[135] | 1 | subroutine callcorrk(icount,ngrid,nlayer,pq,nq,qsurf, |
---|
| 2 | & albedo,emis,mu0,pplev,pplay,pt, |
---|
| 3 | & tsurf,fract,dist_star,igout,aerosol,cpp3D, |
---|
| 4 | & dtlw,dtsw,fluxsurf_lw, |
---|
| 5 | & fluxsurf_sw,fluxtop_lw,fluxtop_sw,fluxtop_dn, |
---|
| 6 | & reffrad,tau_col,ptime,pday,firstcall,lastcall) |
---|
| 7 | |
---|
| 8 | use radinc_h |
---|
| 9 | use radcommon_h |
---|
| 10 | use ioipsl_getincom |
---|
| 11 | |
---|
| 12 | implicit none |
---|
| 13 | |
---|
| 14 | !================================================================== |
---|
| 15 | ! |
---|
| 16 | ! Purpose |
---|
| 17 | ! ------- |
---|
| 18 | ! Solve the radiative transfer using the correlated-k method for |
---|
| 19 | ! the gaseous absorption and the Toon et al. (1989) method for |
---|
| 20 | ! scatttering due to aerosols. |
---|
| 21 | ! |
---|
| 22 | ! Authors |
---|
| 23 | ! ------- |
---|
| 24 | ! Emmanuel 01/2001, Forget 09/2001 |
---|
| 25 | ! Robin Wordsworth (2009) |
---|
| 26 | ! |
---|
| 27 | !================================================================== |
---|
| 28 | |
---|
| 29 | #include "dimphys.h" |
---|
| 30 | #include "datafile.h" |
---|
| 31 | #include "comcstfi.h" |
---|
| 32 | #include "callkeys.h" |
---|
| 33 | #include "tracer.h" |
---|
| 34 | |
---|
| 35 | !----------------------------------------------------------------------- |
---|
| 36 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
---|
| 37 | ! Layer #1 is the layer near the ground. |
---|
| 38 | ! Layer #nlayermx is the layer at the top. |
---|
| 39 | |
---|
| 40 | ! INPUT |
---|
| 41 | INTEGER icount |
---|
| 42 | INTEGER ngrid,nlayer |
---|
| 43 | INTEGER igout |
---|
| 44 | REAL aerosol(ngrid,nlayermx,naerkind) ! aerosol tau (kg/kg) |
---|
| 45 | REAL albedo(ngrid) ! SW albedo |
---|
| 46 | REAL emis(ngrid) ! LW emissivity |
---|
| 47 | REAL pplay(ngrid,nlayermx) ! pres. level in GCM mid of layer |
---|
| 48 | REAL pplev(ngrid,nlayermx+1) ! pres. level at GCM layer boundaries |
---|
| 49 | |
---|
| 50 | REAL pt(ngrid,nlayermx) ! air temperature (K) |
---|
| 51 | REAL tsurf(ngrid) ! surface temperature (K) |
---|
| 52 | REAL dist_star,mu0(ngrid) ! distance star-planet (AU) |
---|
| 53 | REAL fract(ngrid) ! fraction of day |
---|
| 54 | |
---|
| 55 | ! Globally varying aerosol optical properties on GCM grid |
---|
| 56 | ! Not needed everywhere so not in radcommon_h |
---|
| 57 | REAL :: QVISsQREF3d(ngridmx,nlayermx,L_NSPECTV,naerkind) |
---|
| 58 | REAL :: omegaVIS3d(ngridmx,nlayermx,L_NSPECTV,naerkind) |
---|
| 59 | REAL :: gVIS3d(ngridmx,nlayermx,L_NSPECTV,naerkind) |
---|
| 60 | |
---|
| 61 | REAL :: QIRsQREF3d(ngridmx,nlayermx,L_NSPECTI,naerkind) |
---|
| 62 | REAL :: omegaIR3d(ngridmx,nlayermx,L_NSPECTI,naerkind) |
---|
| 63 | REAL :: gIR3d(ngridmx,nlayermx,L_NSPECTI,naerkind) |
---|
| 64 | |
---|
| 65 | REAL :: QREFvis3d(ngridmx,nlayermx,naerkind) |
---|
| 66 | REAL :: QREFir3d(ngridmx,nlayermx,naerkind) |
---|
| 67 | |
---|
| 68 | ! REAL :: omegaREFvis3d(ngridmx,nlayermx,naerkind) |
---|
| 69 | ! REAL :: omegaREFir3d(ngridmx,nlayermx,naerkind) ! not sure of the point of these... |
---|
| 70 | |
---|
| 71 | REAL reffrad(ngrid,nlayer,naerkind) |
---|
| 72 | REAL nueffrad(ngrid,nlayer,naerkind) |
---|
| 73 | |
---|
| 74 | ! OUTPUT |
---|
| 75 | REAL dtsw(ngridmx,nlayermx) ! heating rate (K/s) due to SW |
---|
| 76 | REAL dtlw(ngridmx,nlayermx) ! heating rate (K/s) due to LW |
---|
| 77 | REAL fluxsurf_lw(ngridmx) ! incident LW flux to surf (W/m2) |
---|
| 78 | REAL fluxtop_lw(ngridmx) ! outgoing LW flux to space (W/m2) |
---|
| 79 | REAL fluxsurf_sw(ngridmx) ! incident SW flux to surf (W/m2) |
---|
| 80 | REAL fluxtop_sw(ngridmx) ! outgoing LW flux to space (W/m2) |
---|
| 81 | REAL fluxtop_dn(ngridmx) ! incident top of atmosphere SW flux (W/m2) |
---|
| 82 | |
---|
