1 | subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
2 | albedo,emis,mu0,pplev,pplay,pt, & |
---|
3 | tsurf,fract,dist_star,aerosol,cpp3D,muvar, & |
---|
4 | dtlw,dtsw,fluxsurf_lw, & |
---|
5 | fluxsurf_sw,fluxtop_lw,fluxabs_sw,fluxtop_dn, & |
---|
6 | reffrad,tau_col,cloudfrac,totcloudfrac, & |
---|
7 | clearsky,firstcall,lastcall) |
---|
8 | |
---|
9 | |
---|
10 | use radinc_h |
---|
11 | use radcommon_h |
---|
12 | use watercommon_h |
---|
13 | use datafile_mod, only: datadir |
---|
14 | use ioipsl_getincom |
---|
15 | use gases_h |
---|
16 | |
---|
17 | implicit none |
---|
18 | |
---|
19 | !================================================================== |
---|
20 | ! |
---|
21 | ! Purpose |
---|
22 | ! ------- |
---|
23 | ! Solve the radiative transfer using the correlated-k method for |
---|
24 | ! the gaseous absorption and the Toon et al. (1989) method for |
---|
25 | ! scatttering due to aerosols. |
---|
26 | ! |
---|
27 | ! Authors |
---|
28 | ! ------- |
---|
29 | ! Emmanuel 01/2001, Forget 09/2001 |
---|
30 | ! Robin Wordsworth (2009) |
---|
31 | ! |
---|
32 | !================================================================== |
---|
33 | |
---|
34 | #include "dimphys.h" |
---|
35 | #include "comcstfi.h" |
---|
36 | #include "callkeys.h" |
---|
37 | #include "tracer.h" |
---|
38 | |
---|
39 | !----------------------------------------------------------------------- |
---|
40 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
---|
41 | ! Layer #1 is the layer near the ground. |
---|
42 | ! Layer #nlayermx is the layer at the top. |
---|
43 | |
---|
44 | ! INPUT |
---|
45 | INTEGER icount |
---|
46 | INTEGER ngrid,nlayer |
---|
47 | REAL aerosol(ngrid,nlayermx,naerkind) ! aerosol tau (kg/kg) |
---|
48 | REAL albedo(ngrid) ! SW albedo |
---|
49 | REAL emis(ngrid) ! LW emissivity |
---|
50 | REAL pplay(ngrid,nlayermx) ! pres. level in GCM mid of layer |
---|
51 | REAL pplev(ngrid,nlayermx+1) ! pres. level at GCM layer boundaries |
---|
52 | |
---|
53 | REAL pt(ngrid,nlayermx) ! air temperature (K) |
---|
54 | REAL tsurf(ngrid) ! surface temperature (K) |
---|
55 | REAL dist_star,mu0(ngrid) ! distance star-planet (AU) |
---|
56 | REAL fract(ngrid) ! fraction of day |
---|
57 | |
---|
58 | ! Globally varying aerosol optical properties on GCM grid |
---|
59 | ! Not needed everywhere so not in radcommon_h |
---|
60 | REAL :: QVISsQREF3d(ngridmx,nlayermx,L_NSPECTV,naerkind) |
---|
61 | REAL :: omegaVIS3d(ngridmx,nlayermx,L_NSPECTV,naerkind) |
---|
62 | REAL :: gVIS3d(ngridmx,nlayermx,L_NSPECTV,naerkind) |
---|
63 | |
---|
64 | REAL :: QIRsQREF3d(ngridmx,nlayermx,L_NSPECTI,naerkind) |
---|
65 | REAL :: omegaIR3d(ngridmx,nlayermx,L_NSPECTI,naerkind) |
---|
66 | REAL :: gIR3d(ngridmx,nlayermx,L_NSPECTI,naerkind) |
---|
67 | |
---|
68 | REAL :: QREFvis3d(ngridmx,nlayermx,naerkind) |
---|
69 | REAL :: QREFir3d(ngridmx,nlayermx,naerkind) |
---|
70 | |
---|
71 | ! REAL :: omegaREFvis3d(ngridmx,nlayermx,naerkind) |
---|
72 | ! REAL :: omegaREFir3d(ngridmx,nlayermx,naerkind) ! not sure of the point of these... |
---|
73 | |
---|
74 | REAL reffrad(ngrid,nlayer,naerkind) |
---|
75 | REAL nueffrad(ngrid,nlayer,naerkind) |
---|
76 | |
---|
77 | ! OUTPUT |
---|
78 | REAL dtsw(ngridmx,nlayermx) ! heating rate (K/s) due to SW |
---|
79 | REAL dtlw(ngridmx,nlayermx) ! heating rate (K/s) due to LW |
---|
80 | REAL fluxsurf_lw(ngridmx) ! incident LW flux to surf (W/m2) |
---|
81 | REAL fluxtop_lw(ngridmx) ! outgoing LW flux to space (W/m2) |
---|
82 | REAL fluxsurf_sw(ngridmx) ! incident SW flux to surf (W/m2) |
---|
83 | REAL fluxabs_sw(ngridmx) ! SW flux absorbed by planet (W/m2) |
---|
84 | REAL fluxtop_dn(ngridmx) ! incident top of atmosphere SW flux (W/m2) |
---|
85 | |
---|
86 | !----------------------------------------------------------------------- |
---|
87 | ! Declaration of the variables required by correlated-k subroutines |
---|
88 | ! Numbered from top to bottom unlike in the GCM! |
---|
89 | |
---|
90 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
---|
91 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
---|
92 | |
---|
93 | ! Optical values for the optci/cv subroutines |
---|
94 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
---|
95 | REAL*8 dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
96 | REAL*8 dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
97 | REAL*8 cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
