 | REAL,INTENT(IN) :: pdq(ngrid,nlayer,nq) |
---|
| 85 | REAL,INTENT(INOUT) :: piceco2(ngrid) |
---|
| 86 | REAL,INTENT(OUT) :: psolaralb(ngrid) |
---|
| 87 | REAL,INTENT(OUT) :: pemisurf(ngrid) |
---|
| 88 | REAL,INTENT(OUT) :: pdtc(ngrid,nlayer) |
---|
| 89 | REAL,INTENT(OUT) :: pdtsrfc(ngrid) |
---|
| 90 | REAL,INTENT(OUT) :: pdpsrf(ngrid) |
---|
| 91 | REAL,INTENT(OUT) :: pduc(ngrid,nlayer) |
---|
| 92 | REAL,INTENT(OUT) :: pdvc(ngrid,nlayer) |
---|
| 93 | REAL,INTENT(OUT) :: pdqc(ngrid,nlayer,nq) |
---|
[305] | 94 | |
---|
| 95 | !----------------------------------------------------------------------- |
---|
| 96 | ! Local variables |
---|
| 97 | |
---|
| 98 | INTEGER l,ig,icap,ilay,it,iq |
---|
| 99 | |
---|
[858] | 100 | REAL reffrad(ngrid,nlayer) ! radius (m) of the co2 ice particles |
---|
[1308] | 101 | REAL*8 zt(ngrid,nlayer) |
---|
| 102 | REAL zq(ngrid,nlayer,nq) |
---|
[305] | 103 | REAL zcpi |
---|
[1308] | 104 | REAL ztcond (ngrid,nlayer) |
---|
| 105 | REAL ztnuc (ngrid,nlayer) |
---|
[787] | 106 | REAL ztcondsol(ngrid) |
---|
| 107 | REAL zdiceco2(ngrid) |
---|
[1308] | 108 | REAL zcondicea(ngrid,nlayer), zcondices(ngrid) |
---|
[787] | 109 | REAL zfallice(ngrid), Mfallice(ngrid) |
---|
[1308] | 110 | REAL zmflux(nlayer+1) |
---|
| 111 | REAL zu(nlayer),zv(nlayer) |
---|
[787] | 112 | REAL ztsrf(ngrid) |
---|
[1308] | 113 | REAL ztc(nlayer), ztm(nlayer+1) |
---|
| 114 | REAL zum(nlayer+1) , zvm(nlayer+1) |
---|
[787] | 115 | LOGICAL condsub(ngrid) |
---|
[305] | 116 | REAL subptimestep |
---|
| 117 | Integer Ntime |
---|
[1308] | 118 | real masse (ngrid,nlayer), w(ngrid,nlayer,nq) |
---|
| 119 | real wq(ngrid,nlayer+1) |
---|
[305] | 120 | real vstokes,reff |
---|
| 121 | |
---|
| 122 | ! Special diagnostic variables |
---|
[1308] | 123 | real tconda1(ngrid,nlayer) |
---|
| 124 | real tconda2(ngrid,nlayer) |
---|
| 125 | real zdtsig (ngrid,nlayer) |
---|
| 126 | real zdt (ngrid,nlayer) |
---|
[305] | 127 | |
---|
| 128 | !----------------------------------------------------------------------- |
---|
| 129 | ! Saved local variables |
---|
| 130 | |
---|
[858] | 131 | REAL,SAVE :: latcond=5.9e5 |
---|
| 132 | REAL,SAVE :: ccond |
---|
| 133 | REAL,SAVE :: cpice=1000. |
---|
[787] | 134 | REAL,SAVE,ALLOCATABLE,DIMENSION(:) :: emisref |
---|
[1315] | 135 | !$OMP THREADPRIVATE(latcond,ccond,cpice,emisref) |
---|
[305] | 136 | |
---|
[858] | 137 | LOGICAL,SAVE :: firstcall=.true. |
---|
[1315] | 138 | !$OMP THREADPRIVATE(firstcall) |
---|
[858] | 139 | REAL,EXTERNAL :: SSUM |
---|
[305] | 140 | |
---|
[858] | 141 | REAL,EXTERNAL :: CBRT |