| 83 | !----------------------------------------------------------------------- |
---|
| 84 | ! Declaration of the variables required by correlated-k subroutines |
---|
| 85 | ! Numbered from top to bottom unlike in the GCM! |
---|
| 86 | |
---|
| 87 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
---|
| 88 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
---|
| 89 | |
---|
| 90 | ! Optical values for the optci/cv subroutines |
---|
| 91 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
---|
| 92 | REAL*8 dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 93 | REAL*8 dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 94 | REAL*8 cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 95 | REAL*8 cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 96 | REAL*8 wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 97 | REAL*8 wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 98 | REAL*8 tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 99 | REAL*8 taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 100 | REAL*8 taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
| 101 | |
---|
| 102 | REAL*8 tauaero(L_LEVELS+1,naerkind) |
---|
| 103 | REAL*8 nfluxtopv,nfluxtopi,nfluxtop |
---|
| 104 | real*8 NFLUXTOPV_nu(L_NSPECTV) |
---|
| 105 | real*8 NFLUXTOPI_nu(L_NSPECTI) |
---|
| 106 | real*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! for 1D diagnostic |
---|
| 107 | REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) |
---|
| 108 | REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) |
---|
| 109 | REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) |
---|
| 110 | REAL*8 albi,albv,acosz |
---|
| 111 | |
---|
| 112 | INTEGER ig,l,k,nw,iaer,irad |
---|
| 113 | |
---|
| 114 | real fluxtoplanet |
---|
| 115 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
| 116 | real*8 taugsurfi(L_NSPECTI,L_NGAUSS-1) |
---|
| 117 | |
---|
| 118 | real*8 qvar(L_LEVELS) ! mixing ratio of variable component |
---|
| 119 | REAL pq(ngridmx,nlayer,nq) |
---|
| 120 | REAL qsurf(ngridmx,nqmx) ! tracer on surface (e.g. kg.m-2) |
---|
| 121 | integer nq |
---|
| 122 | |
---|
| 123 | ! Local aerosol optical properties for each column on RADIATIVE grid |
---|
| 124 | real*8 QXVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
| 125 | real*8 QSVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
| 126 | real*8 GVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
| 127 | real*8 QXIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
| 128 | real*8 QSIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
| 129 | real*8 GIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
| 130 | |
---|
| 131 | save qxvaer, qsvaer, gvaer |
---|
| 132 | save qxiaer, qsiaer, giaer |
---|
| 133 | save QREFvis3d, QREFir3d |
---|
| 134 | |
---|
| 135 | REAL tau_col(ngrid) ! diagnostic from aeropacity |
---|
| 136 | |
---|
| 137 | ! Misc. |
---|
| 138 | logical firstcall, lastcall, nantest |
---|
| 139 | real*8 tempv(L_NSPECTV) |
---|
| 140 | real*8 tempi(L_NSPECTI) |
---|
| 141 | real*8 temp,temp1,temp2,pweight |
---|
| 142 | character(len=10) :: tmp1 |
---|
| 143 | character(len=10) :: tmp2 |
---|
| 144 | |
---|
| 145 | ! for fixed water vapour profiles |
---|
| 146 | integer i_var |
---|
| 147 | real RH |
---|
| 148 | real*8 pq_temp(nlayer) |
---|
| 149 | real ptemp, Ttemp, qsat |
---|
| 150 | |
---|
| 151 | ! real(KIND=r8) :: pq_temp(nlayer) ! better F90 way.. DOESNT PORT TO F77!!! |
---|
| 152 | |
---|
| 153 | ! for OLR spec |
---|
| 154 | integer OLRcount |
---|
| 155 | save OLRcount |
---|
| 156 | integer OLRcount2 |
---|
| 157 | save OLRcount2 |
---|
| 158 | character(len=2) :: tempOLR |
---|
| 159 | character(len=30) :: filenomOLR |
---|
| 160 | real ptime, pday |
---|
| 161 | logical OLRz |
---|
| 162 | real OLR_nu(ngrid,L_NSPECTI) |
---|
| 163 | |
---|
| 164 | ! Allow variations in cp with location |