98 | REAL*8 cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
99 | REAL*8 wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
100 | REAL*8 wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
101 | REAL*8 tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
102 | REAL*8 taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
103 | REAL*8 taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
104 | |
---|
105 | REAL*8 tauaero(L_LEVELS+1,naerkind) |
---|
106 | REAL*8 nfluxtopv,nfluxtopi,nfluxtop |
---|
107 | real*8 nfluxoutv_nu(L_NSPECTV) ! outgoing band-resolved VI flux at TOA (W/m2) |
---|
108 | real*8 nfluxtopi_nu(L_NSPECTI) ! net band-resolved IR flux at TOA (W/m2) |
---|
109 | real*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! for 1D diagnostic |
---|
110 | REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) |
---|
111 | REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) |
---|
112 | REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) |
---|
113 | REAL*8 albi,albv,acosz |
---|
114 | |
---|
115 | INTEGER ig,l,k,nw,iaer,irad |
---|
116 | |
---|
117 | real fluxtoplanet |
---|
118 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
119 | real*8 taugsurfi(L_NSPECTI,L_NGAUSS-1) |
---|
120 | |
---|
121 | real*8 qvar(L_LEVELS) ! mixing ratio of variable component (mol/mol) |
---|
122 | REAL pq(ngridmx,nlayer,nq) |
---|
123 | REAL qsurf(ngridmx,nqmx) ! tracer on surface (e.g. kg.m-2) |
---|
124 | integer nq |
---|
125 | |
---|
126 | ! Local aerosol optical properties for each column on RADIATIVE grid |
---|
127 | real*8 QXVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
128 | real*8 QSVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
129 | real*8 GVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
130 | real*8 QXIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
131 | real*8 QSIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
132 | real*8 GIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
133 | |
---|
134 | save qxvaer, qsvaer, gvaer |
---|
135 | save qxiaer, qsiaer, giaer |
---|
136 | save QREFvis3d, QREFir3d |
---|
137 | |
---|
138 | REAL tau_col(ngrid) ! diagnostic from aeropacity |
---|
139 | |
---|
140 | ! Misc. |
---|
141 | logical firstcall, lastcall, nantest |
---|
142 | real*8 tempv(L_NSPECTV) |
---|
143 | real*8 tempi(L_NSPECTI) |
---|
144 | real*8 temp,temp1,temp2,pweight |
---|
145 | character(len=10) :: tmp1 |
---|
146 | character(len=10) :: tmp2 |
---|
147 | |
---|
148 | ! for fixed water vapour profiles |
---|
149 | integer i_var |
---|
150 | real RH |
---|
151 | real*8 pq_temp(nlayer) |
---|
152 | real ptemp, Ttemp, qsat |
---|
153 | |
---|
154 | ! real(KIND=r8) :: pq_temp(nlayer) ! better F90 way.. DOESNT PORT TO F77!!! |
---|
155 | |
---|
156 | ! for OLR spec |
---|
157 | integer OLRcount |
---|
158 | save OLRcount |
---|
159 | integer OLRcount2 |
---|
160 | save OLRcount2 |
---|
161 | character(len=2) :: tempOLR |
---|
162 | character(len=30) :: filenomOLR |
---|
163 | !real ptime, pday |
---|
164 | logical OLRz |
---|
165 | real OLR_nu(ngrid,L_NSPECTI) |
---|
166 | !real GSR_nu(ngrid,L_NSPECTV) |
---|
167 | real OSR_nu(ngrid,L_NSPECTV) |
---|
168 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
---|
169 | |
---|
170 | ! for H2O cloud fraction in aeropacity |
---|
171 | real cloudfrac(ngridmx,nlayermx) |
---|
172 | real totcloudfrac(ngridmx) |
---|
173 | logical clearsky |
---|
174 | |
---|
175 | ! Allow variations in cp with location |
---|
176 | real cpp3D(ngridmx,nlayermx) ! specific heat capacity at const. pressure |
---|
177 | |
---|
178 | ! for weird cloud test |
---|
179 | real pqtest(ngridmx,nlayer,nq) |
---|
180 | |
---|
181 | ! are particle radii fixed? |
---|
182 | logical radfixed |
---|
183 | real maxrad, minrad |
---|
184 | |
---|
185 | real CBRT |
---|
186 | external CBRT |
---|
187 | |
---|
188 | ! included by RW for runaway greenhouse 1D study |
---|
189 | real muvar(ngridmx,nlayermx+1) |
---|
190 | real vtmp(nlayermx) |
---|
191 | REAL*8 muvarrad(L_LEVELS) |
---|
192 | |
---|
193 | radfixed=.false. |
---|
194 | |
---|
195 | !======================================================================= |
---|
196 | ! Initialization on first call |
---|
197 | |
---|
198 | qxvaer(:,:,:)=0.0 |
---|
199 | qsvaer(:,:,:)=0.0 |
---|
200 | gvaer(:,:,:) =0.0 |
---|
201 | |
---|
202 | qxiaer(:,:,:)=0.0 |
---|
203 | qsiaer(:,:,:)=0.0 |