---|
[305] | 142 | |
---|
| 143 | INTEGER,SAVE :: i_co2ice=0 ! co2 ice |
---|
[1315] | 144 | !$OMP THREADPRIVATE(i_co2ice) |
---|
[305] | 145 | CHARACTER(LEN=20) :: tracername ! to temporarily store text |
---|
| 146 | |
---|
| 147 | integer igas |
---|
| 148 | |
---|
| 149 | real ppco2 |
---|
| 150 | |
---|
| 151 | !----------------------------------------------------------------------- |
---|
| 152 | ! Initializations |
---|
| 153 | |
---|
[858] | 154 | pdqc(1:ngrid,1:nlayer,1:nq)=0 |
---|
| 155 | pdtc(1:ngrid,1:nlayer)=0 |
---|
| 156 | zq(1:ngrid,1:nlayer,1:nq)=0 |
---|
| 157 | zt(1:ngrid,1:nlayer)=0 |
---|
[305] | 158 | |
---|
| 159 | ! Initialisation |
---|
| 160 | IF (firstcall) THEN |
---|
| 161 | |
---|
[787] | 162 | ALLOCATE(emisref(ngrid)) !! this should be deallocated in lastcall... |
---|
| 163 | |
---|
[305] | 164 | ! find CO2 ice tracer |
---|
[787] | 165 | do iq=1,nq |
---|
[305] | 166 | tracername=noms(iq) |
---|
| 167 | if (tracername.eq."co2_ice") then |
---|
| 168 | i_co2ice=iq |
---|
| 169 | endif |
---|
| 170 | enddo |
---|
| 171 | |
---|
[486] | 172 | write(*,*) "condense_cloud: i_co2ice=",i_co2ice |
---|
[305] | 173 | |
---|
| 174 | if((i_co2ice.lt.1))then |
---|
[486] | 175 | print*,'In condens_cloud but no CO2 ice tracer, exiting.' |
---|
| 176 | print*,'Still need generalisation to arbitrary species!' |
---|
[305] | 177 | stop |
---|
| 178 | endif |
---|
| 179 | |
---|
| 180 | ccond=cpp/(g*latcond) |
---|
[486] | 181 | print*,'In condens_cloud: ccond=',ccond,' latcond=',latcond |
---|
[305] | 182 | |
---|
| 183 | ! Prepare special treatment if gas is not pure CO2 |
---|
| 184 | !if (addn2) then |
---|
| 185 | ! m_co2 = 44.01E-3 ! CO2 molecular mass (kg/mol) |
---|
| 186 | ! m_noco2 = 28.02E-3 ! N2 molecular mass (kg/mol) |
---|
| 187 | ! Compute A and B coefficient use to compute |
---|
| 188 | ! mean molecular mass Mair defined by |
---|
| 189 | ! 1/Mair = q(ico2)/m_co2 + (1-q(ico2))/m_noco2 |
---|
| 190 | ! 1/Mair = A*q(ico2) + B |
---|
| 191 | ! A = (1/m_co2 - 1/m_noco2) |
---|
| 192 | ! B = 1/m_noco2 |
---|
| 193 | !endif |
---|
| 194 | |
---|
| 195 | ! Minimum CO2 mixing ratio below which mixing occurs with layer above: |
---|
| 196 | !qco2min =0.75 |
---|
| 197 | |
---|
| 198 | firstcall=.false. |
---|
| 199 | ENDIF |
---|
| 200 | zcpi=1./cpp |
---|
| 201 | |
---|
| 202 | !----------------------------------------------------------------------- |
---|
| 203 | ! Calculation of CO2 condensation / sublimation |
---|
| 204 | ! |
---|
| 205 | ! Variables used: |
---|
| 206 | ! piceco2(ngrid) amount of co2 ice on the ground (kg/m2) |