---|
| 165 | REAL cpp3D(ngridmx,nlayermx) ! specific heat capacity at const. pressure |
---|
| 166 | |
---|
| 167 | ! for Dave Crisp LBL data comparison |
---|
| 168 | logical crisp |
---|
| 169 | crisp=.false. |
---|
| 170 | |
---|
| 171 | |
---|
| 172 | !======================================================================= |
---|
| 173 | ! Initialization on first call |
---|
| 174 | |
---|
| 175 | CALL zerophys((L_LEVELS+1)*L_NSPECTV*naerkind,qxvaer) |
---|
| 176 | CALL zerophys((L_LEVELS+1)*L_NSPECTV*naerkind,qsvaer) |
---|
| 177 | CALL zerophys((L_LEVELS+1)*L_NSPECTV*naerkind,gvaer) |
---|
| 178 | |
---|
| 179 | CALL zerophys((L_LEVELS+1)*L_NSPECTI*naerkind,qxiaer) |
---|
| 180 | CALL zerophys((L_LEVELS+1)*L_NSPECTI*naerkind,qsiaer) |
---|
| 181 | CALL zerophys((L_LEVELS+1)*L_NSPECTI*naerkind,giaer) |
---|
| 182 | |
---|
| 183 | if(firstcall) then |
---|
| 184 | |
---|
| 185 | |
---|
| 186 | !-------------------------------------------------- |
---|
| 187 | ! Effective radius and variance of the aerosols |
---|
| 188 | |
---|
| 189 | ! CO2 ice: |
---|
| 190 | DO l=1,nlayer |
---|
| 191 | DO ig=1,ngrid |
---|
| 192 | reffrad(ig,l,1) = 1.e-4 |
---|
| 193 | nueffrad(ig,l,1) = 0.1 |
---|
| 194 | ! these values will change once the microphysics gets to work |
---|
| 195 | ! UNLESS tracer=.false., in which case we should be working with |
---|
| 196 | ! a fixed aerosol layer, and be able to define reffrad in a |
---|
| 197 | ! .def file. To be improved! |
---|
| 198 | ENDDO |
---|
| 199 | ENDDO |
---|
| 200 | |
---|
| 201 | ! H2O ice: |
---|
| 202 | if(naerkind.eq.2)then |
---|
| 203 | DO l=1,nlayer |
---|
| 204 | DO ig=1,ngrid |
---|
| 205 | reffrad(ig,l,naerkind) = 1.e-5 |
---|
| 206 | nueffrad(ig,l,naerkind) = 0.1 |
---|
| 207 | ENDDO |
---|
| 208 | ENDDO |
---|
| 209 | endif |
---|
| 210 | |
---|
| 211 | print*, "Correlated-k data base folder:",datafile |
---|
| 212 | call getin("corrkdir",corrkdir) |
---|
| 213 | print*, "corrkdir = ",corrkdir |
---|
| 214 | write( tmp1, '(i3)' ) L_NSPECTI |
---|
| 215 | write( tmp2, '(i3)' ) L_NSPECTV |
---|
| 216 | banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
---|
| 217 | banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
---|
| 218 | |
---|
| 219 | print*,'starting sugas' |
---|
| 220 | call sugas_corrk ! set up gaseous absorption properties |
---|
| 221 | print*,'starting setspi' |
---|
| 222 | call setspi ! basic infrared properties |
---|
| 223 | print*,'starting setspv' |
---|
| 224 | call setspv ! basic visible properties |
---|
| 225 | print*,'starting suaer_corrk' |
---|
| 226 | call suaer_corrk ! set up aerosol optical properties |
---|
| 227 | |
---|
| 228 | Cmk= 0.01 * 1.0 / (g * mugaz * 1.672621e-27) ! q_main=1.0 assumed |
---|
| 229 | |
---|
| 230 | if((igcm_h2o_vap.eq.0) .and. varactive)then |
---|
| 231 | print*,'varactive in callcorrk but no h2o_vap tracer.' |
---|
| 232 | stop |
---|
| 233 | endif |
---|
| 234 | |
---|
| 235 | firstcall=.false. |
---|
| 236 | |
---|
| 237 | end if |
---|
| 238 | |
---|
| 239 | !======================================================================= |
---|
| 240 | ! Initialization on every call |
---|
| 241 | |
---|
| 242 | do l=1,nlayer |
---|
| 243 | do ig=1,ngrid |
---|
| 244 | do iaer=1,naerkind |
---|
| 245 | nueffrad(ig,l,iaer) = 0.1 ! this little bastard stays at 0.1 forever |
---|
| 246 | enddo |
---|
| 247 | enddo |
---|
| 248 | enddo |
---|
| 249 | |
---|
| 250 | ! if(aerofixed)then ! fixed particle radii if aerofixed=.true. |
---|
| 251 | do l=1,nlayer |
---|
| 252 | do ig=1,ngrid |
---|
| 253 | reffrad(ig,l,1) = 3.5e-5 |
---|
| 254 | enddo |
---|
| 255 | enddo |
---|
| 256 | if(naerkind.eq.2)then |
---|
| 257 | do l=1,nlayer |
---|
| 258 | do ig=1,ngrid |
---|
| 259 | reffrad(ig,l,2) = 5.e-6 |
---|
| 260 | enddo |
---|
| 261 | enddo |
---|
| 262 | endif |
---|
| 263 | ! endif |