---|
204 | giaer(:,:,:) =0.0 |
---|
205 | |
---|
206 | if(firstcall) then |
---|
207 | |
---|
208 | call system('rm -f surf_vals_long.out') |
---|
209 | |
---|
210 | !-------------------------------------------------- |
---|
211 | ! Effective radius and variance of the aerosols |
---|
212 | |
---|
213 | do iaer=1,naerkind |
---|
214 | ! these values will change once the microphysics gets to work |
---|
215 | ! UNLESS tracer=.false., in which case we should be working with |
---|
216 | ! a fixed aerosol layer, and be able to define reffrad in a |
---|
217 | ! .def file. To be improved! |
---|
218 | |
---|
219 | if(iaer.eq.1)then ! CO2 ice |
---|
220 | do l=1,nlayer |
---|
221 | do ig=1,ngrid |
---|
222 | reffrad(ig,l,iaer) = 1.e-4 |
---|
223 | nueffrad(ig,l,iaer) = 0.1 |
---|
224 | enddo |
---|
225 | enddo |
---|
226 | endif |
---|
227 | |
---|
228 | if(iaer.eq.2)then ! H2O ice |
---|
229 | do l=1,nlayer |
---|
230 | do ig=1,ngrid |
---|
231 | reffrad(ig,l,iaer) = 1.e-5 |
---|
232 | nueffrad(ig,l,iaer) = 0.1 |
---|
233 | enddo |
---|
234 | enddo |
---|
235 | endif |
---|
236 | |
---|
237 | if(iaer.eq.3)then ! dust |
---|
238 | do l=1,nlayer |
---|
239 | do ig=1,ngrid |
---|
240 | reffrad(ig,l,iaer) = 1.e-5 |
---|
241 | nueffrad(ig,l,iaer) = 0.1 |
---|
242 | enddo |
---|
243 | enddo |
---|
244 | endif |
---|
245 | |
---|
246 | if(iaer.gt.3)then |
---|
247 | print*,'Error in callcorrk, naerkind is too high.' |
---|
248 | print*,'The code still needs generalisation to arbitrary' |
---|
249 | print*,'aerosol kinds and number.' |
---|
250 | call abort |
---|
251 | endif |
---|
252 | |
---|
253 | enddo |
---|
254 | |
---|
255 | print*, "callcorrk: Correlated-k data base folder:",trim(datadir) |
---|
256 | call getin("corrkdir",corrkdir) |
---|
257 | print*, "corrkdir = ",corrkdir |
---|
258 | write( tmp1, '(i3)' ) L_NSPECTI |
---|
259 | write( tmp2, '(i3)' ) L_NSPECTV |
---|
260 | banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
---|
261 | banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
---|
262 | |
---|
263 | call sugas_corrk ! set up gaseous absorption properties |
---|
264 | call setspi ! basic infrared properties |
---|
265 | call setspv ! basic visible properties |
---|
266 | call suaer_corrk ! set up aerosol optical properties |
---|
267 | |
---|
268 | Cmk= 0.01 * 1.0 / (g * mugaz * 1.672621e-27) ! q_main=1.0 assumed |
---|
269 | |
---|
270 | if((igcm_h2o_vap.eq.0) .and. varactive)then |
---|
271 | print*,'varactive in callcorrk but no h2o_vap tracer.' |
---|
272 | stop |
---|
273 | endif |
---|
274 | |
---|
275 | firstcall=.false. |
---|
276 | |
---|
277 | end if |
---|
278 | |
---|
279 | !======================================================================= |
---|
280 | ! Initialization on every call |
---|
281 | |
---|
282 | do l=1,nlayer |
---|
283 | do ig=1,ngrid |
---|
284 | do iaer=1,naerkind |
---|
285 | nueffrad(ig,l,iaer) = 0.1 ! stays at 0.1 |
---|
286 | enddo |
---|
287 | enddo |
---|
288 | enddo |
---|
289 | |
---|
290 | if(kastprof)then |
---|
291 | radfixed=.true. |
---|
292 | endif |
---|
293 | |
---|
294 | if(radfixed)then |
---|
295 | do l=1,nlayer |
---|
296 | do ig=1,ngrid |
---|
297 | reffrad(ig,l,1) = 5.e-5 ! CO2 ice |
---|
298 | enddo |
---|
299 | enddo |
---|
300 | print*,'CO2 ice particle size = ',reffrad(1,1,1)/1.e-6,' um' |
---|
301 | if(naerkind.ge.2)then |
---|
302 | do l=1,nlayer |
---|
303 | do ig=1,ngrid |
---|
304 | !reffrad(ig,l,2) = 2.e-5 ! H2O ice |
---|
305 | reffrad(ig,l,2) = 5.e-6 ! H2O ice |
---|
306 | enddo |
---|
307 | enddo |
---|
308 | print*,'H2O ice particle size = ',reffrad(1,1,2)/1.e-6,' um' |
---|
309 | endif |
---|
310 | if(naerkind.eq.3)then |
---|
311 | do l=1,nlayer |
---|
312 | do ig=1,ngrid |
---|
313 | reffrad(ig,l,naerkind) = 2.e-6 ! dust |
---|
314 | enddo |
---|
315 | enddo |
---|
316 | print*,'Dust particle size = ',reffrad(1,1,naerkind)/1.e-6,' um' |
---|
317 | endif |
---|
318 | if(naerkind.gt.3)then |
---|
319 | print*,'Code not general enough to deal with naerkind > 3 yet.' |
---|
320 | call abort |
---|
321 | endif |
---|
322 | |
---|
323 | else |
---|
324 | |
---|
325 | maxrad=0.0 |
---|
326 | !averad=0.0 |
---|
327 | minrad=1.0 |
---|
328 | do l=1,nlayer |
---|
329 | |
---|
330 | !masse = (pplev(ig,l) - pplev(ig,l+1))/g |
---|
331 | |
---|
332 | do ig=1,ngrid |
---|
333 | if(tracer)then |
---|
334 | reffrad(ig,l,1) = CBRT( 3*pq(ig,l,igcm_co2_ice)/ & |
---|