---|
| 207 | ! zcondicea(ngrid,l) condensation rate in layer l (kg/m2/s) |
---|
| 208 | ! zcondices(ngrid) condensation rate on the ground (kg/m2/s) |
---|
| 209 | ! zfallice(ngrid) flux of ice falling on surface (kg/m2/s) |
---|
[1308] | 210 | ! pdtc(ngrid,nlayer) dT/dt due to phase changes (K/s) |
---|
[305] | 211 | |
---|
| 212 | |
---|
| 213 | ! Tendencies initially set to 0 (except pdtc) |
---|
| 214 | DO l=1,nlayer |
---|
| 215 | DO ig=1,ngrid |
---|
| 216 | zcondicea(ig,l) = 0. |
---|
| 217 | pduc(ig,l) = 0 |
---|
| 218 | pdvc(ig,l) = 0 |
---|
| 219 | pdqc(ig,l,i_co2ice) = 0 |
---|
| 220 | END DO |
---|
| 221 | END DO |
---|
| 222 | |
---|
| 223 | DO ig=1,ngrid |
---|
| 224 | Mfallice(ig) = 0. |
---|
| 225 | zfallice(ig) = 0. |
---|
| 226 | zcondices(ig) = 0. |
---|
| 227 | pdtsrfc(ig) = 0. |
---|
| 228 | pdpsrf(ig) = 0. |
---|
| 229 | condsub(ig) = .false. |
---|
| 230 | zdiceco2(ig) = 0. |
---|
| 231 | ENDDO |
---|
| 232 | |
---|
| 233 | !----------------------------------------------------------------------- |
---|
| 234 | ! Atmospheric condensation |
---|
| 235 | |
---|
| 236 | |
---|
| 237 | ! Compute CO2 Volume mixing ratio |
---|
| 238 | ! ------------------------------- |
---|
| 239 | ! if (addn2) then |
---|
| 240 | ! DO l=1,nlayer |
---|
| 241 | ! DO ig=1,ngrid |
---|
| 242 | ! qco2=pq(ig,l,ico2)+pdq(ig,l,ico2)*ptimestep |
---|
| 243 | !! Mean air molecular mass = 1/(q(ico2)/m_co2 + (1-q(ico2))/m_noco2) |
---|
| 244 | ! mmean=1/(A*qco2 +B) |
---|
| 245 | ! vmr_co2(ig,l) = qco2*mmean/m_co2 |
---|
| 246 | ! ENDDO |
---|
| 247 | ! ENDDO |
---|
| 248 | ! else |
---|
| 249 | ! DO l=1,nlayer |
---|
| 250 | ! DO ig=1,ngrid |
---|
| 251 | ! vmr_co2(ig,l)=0.5 |
---|
| 252 | ! ENDDO |
---|
| 253 | ! ENDDO |
---|
| 254 | ! end if |
---|
| 255 | |
---|
[526] | 256 | ! Forecast the atmospheric frost temperature 'ztcond' and nucleation temperature 'ztnuc' |
---|
[305] | 257 | DO l=1,nlayer |
---|
| 258 | DO ig=1,ngrid |
---|
[869] | 259 | ppco2=gfrac(igas_CO2)*pplay(ig,l) |
---|
[305] | 260 | call get_tcond_co2(ppco2,ztcond(ig,l)) |
---|
[526] | 261 | call get_tnuc_co2(ppco2,ztnuc(ig,l)) |
---|
[305] | 262 | ENDDO |
---|
| 263 | ENDDO |
---|
| 264 | |
---|
| 265 | ! Initialize zq and zt at the beginning of the sub-timestep loop |
---|
| 266 | DO l=1,nlayer |
---|
| 267 | DO ig=1,ngrid |
---|
| 268 | zt(ig,l)=pt(ig,l) |
---|
| 269 | zq(ig,l,i_co2ice)=pq(ig,l,i_co2ice) |
---|
| 270 | IF( zq(ig,l,i_co2ice).lt.-1.e-6 ) THEN |
---|
| 271 | print*,'Uh-oh, zq = ',zq(ig,l,i_co2ice),'at ig,l=',ig,l |
---|