---|
| 264 | |
---|
| 265 | ! how much light we get |
---|
| 266 | fluxtoplanet=0 |
---|
| 267 | DO nw=1,L_NSPECTV |
---|
| 268 | stel(nw)=stellarf(nw)/(dist_star**2) |
---|
| 269 | fluxtoplanet=fluxtoplanet + stel(nw) |
---|
| 270 | END DO |
---|
| 271 | |
---|
| 272 | ! print*,'nueffrad',nueffrad |
---|
| 273 | ! print*,'reffrad before',reffrad |
---|
| 274 | ! print*,'nueffrad before',nueffrad |
---|
| 275 | ! CALL aeroptproperties(ngrid,nlayer,reffrad,nueffrad, |
---|
| 276 | ! & QVISsQREF3d,omegaVIS3d,gVIS3d, |
---|
| 277 | ! & QIRsQREF3d,omegaIR3d,gIR3d, |
---|
| 278 | ! & QREFvis3d,QREFir3d) ! get 3D aerosol optical properties |
---|
| 279 | |
---|
| 280 | CALL aeroptpropertiesJBnew(ngrid,nlayer,reffrad,nueffrad, |
---|
| 281 | & QVISsQREF3d,omegaVIS3d,gVIS3d, |
---|
| 282 | & QIRsQREF3d,omegaIR3d,gIR3d, |
---|
| 283 | & QREFvis3d,QREFir3d) |
---|
| 284 | |
---|
| 285 | ! print*,'QVISsQREF3d=',QVISsQREF3d |
---|
| 286 | ! print*,'QIRsQREF3d=',QIRsQREF3d |
---|
| 287 | ! print*,'omegaVIS3d=',omegaVIS3d |
---|
| 288 | ! print*,'omegaIR3d=',omegaIR3d |
---|
| 289 | ! print*,'gVIS3d=',gVIS3d |
---|
| 290 | ! print*,'gIR3d=',gIR3d |
---|
| 291 | ! print*,'reffrad after',reffrad |
---|
| 292 | ! print*,'nueffrad after',nueffrad |
---|
| 293 | ! print*,'QREFvis3d=',QREFvis3d |
---|
| 294 | ! print*,'QREFir3d=',QREFir3d |
---|
| 295 | ! stop |
---|
| 296 | |
---|
| 297 | call aeropacity(ngrid,nlayer,nq,pplev,pq,aerosol, |
---|
| 298 | & reffrad,QREFvis3d,QREFir3d,tau_col) ! get aerosol optical depths |
---|
| 299 | |
---|
| 300 | |
---|
| 301 | !----------------------------------------------------------------------- |
---|
| 302 | ! Starting Big Loop over every GCM column |
---|
| 303 | do ig=1,ngridmx |
---|
| 304 | |
---|
| 305 | !======================================================================= |
---|
| 306 | ! Transformation of the GCM variables |
---|
| 307 | |
---|
| 308 | !----------------------------------------------------------------------- |
---|
| 309 | ! Aerosol optical properties Qext, Qscat and g |
---|
| 310 | ! The transformation in the vertical is the same as for temperature |
---|
| 311 | |
---|
| 312 | ! shortwave |
---|
| 313 | do iaer=1,naerkind |
---|
| 314 | DO nw=1,L_NSPECTV |
---|
| 315 | do l=1,nlayermx |
---|
| 316 | |
---|
| 317 | temp1=QVISsQREF3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 318 | $ *QREFvis3d(ig,nlayermx+1-l,iaer) |
---|
| 319 | |
---|
| 320 | temp2=QVISsQREF3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 321 | $ *QREFvis3d(ig,max(nlayermx-l,1),iaer) |
---|
| 322 | |
---|
| 323 | qxvaer(2*l,nw,iaer) = temp1 |
---|
| 324 | qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 325 | |
---|
| 326 | temp1=temp1*omegavis3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 327 | temp2=temp2*omegavis3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 328 | |
---|
| 329 | qsvaer(2*l,nw,iaer) = temp1 |
---|
| 330 | qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 331 | |
---|
| 332 | temp1=gvis3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 333 | temp2=gvis3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 334 | |
---|
| 335 | gvaer(2*l,nw,iaer) = temp1 |
---|
| 336 | gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 337 | |
---|
| 338 | end do |
---|
| 339 | qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) |
---|
| 340 | qxvaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 341 | |
---|
| 342 | qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) |
---|
| 343 | qsvaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 344 | |
---|
| 345 | gvaer(1,nw,iaer)=gvaer(2,nw,iaer) |
---|
| 346 | gvaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 347 | end do |
---|
| 348 | |
---|
| 349 | ! longwave |
---|
| 350 | DO nw=1,L_NSPECTI |
---|
| 351 | do l=1,nlayermx |
---|
| 352 | |
---|