335 | (4*Nmix_co2*pi*rho_co2) ) |
---|
336 | endif |
---|
337 | reffrad(ig,l,1) = max(reffrad(ig,l,1),1.e-6) |
---|
338 | reffrad(ig,l,1) = min(reffrad(ig,l,1),500.e-6) |
---|
339 | |
---|
340 | !averad = averad + reffrad(ig,l,1)*area(ig) |
---|
341 | maxrad = max(reffrad(ig,l,1),maxrad) |
---|
342 | minrad = min(reffrad(ig,l,1),minrad) |
---|
343 | enddo |
---|
344 | enddo |
---|
345 | if(igcm_co2_ice.gt.0)then |
---|
346 | print*,'Max. CO2 ice particle size = ',maxrad/1.e-6,' um' |
---|
347 | print*,'Min. CO2 ice particle size = ',minrad/1.e-6,' um' |
---|
348 | endif |
---|
349 | |
---|
350 | if((naerkind.ge.2).and.water)then |
---|
351 | maxrad=0.0 |
---|
352 | minrad=1.0 |
---|
353 | do l=1,nlayer |
---|
354 | do ig=1,ngrid |
---|
355 | reffrad(ig,l,2) = CBRT( 3*pq(ig,l,igcm_h2o_ice)/ & |
---|
356 | (4*Nmix_h2o*pi*rho_ice) ) |
---|
357 | reffrad(ig,l,2) = max(reffrad(ig,l,2),1.e-6) |
---|
358 | reffrad(ig,l,2) = min(reffrad(ig,l,2),100.e-6) |
---|
359 | |
---|
360 | maxrad = max(reffrad(ig,l,2),maxrad) |
---|
361 | minrad = min(reffrad(ig,l,2),minrad) |
---|
362 | enddo |
---|
363 | enddo |
---|
364 | print*,'Max. H2O ice particle size = ',maxrad/1.e-6,' um' |
---|
365 | print*,'Min. H2O ice particle size = ',minrad/1.e-6,' um' |
---|
366 | endif |
---|
367 | |
---|
368 | if(naerkind.eq.3)then |
---|
369 | do l=1,nlayer |
---|
370 | do ig=1,ngrid |
---|
371 | reffrad(ig,l,naerkind) = 2.e-6 ! dust |
---|
372 | enddo |
---|
373 | enddo |
---|
374 | endif |
---|
375 | |
---|
376 | endif |
---|
377 | |
---|
378 | |
---|
379 | ! how much light we get |
---|
380 | fluxtoplanet=0 |
---|
381 | do nw=1,L_NSPECTV |
---|
382 | stel(nw)=stellarf(nw)/(dist_star**2) |
---|
383 | fluxtoplanet=fluxtoplanet + stel(nw) |
---|
384 | end do |
---|
385 | |
---|
386 | call aeroptproperties(ngrid,nlayer,reffrad,nueffrad, & |
---|
387 | QVISsQREF3d,omegaVIS3d,gVIS3d, & |
---|
388 | QIRsQREF3d,omegaIR3d,gIR3d, & |
---|
389 | QREFvis3d,QREFir3d) ! get 3D aerosol optical properties |
---|
390 | |
---|
391 | call aeropacity(ngrid,nlayer,nq,pplay,pplev,pq,aerosol, & |
---|
392 | reffrad,QREFvis3d,QREFir3d, & |
---|
393 | tau_col,cloudfrac,totcloudfrac,clearsky) ! get aerosol optical depths |
---|
394 | |
---|
395 | |
---|
396 | !----------------------------------------------------------------------- |
---|
397 | ! Starting Big Loop over every GCM column |
---|
398 | do ig=1,ngridmx |
---|
399 | |
---|
400 | !======================================================================= |
---|
401 | ! Transformation of the GCM variables |
---|
402 | |
---|
403 | !----------------------------------------------------------------------- |
---|
404 | ! Aerosol optical properties Qext, Qscat and g |
---|
405 | ! The transformation in the vertical is the same as for temperature |
---|
406 | |
---|
407 | ! shortwave |
---|
408 | do iaer=1,naerkind |
---|
409 | DO nw=1,L_NSPECTV |
---|
410 | do l=1,nlayermx |
---|
411 | |
---|
412 | temp1=QVISsQREF3d(ig,nlayermx+1-l,nw,iaer) & |
---|
413 | *QREFvis3d(ig,nlayermx+1-l,iaer) |
---|
414 | |
---|
415 | temp2=QVISsQREF3d(ig,max(nlayermx-l,1),nw,iaer) & |
---|
416 | *QREFvis3d(ig,max(nlayermx-l,1),iaer) |
---|
417 | |
---|
418 | qxvaer(2*l,nw,iaer) = temp1 |
---|
419 | qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
420 | |
---|
421 | temp1=temp1*omegavis3d(ig,nlayermx+1-l,nw,iaer) |
---|
422 | temp2=temp2*omegavis3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
423 | |
---|
424 | qsvaer(2*l,nw,iaer) = temp1 |
---|
425 | qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
426 | |
---|
427 | temp1=gvis3d(ig,nlayermx+1-l,nw,iaer) |
---|
428 | temp2=gvis3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
429 | |
---|
430 | gvaer(2*l,nw,iaer) = temp1 |
---|
431 | gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
432 | |
---|
433 | end do |
---|
434 | |
---|
435 | qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) |
---|
436 | qxvaer(2*nlayermx+1,nw,iaer)=0. |
---|
437 | |
---|
438 | qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) |
---|
439 | qsvaer(2*nlayermx+1,nw,iaer)=0. |
---|
440 | |
---|
441 | gvaer(1,nw,iaer)=gvaer(2,nw,iaer) |
---|
442 | gvaer(2*nlayermx+1,nw,iaer)=0. |
---|
443 | |
---|
444 | end do |
---|
445 | |
---|
446 | ! longwave |
---|
447 | DO nw=1,L_NSPECTI |
---|
448 | do l=1,nlayermx |
---|
449 | |
---|
450 | temp1=QIRsQREF3d(ig,nlayermx+1-l,nw,iaer) & |
---|
451 | *QREFir3d(ig,nlayermx+1-l,iaer) |