| 272 | if(l.eq.1)then |
---|
| 273 | print*,'Perhaps the atmosphere is collapsing on surface...?' |
---|
| 274 | endif |
---|
| 275 | END IF |
---|
| 276 | ENDDO |
---|
| 277 | ENDDO |
---|
| 278 | |
---|
| 279 | ! Calculate the mass of each atmospheric layer (kg.m-2) |
---|
| 280 | do ilay=1,nlayer |
---|
[787] | 281 | DO ig=1,ngrid |
---|
[305] | 282 | masse(ig,ilay)=(pplev(ig,ilay) - pplev(ig,ilay+1)) /g |
---|
| 283 | end do |
---|
| 284 | end do |
---|
| 285 | |
---|
| 286 | ! ----------------------------------------------- |
---|
| 287 | ! START CONDENSATION/SEDIMENTATION SUB-TIME LOOP |
---|
| 288 | ! ----------------------------------------------- |
---|
| 289 | Ntime = 20 ! number of sub-timestep |
---|
| 290 | subptimestep = ptimestep/float(Ntime) |
---|
| 291 | |
---|
| 292 | DO it=1,Ntime |
---|
| 293 | |
---|
| 294 | ! Add the tendencies from other physical processes at each subtimstep |
---|
| 295 | DO l=1,nlayer |
---|
| 296 | DO ig=1,ngrid |
---|
| 297 | zt(ig,l) = zt(ig,l) + pdt(ig,l) * subptimestep |
---|
| 298 | zq(ig,l,i_co2ice) = zq(ig,l,i_co2ice) + pdq(ig,l,i_co2ice) * subptimestep |
---|
| 299 | END DO |
---|
| 300 | END DO |
---|
| 301 | |
---|
| 302 | |
---|
| 303 | ! Gravitational sedimentation |
---|
| 304 | |
---|
[728] | 305 | ! sedimentation computed from radius computed from q in module radii_mod |
---|
[1308] | 306 | call co2_reffrad(ngrid,nlayer,nq,zq,reffrad) |
---|
[728] | 307 | |
---|
[305] | 308 | do ilay=1,nlayer |
---|
[787] | 309 | DO ig=1,ngrid |
---|
[305] | 310 | |
---|
[858] | 311 | reff = reffrad(ig,ilay) |
---|
[305] | 312 | |
---|
| 313 | call stokes & |
---|
| 314 | (pplev(ig,ilay),pt(ig,ilay), & |
---|
| 315 | reff,vstokes,rho_co2) |
---|
| 316 | |
---|
| 317 | !w(ig,ilay,i_co2ice) = 0.0 |
---|
| 318 | w(ig,ilay,i_co2ice) = vstokes * subptimestep * & |
---|
| 319 | pplev(ig,ilay)/(r*pt(ig,ilay)) |
---|
| 320 | |
---|
| 321 | end do |
---|
| 322 | end do |
---|
| 323 | |
---|
| 324 | ! Computing q after sedimentation |
---|
| 325 | |
---|
[1308] | 326 | call vlz_fi(ngrid,nlayer,zq(1,1,i_co2ice),2.,masse,w(1,1,i_co2ice),wq) |
---|
[305] | 327 | |
---|
| 328 | |
---|
| 329 | ! Progressively accumulating the flux to the ground |
---|
| 330 | ! Mfallice is the total amount of ice fallen to the ground |
---|
[787] | 331 | DO ig=1,ngrid |
---|
[305] | 332 | Mfallice(ig) = Mfallice(ig) + wq(ig,i_co2ice) |
---|
| 333 | end do |
---|
| 334 | |
---|
| 335 | |
---|
| 336 | ! Condensation / sublimation in the atmosphere |
---|
| 337 | ! -------------------------------------------- |
---|