| 353 | temp1=QIRsQREF3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 354 | $ *QREFir3d(ig,nlayermx+1-l,iaer) |
---|
| 355 | |
---|
| 356 | temp2=QIRsQREF3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 357 | $ *QREFir3d(ig,max(nlayermx-l,1),iaer) |
---|
| 358 | |
---|
| 359 | qxiaer(2*l,nw,iaer) = temp1 |
---|
| 360 | qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 361 | |
---|
| 362 | temp1=temp1*omegair3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 363 | temp2=temp2*omegair3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 364 | |
---|
| 365 | qsiaer(2*l,nw,iaer) = temp1 |
---|
| 366 | qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 367 | |
---|
| 368 | temp1=gir3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 369 | temp2=gir3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 370 | |
---|
| 371 | giaer(2*l,nw,iaer) = temp1 |
---|
| 372 | giaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 373 | |
---|
| 374 | end do |
---|
| 375 | |
---|
| 376 | qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer) |
---|
| 377 | qxiaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 378 | |
---|
| 379 | qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer) |
---|
| 380 | qsiaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 381 | |
---|
| 382 | giaer(1,nw,iaer)=giaer(2,nw,iaer) |
---|
| 383 | giaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 384 | end do |
---|
| 385 | end do |
---|
| 386 | |
---|
| 387 | !----------------------------------------------------------------------- |
---|
| 388 | ! Aerosol optical depths |
---|
| 389 | |
---|
| 390 | do iaer=1,naerkind ! a bug was here |
---|
| 391 | do k=0,nlayer-1 |
---|
| 392 | |
---|
| 393 | pweight= |
---|
| 394 | $ (pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ |
---|
| 395 | $ (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) |
---|
| 396 | |
---|
| 397 | temp=aerosol(ig,L_NLAYRAD-k,iaer)/ |
---|
| 398 | $ QREFvis3d(ig,L_NLAYRAD-k,iaer) |
---|
| 399 | |
---|
| 400 | tauaero(2*k+2,iaer)=max(temp*pweight,0.0) |
---|
| 401 | tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.0) |
---|
| 402 | ! tauaero(2*k+2,iaer)= |
---|
| 403 | ! & real(max(temp*pweight,0.0),8) |
---|
| 404 | ! tauaero(2*k+3,iaer)= |
---|
| 405 | ! & real(max(temp-tauaero(2*k+2,iaer),0.0),8) |
---|
| 406 | |
---|
| 407 | end do |
---|
| 408 | tauaero(1,iaer)=0. |
---|
| 409 | end do |
---|
| 410 | |
---|
| 411 | ! Albedo and emissivity |
---|
| 412 | albi=1-emis(ig) ! longwave |
---|
| 413 | albv=albedo(ig) ! shortwave |
---|
| 414 | |
---|
| 415 | if(ngrid.eq.1) then ! fixed zenith angle in 1D |
---|
| 416 | acosz = 0.5 |
---|
| 417 | print*,'Solar zenith angle fixed at 60 deg in 1D (callcorrk.F)' |
---|
| 418 | else |
---|
| 419 | acosz=mu0(ig) ! cosine of sun incident angle |
---|
| 420 | endif |
---|
| 421 | |
---|
| 422 | |
---|
| 423 | !----------------------------------------------------------------------- |
---|
| 424 | ! Water vapour (to be generalised / ignored for other planets) |
---|
| 425 | |
---|
| 426 | if(varactive) then |
---|
| 427 | i_var=igcm_h2o_vap |
---|
| 428 | |
---|
| 429 | do l=1,nlayer |
---|
| 430 | qvar(2*l) = pq(ig,nlayer+1-l,i_var) |
---|
| 431 | qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig, |
---|
| 432 | $ max(nlayer-l,1),i_var))/2 ! Average approximation as for temperature... |
---|
| 433 | end do |
---|
| 434 | qvar(1)=qvar(2) |
---|
| 435 | qvar(2*nlayermx+1)=qsurf(ig,i_var) |
---|
| 436 | |
---|
| 437 | elseif(varfixed)then |
---|
| 438 | |
---|
| 439 | do l=1,nlayermx ! here we will assign fixed water vapour profiles globally |
---|
| 440 | RH = satval * ((pplay(ig,l)/pplev(ig,1) - 0.02) / 0.98) |
---|
| 441 | if(RH.lt.0.0) RH=0.0 |
---|
| 442 | |
---|
| 443 | ptemp=pplay(ig,l) |
---|
| 444 | Ttemp=pt(ig,l) |
---|
| 445 | call watersat_2(Ttemp,ptemp,qsat) |
---|