---|
452 | |
---|
453 | temp2=QIRsQREF3d(ig,max(nlayermx-l,1),nw,iaer) & |
---|
454 | *QREFir3d(ig,max(nlayermx-l,1),iaer) |
---|
455 | |
---|
456 | qxiaer(2*l,nw,iaer) = temp1 |
---|
457 | qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
458 | |
---|
459 | temp1=temp1*omegair3d(ig,nlayermx+1-l,nw,iaer) |
---|
460 | temp2=temp2*omegair3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
461 | |
---|
462 | qsiaer(2*l,nw,iaer) = temp1 |
---|
463 | qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
464 | |
---|
465 | temp1=gir3d(ig,nlayermx+1-l,nw,iaer) |
---|
466 | temp2=gir3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
467 | |
---|
468 | giaer(2*l,nw,iaer) = temp1 |
---|
469 | giaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
470 | |
---|
471 | end do |
---|
472 | |
---|
473 | qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer) |
---|
474 | qxiaer(2*nlayermx+1,nw,iaer)=0. |
---|
475 | |
---|
476 | qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer) |
---|
477 | qsiaer(2*nlayermx+1,nw,iaer)=0. |
---|
478 | |
---|
479 | giaer(1,nw,iaer)=giaer(2,nw,iaer) |
---|
480 | giaer(2*nlayermx+1,nw,iaer)=0. |
---|
481 | |
---|
482 | end do |
---|
483 | end do |
---|
484 | |
---|
485 | ! test / correct for freaky s. s. albedo values |
---|
486 | do iaer=1,naerkind |
---|
487 | do k=1,L_LEVELS+1 |
---|
488 | |
---|
489 | do nw=1,L_NSPECTV |
---|
490 | if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then |
---|
491 | print*,'Serious problems with qsvaer values in callcorrk' |
---|
492 | call abort |
---|
493 | endif |
---|
494 | if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then |
---|
495 | qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer) |
---|
496 | endif |
---|
497 | end do |
---|
498 | |
---|
499 | do nw=1,L_NSPECTI |
---|
500 | if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then |
---|
501 | print*,'Serious problems with qsiaer values in callcorrk' |
---|
502 | call abort |
---|
503 | endif |
---|
504 | if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then |
---|
505 | qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer) |
---|
506 | endif |
---|
507 | end do |
---|
508 | |
---|
509 | end do |
---|
510 | end do |
---|
511 | |
---|
512 | !----------------------------------------------------------------------- |
---|
513 | ! Aerosol optical depths |
---|
514 | |
---|
515 | do iaer=1,naerkind ! a bug was here |
---|
516 | do k=0,nlayer-1 |
---|
517 | |
---|
518 | pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ & |
---|
519 | (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) |
---|
520 | |
---|
521 | temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer) |
---|
522 | |
---|
523 | tauaero(2*k+2,iaer)=max(temp*pweight,0.0) |
---|
524 | tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.0) |
---|
525 | ! |
---|
526 | end do |
---|
527 | ! boundary conditions |
---|
528 | tauaero(1,iaer) = tauaero(2,iaer) |
---|
529 | tauaero(L_LEVELS+1,iaer) = tauaero(L_LEVELS,iaer) |
---|
530 | !tauaero(1,iaer) = 0. |
---|
531 | !tauaero(L_LEVELS+1,iaer) = 0. |
---|
532 | end do |
---|
533 | |
---|
534 | ! Albedo and emissivity |
---|
535 | albi=1-emis(ig) ! longwave |
---|
536 | albv=albedo(ig) ! shortwave |
---|
537 | |
---|
538 | if(noradsurf.and.(albv.gt.0.0))then |
---|
539 | print*,'For open lower boundary in callcorrk must' |
---|
540 | print*,'have surface albedo set to zero!' |
---|
541 | call abort |
---|
542 | endif |
---|
543 | |
---|
544 | if(ngridmx.eq.1) then ! fixed zenith angle 'szangle' in 1D |
---|
545 | acosz = cos(pi*szangle/180.0) |
---|
546 | print*,'acosz=',acosz,', szangle=',szangle |
---|
547 | else |
---|
548 | acosz=mu0(ig) ! cosine of sun incident angle |
---|
549 | endif |
---|
550 | |
---|
551 | !----------------------------------------------------------------------- |
---|
552 | ! Water vapour (to be generalised for other gases eventually) |
---|
553 | |
---|
554 | if(varactive)then |
---|
555 | |
---|
556 | i_var=igcm_h2o_vap |
---|
557 | do l=1,nlayer |
---|
558 | qvar(2*l) = pq(ig,nlayer+1-l,i_var) |
---|
559 | qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig,max(nlayer-l,1),i_var))/2 |
---|
560 | ! Average approximation as for temperature... |
---|
561 | end do |
---|
562 | qvar(1)=qvar(2) |
---|
563 | qvar(2*nlayermx+1)=qsurf(ig,i_var) |
---|
564 | |
---|
565 | elseif(varfixed)then |
---|
566 | |
---|