| 338 | ! (calculation of zcondicea, zfallice and pdtc) |
---|
| 339 | ! (MODIFICATIONS FOR EARLY MARS: falling heat neglected, condensation |
---|
| 340 | ! of CO2 into tracer i_co2ice) |
---|
| 341 | |
---|
| 342 | DO l=nlayer , 1, -1 |
---|
| 343 | DO ig=1,ngrid |
---|
| 344 | pdtc(ig,l)=0. |
---|
| 345 | |
---|
| 346 | |
---|
[526] | 347 | ! ztcond-> ztnuc in test beneath to nucleate only when super saturation occurs(JL 2011) |
---|
| 348 | IF ((zt(ig,l).LT.ztnuc(ig,l)).or.(zq(ig,l,i_co2ice).gt.1.E-10)) THEN |
---|
[305] | 349 | condsub(ig)=.true. |
---|
| 350 | pdtc(ig,l) = (ztcond(ig,l) - zt(ig,l))/subptimestep |
---|
| 351 | pdqc(ig,l,i_co2ice) = pdtc(ig,l)*ccond*g |
---|
| 352 | |
---|
| 353 | ! Case when the ice from above sublimes entirely |
---|
| 354 | IF ((zq(ig,l,i_co2ice).lt.-pdqc(ig,l,i_co2ice)*subptimestep) & |
---|
| 355 | .AND. (zq(ig,l,i_co2ice).gt.0)) THEN |
---|
| 356 | |
---|
| 357 | pdqc(ig,l,i_co2ice) = -zq(ig,l,i_co2ice)/subptimestep |
---|
| 358 | pdtc(ig,l) =-zq(ig,l,i_co2ice)/(ccond*g*subptimestep) |
---|
| 359 | |
---|
| 360 | END IF |
---|
| 361 | |
---|
| 362 | ! Temperature and q after condensation |
---|
| 363 | zt(ig,l) = zt(ig,l) + pdtc(ig,l) * subptimestep |
---|
| 364 | zq(ig,l,i_co2ice) = zq(ig,l,i_co2ice) + pdqc(ig,l,i_co2ice) * subptimestep |
---|
| 365 | END IF |
---|
| 366 | |
---|
| 367 | ENDDO |
---|
| 368 | ENDDO |
---|
| 369 | ENDDO ! end of subtimestep loop |
---|
| 370 | |
---|
| 371 | ! Computing global tendencies after the subtimestep |
---|
| 372 | DO l=1,nlayer |
---|
| 373 | DO ig=1,ngrid |
---|
| 374 | pdtc(ig,l) = & |
---|
| 375 | (zt(ig,l) - (pt(ig,l) + pdt(ig,l)*ptimestep))/ptimestep |
---|
| 376 | pdqc(ig,l,i_co2ice) = & |
---|
| 377 | (zq(ig,l,i_co2ice)-(pq(ig,l,i_co2ice)+pdq(ig,l,i_co2ice)*ptimestep))/ptimestep |
---|
| 378 | END DO |
---|
| 379 | END DO |
---|
| 380 | DO ig=1,ngrid |
---|
| 381 | zfallice(ig) = Mfallice(ig)/ptimestep |
---|
| 382 | END DO |
---|
| 383 | |
---|
| 384 | |
---|
| 385 | !----------------------------------------------------------------------- |
---|
| 386 | ! Condensation/sublimation on the ground |
---|
| 387 | ! (calculation of zcondices and pdtsrfc) |
---|
| 388 | |
---|
| 389 | ! forecast of ground temperature ztsrf and frost temperature ztcondsol |
---|
| 390 | DO ig=1,ngrid |
---|
[869] | 391 | ppco2=gfrac(igas_CO2)*pplay(ig,1) |
---|
[305] | 392 | call get_tcond_co2(ppco2,ztcondsol(ig)) |
---|
| 393 | |
---|
| 394 | ztsrf(ig) = ptsrf(ig) |
---|
| 395 | |
---|
| 396 | if((ztsrf(ig).le.ztcondsol(ig)+2.0).and.(ngrid.eq.1))then |
---|