| 446 | |
---|
| 447 | !pq_temp(l) = qsat ! fully saturated everywhere |
---|
| 448 | pq_temp(l) = RH * qsat ! ~realistic profile (80% saturation at ground) |
---|
| 449 | end do |
---|
| 450 | |
---|
| 451 | do l=1,nlayer |
---|
| 452 | qvar(2*l) = pq_temp(nlayer+1-l) |
---|
| 453 | qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp( |
---|
| 454 | $ max(nlayer-l,1)))/2 |
---|
| 455 | end do |
---|
| 456 | qvar(1)=qvar(2) |
---|
| 457 | |
---|
| 458 | ! Lowest layer of atmosphere |
---|
| 459 | RH = satval * (1 - 0.02) / 0.98 |
---|
| 460 | if(RH.lt.0.0) RH=0.0 |
---|
| 461 | |
---|
| 462 | ptemp = pplev(ig,1) |
---|
| 463 | Ttemp = tsurf(ig) |
---|
| 464 | call watersat_2(Ttemp,ptemp,qsat) |
---|
| 465 | |
---|
| 466 | !qvar(2*nlayermx+1)=qsat ! fully saturated everywhere |
---|
| 467 | qvar(2*nlayermx+1)= RH * qsat ! ~realistic profile (80% saturation at ground) |
---|
| 468 | |
---|
| 469 | else |
---|
| 470 | do k=1,L_LEVELS |
---|
| 471 | qvar(k) = 1.0D-7 |
---|
| 472 | end do |
---|
| 473 | end if |
---|
| 474 | |
---|
| 475 | ! Keep values inside limits for which we have radiative transfer coefficients |
---|
| 476 | if(L_REFVAR.gt.1)then ! there was a bug here! |
---|
| 477 | do k=1,L_LEVELS |
---|
| 478 | if(qvar(k).lt.wrefvar(1))then |
---|
| 479 | qvar(k)=wrefvar(1)+1.0e-8 |
---|
| 480 | elseif(qvar(k).gt.wrefvar(L_REFVAR))then |
---|
| 481 | qvar(k)=wrefvar(L_REFVAR)-1.0e-8 |
---|
| 482 | endif |
---|
| 483 | end do |
---|
| 484 | endif |
---|
| 485 | |
---|
| 486 | !----------------------------------------------------------------------- |
---|
| 487 | ! Pressure and temperature |
---|
| 488 | |
---|
| 489 | DO l=1,nlayer |
---|
| 490 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
---|
| 491 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
---|
| 492 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
---|
| 493 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig, |
---|
| 494 | $ max(nlayer-l,1)))/2 |
---|
| 495 | END DO |
---|
| 496 | |
---|
| 497 | plevrad(1) = 0 |
---|
| 498 | plevrad(2) = max(pgasmin,0.0001*plevrad(3)) |
---|
| 499 | |
---|
| 500 | tlevrad(1) = tlevrad(2) |
---|
| 501 | tlevrad(2*nlayermx+1)=tsurf(ig) |
---|
| 502 | |
---|
| 503 | |
---|
| 504 | if(crisp)then |
---|
| 505 | open(111,file='/u/rwlmd/CrispLBL/p.dat') |
---|
| 506 | open(112,file='/u/rwlmd/CrispLBL/T.dat') |
---|
| 507 | do k=1,L_LEVELS |
---|
| 508 | read(111,*) plevrad(k) |
---|
| 509 | read(112,*) tlevrad(k) |
---|
| 510 | plevrad(k)=plevrad(k)*1000.0 |
---|
| 511 | enddo |
---|
| 512 | close(111) |
---|
| 513 | close(112) |
---|
| 514 | endif |
---|
| 515 | |
---|
| 516 | tmid(1) = tlevrad(2) |
---|
| 517 | tmid(2) = tlevrad(2) |
---|
| 518 | pmid(1) = plevrad(2) |
---|
| 519 | pmid(2) = plevrad(2) |
---|
| 520 | |
---|
| 521 | DO l=1,L_NLAYRAD-1 |
---|
| 522 | tmid(2*l+1) = tlevrad(2*l+1) |
---|
| 523 | tmid(2*l+2) = tlevrad(2*l+1) |
---|
| 524 | pmid(2*l+1) = plevrad(2*l+1) |
---|
| 525 | pmid(2*l+2) = plevrad(2*l+1) |
---|
| 526 | END DO |
---|
| 527 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
---|
| 528 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
---|
| 529 | |
---|
| 530 | ! test for out-of-bounds pressure |
---|
| 531 | if(plevrad(3).lt.pgasmin)then |
---|
| 532 | print*,'Minimum pressure is outside the radiative' |
---|
| 533 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 534 | call abort |
---|
| 535 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
---|
| 536 | print*,'Maximum pressure is outside the radiative' |
---|
| 537 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 538 | call abort |
---|
| 539 | endif |
---|
| 540 | |
---|
| 541 | ! test for out-of-bounds temperature |
---|
| 542 | do k=1,L_LEVELS |
---|
| 543 | if(tlevrad(k).lt.tgasmin)then |
---|
| 544 | print*,'Minimum temperature is outside the radiative' |
---|