567 | do l=1,nlayermx ! here we will assign fixed water vapour profiles globally |
---|
568 | RH = satval * ((pplay(ig,l)/pplev(ig,1) - 0.02) / 0.98) |
---|
569 | if(RH.lt.0.0) RH=0.0 |
---|
570 | |
---|
571 | ptemp=pplay(ig,l) |
---|
572 | Ttemp=pt(ig,l) |
---|
573 | call watersat(Ttemp,ptemp,qsat) |
---|
574 | |
---|
575 | !pq_temp(l) = qsat ! fully saturated everywhere |
---|
576 | pq_temp(l) = RH * qsat ! ~realistic profile (e.g. 80% saturation at ground) |
---|
577 | end do |
---|
578 | |
---|
579 | do l=1,nlayer |
---|
580 | qvar(2*l) = pq_temp(nlayer+1-l) |
---|
581 | qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp(max(nlayer-l,1)))/2 |
---|
582 | end do |
---|
583 | qvar(1)=qvar(2) |
---|
584 | |
---|
585 | ! Lowest layer of atmosphere |
---|
586 | RH = satval * (1 - 0.02) / 0.98 |
---|
587 | if(RH.lt.0.0) RH=0.0 |
---|
588 | |
---|
589 | ptemp = pplev(ig,1) |
---|
590 | Ttemp = tsurf(ig) |
---|
591 | call watersat(Ttemp,ptemp,qsat) |
---|
592 | |
---|
593 | !qvar(2*nlayermx+1)=qsat ! fully saturated everywhere |
---|
594 | qvar(2*nlayermx+1)= RH * qsat ! ~realistic profile (e.g. 80% saturation at ground) |
---|
595 | |
---|
596 | else |
---|
597 | do k=1,L_LEVELS |
---|
598 | qvar(k) = 1.0D-7 |
---|
599 | end do |
---|
600 | end if |
---|
601 | |
---|
602 | ! IMPORTANT: Now convert from kg/kg to mol/mol |
---|
603 | do k=1,L_LEVELS |
---|
604 | qvar(k) = qvar(k)/epsi |
---|
605 | end do |
---|
606 | |
---|
607 | !----------------------------------------------------------------------- |
---|
608 | ! kcm mode only |
---|
609 | if(kastprof)then |
---|
610 | |
---|
611 | ! initial values equivalent to mugaz |
---|
612 | DO l=1,nlayer |
---|
613 | muvarrad(2*l) = mugaz |
---|
614 | muvarrad(2*l+1) = mugaz |
---|
615 | END DO |
---|
616 | |
---|
617 | !do k=1,L_LEVELS |
---|
618 | ! qvar(k) = 0.0 |
---|
619 | !end do |
---|
620 | !print*,'ASSUMING qH2O=0 EVERYWHERE IN CALLCORRK!' |
---|
621 | endif |
---|
622 | |
---|
623 | |
---|
624 | if(kastprof.and.(ngasmx.gt.1))then |
---|
625 | |
---|
626 | DO l=1,nlayer |
---|
627 | muvarrad(2*l) = muvar(ig,nlayer+2-l) |
---|
628 | muvarrad(2*l+1) = (muvar(ig,nlayer+2-l) + & |
---|
629 | muvar(ig,max(nlayer+1-l,1)))/2 |
---|
630 | END DO |
---|
631 | |
---|
632 | muvarrad(1) = muvarrad(2) |
---|
633 | muvarrad(2*nlayermx+1)=muvar(ig,1) |
---|
634 | |
---|
635 | print*,'Recalculating qvar with VARIABLE epsi for kastprof' |
---|
636 | i_var=igcm_h2o_vap |
---|
637 | do l=1,nlayer |
---|
638 | vtmp(l)=pq(ig,l,i_var)*muvar(ig,l+1)/mH2O |
---|
639 | end do |
---|
640 | |
---|
641 | do l=1,nlayer |
---|
642 | qvar(2*l) = vtmp(nlayer+1-l) |
---|
643 | qvar(2*l+1) = ( vtmp(nlayer+1-l) + vtmp(max(nlayer-l,1)) )/2 |
---|
644 | end do |
---|
645 | qvar(1)=qvar(2) |
---|
646 | qvar(2*nlayermx+1)=qsurf(ig,i_var)*muvar(ig,1)/mH2O |
---|
647 | |
---|
648 | endif |
---|
649 | |
---|
650 | ! Keep values inside limits for which we have radiative transfer coefficients |
---|
651 | if(L_REFVAR.gt.1)then ! there was a bug here! |
---|
652 | do k=1,L_LEVELS |
---|
653 | if(qvar(k).lt.wrefvar(1))then |
---|
654 | qvar(k)=wrefvar(1)+1.0e-8 |
---|
655 | elseif(qvar(k).gt.wrefvar(L_REFVAR))then |
---|
656 | qvar(k)=wrefvar(L_REFVAR)-1.0e-8 |
---|
657 | endif |
---|
658 | end do |
---|
659 | endif |
---|
660 | |
---|
661 | !----------------------------------------------------------------------- |
---|
662 | ! Pressure and temperature |
---|
663 | |
---|
664 | DO l=1,nlayer |
---|
665 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
---|
666 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
---|
667 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
---|
668 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 |
---|
669 | END DO |
---|
670 | |
---|
671 | plevrad(1) = 0 |
---|
672 | plevrad(2) = max(pgasmin,0.0001*plevrad(3)) |
---|
673 | |
---|
674 | tlevrad(1) = tlevrad(2) |
---|
675 | tlevrad(2*nlayermx+1)=tsurf(ig) |
---|
676 | |
---|
677 | tmid(1) = tlevrad(2) |
---|
678 | tmid(2) = tlevrad(2) |
---|
679 | pmid(1) = plevrad(2) |
---|
680 | pmid(2) = plevrad(2) |
---|
681 | |
---|
682 | DO l=1,L_NLAYRAD-1 |
---|
683 | tmid(2*l+1) = tlevrad(2*l+1) |
---|
684 | tmid(2*l+2) = tlevrad(2*l+1) |
---|
685 | pmid(2*l+1) = plevrad(2*l+1) |
---|
686 | pmid(2*l+2) = plevrad(2*l+1) |
---|
687 | END DO |
---|
688 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
---|
689 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