| 397 | print*,'CO2 is condensing on the surface in 1D. This atmosphere is doomed.' |
---|
| 398 | print*,'T_surf = ',ztsrf,'K' |
---|
| 399 | print*,'T_cond = ',ztcondsol,'K' |
---|
| 400 | open(116,file='surf_vals.out') |
---|
| 401 | write(116,*) 0.0, pplev(1,1), 0.0, 0.0 |
---|
| 402 | close(116) |
---|
| 403 | call abort |
---|
| 404 | endif |
---|
| 405 | |
---|
| 406 | ztsrf(ig) = ptsrf(ig) + pdtsrf(ig)*ptimestep |
---|
| 407 | |
---|
| 408 | ENDDO |
---|
| 409 | |
---|
| 410 | DO ig=1,ngrid |
---|
| 411 | IF(ig.GT.ngrid/2+1) THEN |
---|
| 412 | icap=2 |
---|
| 413 | ELSE |
---|
| 414 | icap=1 |
---|
| 415 | ENDIF |
---|
| 416 | |
---|
| 417 | ! Loop over where we have condensation / sublimation |
---|
| 418 | IF ((ztsrf(ig) .LT. ztcondsol(ig)) .OR. & ! ground condensation |
---|
| 419 | (zfallice(ig).NE.0.) .OR. & ! falling snow |
---|
| 420 | ((ztsrf(ig) .GT. ztcondsol(ig)) .AND. & ! ground sublimation |
---|
| 421 | ((piceco2(ig)+zfallice(ig)*ptimestep) .NE. 0.))) THEN |
---|
| 422 | condsub(ig) = .true. |
---|
| 423 | |
---|
| 424 | ! Condensation or partial sublimation of CO2 ice |
---|
| 425 | zcondices(ig)=pcapcal(ig)*(ztcondsol(ig)-ztsrf(ig)) & |
---|
| 426 | /(latcond*ptimestep) |
---|
| 427 | pdtsrfc(ig) = (ztcondsol(ig) - ztsrf(ig))/ptimestep |
---|
| 428 | |
---|
| 429 | ! If the entire CO_2 ice layer sublimes |
---|
| 430 | ! (including what has just condensed in the atmosphere) |
---|
| 431 | IF((piceco2(ig)/ptimestep+zfallice(ig)).LE. & |
---|
| 432 | -zcondices(ig))THEN |
---|
| 433 | zcondices(ig) = -piceco2(ig)/ptimestep - zfallice(ig) |
---|
| 434 | pdtsrfc(ig)=(latcond/pcapcal(ig))* & |
---|
| 435 | (zcondices(ig)) |
---|
| 436 | END IF |
---|
| 437 | |
---|
| 438 | ! Changing CO2 ice amount and pressure |
---|
| 439 | |
---|
| 440 | zdiceco2(ig) = zcondices(ig) + zfallice(ig) |
---|
| 441 | piceco2(ig) = piceco2(ig) + zdiceco2(ig)*ptimestep |
---|
| 442 | pdpsrf(ig) = -zdiceco2(ig)*g |
---|
| 443 | |
---|
| 444 | IF(ABS(pdpsrf(ig)*ptimestep).GT.pplev(ig,1)) THEN |
---|
| 445 | PRINT*,'STOP in condens' |
---|
| 446 | PRINT*,'condensing more than total mass' |
---|
| 447 | PRINT*,'Grid point ',ig |
---|
| 448 | PRINT*,'Ps = ',pplev(ig,1) |
---|
| 449 | PRINT*,'d Ps = ',pdpsrf(ig) |
---|
| 450 | STOP |
---|
| 451 | ENDIF |
---|
| 452 | END IF |
---|
| 453 | ENDDO |
---|
| 454 | |
---|
| 455 | ! Surface albedo and emissivity of the ground below the snow (emisref) |
---|
| 456 | ! -------------------------------------------------------------------- |
---|
[787] | 457 | DO ig=1,ngrid |
---|
[1216] | 458 | IF(lati(ig).LT.0.) THEN |
---|