| 545 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 546 | call abort |
---|
| 547 | elseif(tlevrad(k).gt.tgasmax)then |
---|
| 548 | print*,'Maximum temperature is outside the radiative' |
---|
| 549 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 550 | call abort |
---|
| 551 | endif |
---|
| 552 | enddo |
---|
| 553 | |
---|
| 554 | !======================================================================= |
---|
| 555 | ! Calling the main radiative transfer subroutines |
---|
| 556 | |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | !----------------------------------------------------------------------- |
---|
| 560 | ! Shortwave |
---|
| 561 | |
---|
| 562 | IF(fract(ig) .GE. 1.0e-4) THEN ! only during daylight! |
---|
| 563 | |
---|
| 564 | fluxtoplanet=0. |
---|
| 565 | DO nw=1,L_NSPECTV |
---|
| 566 | stel_fract(nw)= stel(nw) * fract(ig) |
---|
| 567 | fluxtoplanet=fluxtoplanet + stel_fract(nw) |
---|
| 568 | END DO |
---|
| 569 | |
---|
| 570 | call optcv(dtauv,tauv,taucumv,plevrad, |
---|
| 571 | $ qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, |
---|
| 572 | $ tmid,pmid,taugsurf,qvar) |
---|
| 573 | |
---|
| 574 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, |
---|
| 575 | $ acosz,stel_fract,gweight,nfluxtopv,nfluxtopv_nu, |
---|
| 576 | $ fmnetv,fluxupv,fluxdnv,fzerov,taugsurf) |
---|
| 577 | |
---|
| 578 | ELSE ! during the night, fluxes = 0 |
---|
| 579 | nfluxtopv=0.0 |
---|
| 580 | DO l=1,L_NLAYRAD |
---|
| 581 | fmnetv(l)=0.0 |
---|
| 582 | fluxupv(l)=0.0 |
---|
| 583 | fluxdnv(l)=0.0 |
---|
| 584 | END DO |
---|
| 585 | END IF |
---|
| 586 | |
---|
| 587 | !----------------------------------------------------------------------- |
---|
| 588 | ! Longwave |
---|
| 589 | |
---|
| 590 | call optci(plevrad,tlevrad,dtaui,taucumi, |
---|
| 591 | $ qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid, |
---|
| 592 | $ taugsurfi,qvar) |
---|
| 593 | |
---|
| 594 | call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, |
---|
| 595 | $ wnoi,dwni,cosbi,wbari,gweight,nfluxtopi,nfluxtopi_nu, |
---|
| 596 | $ fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) |
---|
| 597 | |
---|
| 598 | !----------------------------------------------------------------------- |
---|
| 599 | ! Transformation of the correlated-k code outputs |
---|
| 600 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
---|
| 601 | |
---|
| 602 | fluxtop_lw(ig) = fluxupi(1) |
---|
| 603 | fluxsurf_lw(ig) = fluxdni(L_NLAYRAD) |
---|
| 604 | fluxtop_sw(ig) = fluxupv(1) |
---|
| 605 | fluxsurf_sw(ig) = fluxdnv(L_NLAYRAD) |
---|
| 606 | |
---|
| 607 | ! Flux incident at the top of the atmosphere |
---|
| 608 | fluxtop_dn(ig)=fluxdnv(1) |
---|
| 609 | |
---|
| 610 | !if(lastcall)then |
---|
| 611 | !print*,'albv=',albv |
---|
| 612 | !print*,'albi=',albi |
---|
| 613 | !print*,'fluxupi',fluxupi |
---|
| 614 | !print*,'fluxirnet',fluxdni-fluxupi |
---|
| 615 | !print*,'fmneti',fmneti |
---|
| 616 | !print*,'fluxdnv',fluxdnv |
---|
| 617 | !print*,'fluxtop_sw=',fluxtop_sw |
---|
| 618 | !print*,'fluxsurf_sw=',fluxsurf_sw |
---|
| 619 | !print*,'fluxtop_lw=',fluxtop_lw |
---|
| 620 | !print*,'fluxsurf_lw=',fluxsurf_lw |
---|
| 621 | !endif |
---|
| 622 | |
---|
| 623 | if(crisp)then |
---|
| 624 | open(111,file='/u/rwlmd/CrispLBL/GCMfluxdn.dat') |
---|
| 625 | open(112,file='/u/rwlmd/CrispLBL/GCMfluxup.dat') |
---|
| 626 | do k=1,L_NLAYRAD |
---|
| 627 | write(111,*) fluxdni(k) |
---|
| 628 | write(112,*) fluxupi(k) |
---|
| 629 | enddo |
---|
| 630 | close(111) |
---|
| 631 | close(112) |
---|
| 632 | print*,'fluxdni',fluxdni |
---|
| 633 | print*,'fluxupi',fluxupi |
---|
| 634 | call abort |
---|
| 635 | endif |
---|
| 636 | |
---|
| 637 | ! IR spectral output, for exoplanet observational comparison |
---|
| 638 | if(specOLR)then |
---|
| 639 | do nw=1,L_NSPECTI |
---|