---|
690 | |
---|
691 | ! test for out-of-bounds pressure |
---|
692 | if(plevrad(3).lt.pgasmin)then |
---|
693 | print*,'Minimum pressure is outside the radiative' |
---|
694 | print*,'transfer kmatrix bounds, exiting.' |
---|
695 | call abort |
---|
696 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
---|
697 | print*,'Maximum pressure is outside the radiative' |
---|
698 | print*,'transfer kmatrix bounds, exiting.' |
---|
699 | call abort |
---|
700 | endif |
---|
701 | |
---|
702 | ! test for out-of-bounds temperature |
---|
703 | do k=1,L_LEVELS |
---|
704 | if(tlevrad(k).lt.tgasmin)then |
---|
705 | print*,'Minimum temperature is outside the radiative' |
---|
706 | print*,'transfer kmatrix bounds, exiting.' |
---|
707 | !print*,'WARNING, OVERRIDING FOR TEST' |
---|
708 | call abort |
---|
709 | elseif(tlevrad(k).gt.tgasmax)then |
---|
710 | print*,'Maximum temperature is outside the radiative' |
---|
711 | print*,'transfer kmatrix bounds, exiting.' |
---|
712 | !print*,'WARNING, OVERRIDING FOR TEST' |
---|
713 | call abort |
---|
714 | endif |
---|
715 | enddo |
---|
716 | |
---|
717 | !======================================================================= |
---|
718 | ! Calling the main radiative transfer subroutines |
---|
719 | |
---|
720 | |
---|
721 | !----------------------------------------------------------------------- |
---|
722 | ! Shortwave |
---|
723 | |
---|
724 | if(fract(ig) .ge. 1.0e-4) then ! only during daylight! |
---|
725 | |
---|
726 | fluxtoplanet=0. |
---|
727 | |
---|
728 | if((ngridmx.eq.1).and.(.not.(diurnal.or.tlocked)))then |
---|
729 | do nw=1,L_NSPECTV |
---|
730 | stel_fract(nw)= stel(nw) * 0.25 / acosz |
---|
731 | fluxtoplanet=fluxtoplanet + stel_fract(nw) |
---|
732 | ! globally averaged = divide by 4 |
---|
733 | ! but we correct for solar zenith angle |
---|
734 | end do |
---|
735 | else |
---|
736 | do nw=1,L_NSPECTV |
---|
737 | stel_fract(nw)= stel(nw) * fract(ig) |
---|
738 | fluxtoplanet=fluxtoplanet + stel_fract(nw) |
---|
739 | end do |
---|
740 | endif |
---|
741 | |
---|
742 | call optcv(dtauv,tauv,taucumv,plevrad, & |
---|
743 | qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, & |
---|
744 | tmid,pmid,taugsurf,qvar,muvarrad) |
---|
745 | |
---|
746 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & |
---|
747 | acosz,stel_fract,gweight, & |
---|
748 | nfluxtopv,nfluxoutv_nu,nfluxgndv_nu, & |
---|
749 | fmnetv,fluxupv,fluxdnv,fzerov,taugsurf) |
---|
750 | |
---|
751 | else ! during the night, fluxes = 0 |
---|
752 | nfluxtopv = 0.0 |
---|
753 | nfluxoutv_nu(:) = 0.0 |
---|
754 | nfluxgndv_nu(:) = 0.0 |
---|
755 | do l=1,L_NLAYRAD |
---|
756 | fmnetv(l)=0.0 |
---|
757 | fluxupv(l)=0.0 |
---|
758 | fluxdnv(l)=0.0 |
---|
759 | end do |
---|
760 | end if |
---|
761 | |
---|
762 | !----------------------------------------------------------------------- |
---|
763 | ! Longwave |
---|
764 | |
---|
765 | call optci(plevrad,tlevrad,dtaui,taucumi, & |
---|
766 | qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid, & |
---|
767 | taugsurfi,qvar,muvarrad) |
---|
768 | |
---|
769 | call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, & |
---|
770 | wnoi,dwni,cosbi,wbari,gweight,nfluxtopi,nfluxtopi_nu, & |
---|
771 | fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) |
---|
772 | |
---|
773 | !----------------------------------------------------------------------- |
---|
774 | ! Transformation of the correlated-k code outputs |
---|
775 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
---|
776 | |
---|
777 | ! Flux incident at the top of the atmosphere |
---|
778 | fluxtop_dn(ig)=fluxdnv(1) |
---|
779 | |
---|
780 | fluxtop_lw(ig) = real(nfluxtopi) |
---|
781 | fluxabs_sw(ig) = real(-nfluxtopv) |
---|
782 | fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD)) |
---|
783 | fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) |
---|
784 | |
---|
785 | |
---|
786 | if(fluxtop_dn(ig).lt.0.0)then |
---|
787 | print*,'Achtung! fluxtop_dn has lost the plot!' |
---|
788 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
789 | print*,'acosz=',acosz |
---|
790 | print*,'aerosol=',aerosol(ig,:,:) |
---|
791 | print*,'temp= ',pt(ig,:) |
---|
792 | print*,'pplay= ',pplay(ig,:) |
---|
793 | call abort |
---|
794 | endif |
---|
795 | |
---|
796 | ! Spectral output, for exoplanet observational comparison |
---|
797 | if(specOLR)then |
---|
798 | do nw=1,L_NSPECTI |