| 459 | icap=2 ! Southern Hemisphere |
---|
[305] | 460 | ELSE |
---|
[1216] | 461 | icap=1 ! Nortnern hemisphere |
---|
[305] | 462 | ENDIF |
---|
| 463 | |
---|
| 464 | if(.not.piceco2(ig).ge.0.) THEN |
---|
| 465 | if(piceco2(ig).le.-1.e-8) print*, & |
---|
| 466 | 'WARNING in condense_co2cloud: piceco2(',ig,')=', piceco2(ig) |
---|
| 467 | piceco2(ig)=0. |
---|
| 468 | endif |
---|
| 469 | if (piceco2(ig).gt.0) then |
---|
| 470 | psolaralb(ig) = albedice(icap) |
---|
| 471 | emisref(ig) = emisice(icap) |
---|
| 472 | else |
---|
| 473 | psolaralb(ig) = albedodat(ig) |
---|
| 474 | emisref(ig) = emissiv |
---|
| 475 | pemisurf(ig) = emissiv |
---|
| 476 | end if |
---|
| 477 | end do |
---|
| 478 | |
---|
| 479 | return |
---|
| 480 | end subroutine condense_cloud |
---|
| 481 | |
---|
| 482 | !------------------------------------------------------------------------- |
---|
| 483 | subroutine get_tcond_co2(p,tcond) |
---|
| 484 | ! Calculates the condensation temperature for CO2 |
---|
| 485 | |
---|
| 486 | implicit none |
---|
| 487 | |
---|
| 488 | #include "callkeys.h" |
---|
| 489 | |
---|
| 490 | real p, peff, tcond |
---|
| 491 | real, parameter :: ptriple=518000.0 |
---|
| 492 | |
---|
[526] | 493 | peff=p |
---|
[305] | 494 | |
---|
| 495 | if(peff.lt.ptriple)then |
---|
| 496 | tcond = (-3167.8)/(log(.01*peff)-23.23) ! Fanale's formula |
---|
| 497 | else |
---|
| 498 | tcond = 684.2-92.3*log(peff)+4.32*log(peff)**2 |
---|
| 499 | ! liquid-vapour transition (based on CRC handbook 2003 data) |
---|
| 500 | endif |
---|
| 501 | return |
---|
| 502 | |
---|
| 503 | end subroutine get_tcond_co2 |
---|
[526] | 504 | |
---|
| 505 | |
---|
| 506 | |
---|
| 507 | |
---|
| 508 | !------------------------------------------------------------------------- |
---|
| 509 | subroutine get_tnuc_co2(p,tnuc) |
---|
| 510 | ! Calculates the nucleation temperature for CO2, based on a simple super saturation criterion |
---|
| 511 | ! (JL 2011) |
---|
| 512 | |
---|
| 513 | implicit none |
---|
| 514 | |
---|
| 515 | #include "callkeys.h" |
---|
| 516 | |
---|
| 517 | real p, peff, tnuc |
---|
| 518 | real, parameter :: ptriple=518000.0 |
---|
| 519 | |
---|
| 520 | peff=p/co2supsat |
---|
| 521 | |
---|
| 522 | if(peff.lt.ptriple)then |
---|
| 523 | tnuc = (-3167.8)/(log(.01*peff)-23.23) ! Fanale's formula |
---|
| 524 | else |
---|
| 525 | tnuc = 684.2-92.3*log(peff)+4.32*log(peff)**2 |
---|
| 526 | ! liquid-vapour transition (based on CRC handbook 2003 data) |
---|
| 527 | endif |
---|
| 528 | return |
---|
| 529 | |
---|
| 530 | end subroutine get_tnuc_co2 |
---|