| 640 | OLR_nu(ig,nw)=nfluxtopi_nu(nw) |
---|
| 641 | end do |
---|
| 642 | endif |
---|
| 643 | |
---|
| 644 | ! Finally, the heating rates |
---|
| 645 | |
---|
| 646 | if(nonideal)then |
---|
| 647 | |
---|
| 648 | DO l=2,L_NLAYRAD |
---|
| 649 | dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) |
---|
| 650 | $ *g/(cpp3D(ig,L_NLAYRAD+1-l) |
---|
| 651 | $ *scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
| 652 | dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) |
---|
| 653 | $ *g/(cpp3D(ig,L_NLAYRAD+1-l) |
---|
| 654 | $ *scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
| 655 | END DO |
---|
| 656 | |
---|
| 657 | ! These are values at top of atmosphere |
---|
| 658 | dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) |
---|
| 659 | $ *g/(cpp3D(ig,L_NLAYRAD)*scalep*(plevrad(3)-plevrad(1))) |
---|
| 660 | dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) |
---|
| 661 | $ *g/(cpp3D(ig,L_NLAYRAD)*scalep*(plevrad(3)-plevrad(1))) |
---|
| 662 | |
---|
| 663 | else |
---|
| 664 | |
---|
| 665 | DO l=2,L_NLAYRAD |
---|
| 666 | dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) |
---|
| 667 | $ *g/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
| 668 | dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) |
---|
| 669 | $ *g/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
| 670 | END DO |
---|
| 671 | |
---|
| 672 | ! These are values at top of atmosphere |
---|
| 673 | dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) |
---|
| 674 | $ *g/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
| 675 | dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) |
---|
| 676 | $ *g/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
| 677 | |
---|
| 678 | endif |
---|
| 679 | |
---|
| 680 | !if(lastcall)then |
---|
| 681 | ! ! print*,'tlevrad=',tlevrad |
---|
| 682 | ! print*,'tsurf=',tsurf |
---|
| 683 | ! print*,'pt=',pt |
---|
| 684 | ! print*,'fmnetv',shape(fmnetv) |
---|
| 685 | ! print*,'fmneti',shape(fmneti) |
---|
| 686 | !!endif |
---|
| 687 | |
---|
| 688 | ! --------------------------------------------------------------- |
---|
| 689 | end do ! end of big loop over every GCM column (ig = 1:ngrid) |
---|
| 690 | |
---|
| 691 | |
---|
| 692 | !----------------------------------------------------------------------- |
---|
| 693 | ! Additional diagnostics |
---|
| 694 | |
---|
| 695 | ! IR spectral output, for exoplanet observational comparison |
---|
| 696 | if(specOLR)then |
---|
| 697 | if(ngrid.ne.1)then |
---|
| 698 | call writediagspec(ngrid,"OLR3D", |
---|
| 699 | & "OLR(lon,lat,band)","W m^-2",3,OLR_nu) |
---|
| 700 | endif |
---|
| 701 | endif |
---|
| 702 | |
---|
| 703 | if(lastcall)then ! for kasthop |
---|
| 704 | |
---|
| 705 | if(ngrid.eq.1)then |
---|
| 706 | |
---|
| 707 | print*,'Saving tsurf,psurf in surf_vals.out...' |
---|
| 708 | open(116,file='surf_vals.out') |
---|
| 709 | write(116,*) tsurf(1),pplev(1,1), |
---|
| 710 | & fluxtop_dn(1) - fluxtop_sw(1),fluxtop_lw(1) |
---|
| 711 | close(116) |
---|
| 712 | |
---|
| 713 | if(specOLR)then |
---|
| 714 | open(117,file='OLRnu.out') |
---|
| 715 | do nw=1,L_NSPECTI |
---|
| 716 | write(117,*) OLR_nu(1,nw) |
---|
| 717 | enddo |
---|
| 718 | close(117) |
---|
| 719 | endif |
---|
| 720 | ! OLR vs altitude: do it as a .txt file |
---|
| 721 | OLRz=.false. |
---|
| 722 | if(OLRz)then |
---|
| 723 | print*,'saving IR vertical flux for OLRz...' |
---|
| 724 | open(118,file='OLRz_plevs.out') |
---|
| 725 | open(119,file='OLRz.out') |
---|
| 726 | do l=1,L_NLAYRAD |
---|
| 727 | write(118,*) plevrad(2*l) |
---|
| 728 | do nw=1,L_NSPECTI |
---|
| 729 | write(119,*) fluxupi_nu(l,nw) |
---|
| 730 | enddo |
---|
| 731 | enddo |
---|
| 732 | close(118) |
---|
| 733 | close(119) |
---|
| 734 | endif |
---|
| 735 | endif |
---|
| 736 | |
---|
| 737 | endif |
---|
| 738 | |
---|
| 739 | end |
---|