---|
799 | OLR_nu(ig,nw)=nfluxtopi_nu(nw) |
---|
800 | end do |
---|
801 | do nw=1,L_NSPECTV |
---|
802 | !GSR_nu(ig,nw)=nfluxgndv_nu(nw) |
---|
803 | OSR_nu(ig,nw)=nfluxoutv_nu(nw) |
---|
804 | end do |
---|
805 | endif |
---|
806 | |
---|
807 | ! Finally, the heating rates |
---|
808 | if(nonideal)then |
---|
809 | |
---|
810 | DO l=2,L_NLAYRAD |
---|
811 | dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & |
---|
812 | *g/(cpp3D(ig,L_NLAYRAD+1-l) & |
---|
813 | *scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
814 | dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) & |
---|
815 | *g/(cpp3D(ig,L_NLAYRAD+1-l) & |
---|
816 | *scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
817 | END DO |
---|
818 | |
---|
819 | ! These are values at top of atmosphere |
---|
820 | dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & |
---|
821 | *g/(cpp3D(ig,L_NLAYRAD)*scalep*(plevrad(3)-plevrad(1))) |
---|
822 | dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) & |
---|
823 | *g/(cpp3D(ig,L_NLAYRAD)*scalep*(plevrad(3)-plevrad(1))) |
---|
824 | |
---|
825 | else |
---|
826 | |
---|
827 | DO l=2,L_NLAYRAD |
---|
828 | dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & |
---|
829 | *g/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
830 | dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) & |
---|
831 | *g/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
832 | END DO |
---|
833 | |
---|
834 | ! These are values at top of atmosphere |
---|
835 | dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & |
---|
836 | *g/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
837 | dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) & |
---|
838 | *g/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
839 | |
---|
840 | endif |
---|
841 | |
---|
842 | ! --------------------------------------------------------------- |
---|
843 | end do ! end of big loop over every GCM column (ig = 1:ngrid) |
---|
844 | |
---|
845 | |
---|
846 | !----------------------------------------------------------------------- |
---|
847 | ! Additional diagnostics |
---|
848 | |
---|
849 | ! IR spectral output, for exoplanet observational comparison |
---|
850 | if(specOLR)then |
---|
851 | if(ngrid.ne.1)then |
---|
852 | call writediagspecIR(ngrid,"OLR3D","OLR(lon,lat,band)","W m^-2",3,OLR_nu) |
---|
853 | call writediagspecVI(ngrid,"OSR3D","OSR(lon,lat,band)","W m^-2",3,OSR_nu) |
---|
854 | endif |
---|
855 | endif |
---|
856 | |
---|
857 | if(lastcall.and.(ngrid.eq.1))then |
---|
858 | |
---|
859 | print*,'Saving scalar quantities in surf_vals.out...' |
---|
860 | print*,'psurf = ', pplev(1,1),' Pa' |
---|
861 | open(116,file='surf_vals.out') |
---|
862 | write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1), & |
---|
863 | real(-nfluxtopv),real(nfluxtopi) |
---|
864 | close(116) |
---|
865 | |
---|
866 | if(specOLR)then |
---|
867 | open(117,file='OLRnu.out') |
---|
868 | do nw=1,L_NSPECTI |
---|
869 | write(117,*) OLR_nu(1,nw) |
---|
870 | enddo |
---|
871 | close(117) |
---|
872 | |
---|
873 | open(127,file='OSRnu.out') |
---|
874 | do nw=1,L_NSPECTV |
---|
875 | write(127,*) OSR_nu(1,nw) |
---|
876 | enddo |
---|
877 | close(127) |
---|
878 | endif |
---|
879 | |
---|
880 | ! OLR vs altitude: do it as a .txt file |
---|
881 | OLRz=.false. |
---|
882 | if(OLRz)then |
---|
883 | print*,'saving IR vertical flux for OLRz...' |
---|
884 | open(118,file='OLRz_plevs.out') |
---|
885 | open(119,file='OLRz.out') |
---|
886 | do l=1,L_NLAYRAD |
---|
887 | write(118,*) plevrad(2*l) |
---|
888 | do nw=1,L_NSPECTI |
---|
889 | write(119,*) fluxupi_nu(l,nw) |
---|
890 | enddo |
---|
891 | enddo |
---|
892 | close(118) |
---|
893 | close(119) |
---|
894 | endif |
---|
895 | |
---|
896 | endif |
---|
897 | |
---|
898 | ! see physiq.F for explanations about CLFvarying. This is temporary. |
---|
899 | if (lastcall .and. .not.CLFvarying) then |
---|
900 | IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi ) |
---|
901 | IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv ) |
---|
902 | IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref ) |
---|
903 | IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref ) |
---|
904 | IF( ALLOCATED( wrefvar ) ) DEALLOCATE( wrefvar ) |
---|
905 | IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref ) |
---|
906 | endif |
---|
907 | |
---|
908 | end subroutine callcorrk |
---|