source: trunk/LMDZ.GENERIC/libf/phystd/callcorrk.F90 @ 2937

Last change on this file since 2937 was 2899, checked in by emillour, 2 years ago

Generic PCM:
More code tidying: turn aeropacity, aeroptproperties, gfluxi, gfluxv,
sfluxi and sfluxv into modules.
EM

  • Property svn:executable set to *
File size: 53.2 KB
Line 
1MODULE callcorrk_mod
2
3IMPLICIT NONE
4
5CONTAINS
6
7      subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf,           &
8          albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt,    &
9          tsurf,fract,dist_star,aerosol,muvar,                 &
10          dtlw,dtsw,fluxsurf_lw,                               &
11          fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw,               &
12          fluxabs_sw,fluxtop_dn,                               &
13          OLR_nu,OSR_nu,GSR_nu,                                &
14          int_dtaui,int_dtauv,                                 &
15          tau_col,cloudfrac,totcloudfrac,                      &
16          clearsky,firstcall,lastcall)
17
18      use mod_phys_lmdz_para, only : is_master
19      use radinc_h, only: L_NSPECTV, L_NSPECTI, naerkind, banddir, corrkdir,&
20                          L_LEVELS, L_NGAUSS, L_NLEVRAD, L_NLAYRAD, L_REFVAR
21      use radcommon_h, only: wrefvar, Cmk, fzeroi, fzerov, gasi, gasv, &
22                             glat_ig, gweight, pfgasref, pgasmax, pgasmin, &
23                             pgasref, tgasmax, tgasmin, tgasref, scalep, &
24                             ubari, wnoi, stellarf, glat, dwnv, dwni, tauray
25      use watercommon_h, only: psat_water, epsi
26      use datafile_mod, only: datadir
27      use ioipsl_getin_p_mod, only: getin_p
28      use gases_h, only: ngasmx
29      use radii_mod, only : su_aer_radii,co2_reffrad,h2o_reffrad,dust_reffrad,h2so4_reffrad,back2lay_reffrad
30      use aerosol_mod, only : iaero_co2,iaero_h2o,iaero_dust,iaero_h2so4, &
31                              iaero_back2lay, iaero_aurora,               &
32                              iaero_venus1,iaero_venus2,iaero_venus2p,    &
33                              iaero_venus3,iaero_venusUV
34      use aeropacity_mod, only: aeropacity
35      use aeroptproperties_mod, only: aeroptproperties
36      use tracer_h, only: igcm_h2o_ice, igcm_h2o_vap, igcm_co2_ice
37      use tracer_h, only: constants_epsi_generic
38      use comcstfi_mod, only: pi, mugaz, cpp
39      use callkeys_mod, only: varactive,diurnal,tracer,water,varfixed,satval, &
40                              diagdtau,kastprof,strictboundcorrk,specOLR, &
41                              CLFvarying,tplanckmin,tplanckmax,global1d, &
42                              generic_condensation, aerovenus
43      use optcv_mod, only: optcv
44      use optci_mod, only: optci
45      use sfluxi_mod, only: sfluxi
46      use sfluxv_mod, only: sfluxv
47      use recombin_corrk_mod, only: corrk_recombin, call_recombin
48      use generic_cloud_common_h, only: Psat_generic, epsi_generic
49      use generic_tracer_index_mod, only: generic_tracer_index
50      implicit none
51
52!==================================================================
53!
54!     Purpose
55!     -------
56!     Solve the radiative transfer using the correlated-k method for
57!     the gaseous absorption and the Toon et al. (1989) method for
58!     scatttering due to aerosols.
59!
60!     Authors
61!     -------
62!     Emmanuel 01/2001, Forget 09/2001
63!     Robin Wordsworth (2009)
64!
65!==================================================================
66
67!-----------------------------------------------------------------------
68!     Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid
69!     Layer #1 is the layer near the ground.
70!     Layer #nlayer is the layer at the top.
71!-----------------------------------------------------------------------
72
73
74      ! INPUT
75      INTEGER,INTENT(IN) :: ngrid                  ! Number of atmospheric columns.
76      INTEGER,INTENT(IN) :: nlayer                 ! Number of atmospheric layers.
77      REAL,INTENT(IN) :: pq(ngrid,nlayer,nq)       ! Tracers (kg/kg_of_air).
78      INTEGER,INTENT(IN) :: nq                     ! Number of tracers.
79      REAL,INTENT(IN) :: qsurf(ngrid,nq)           ! Tracers on surface (kg.m-2).
80      REAL,INTENT(IN) :: albedo(ngrid,L_NSPECTV)   ! Spectral Short Wavelengths Albedo. By MT2015
81      REAL,INTENT(IN) :: emis(ngrid)               ! Long Wave emissivity.
82      REAL,INTENT(IN) :: mu0(ngrid)                ! Cosine of sun incident angle.
83      REAL,INTENT(IN) :: pplev(ngrid,nlayer+1)     ! Inter-layer pressure (Pa).
84      REAL,INTENT(IN) :: pplay(ngrid,nlayer)       ! Mid-layer pressure (Pa).
85      REAL,INTENT(IN) :: pt(ngrid,nlayer)          ! Air temperature (K).
86      REAL,INTENT(IN) :: tsurf(ngrid)              ! Surface temperature (K).
87      REAL,INTENT(IN) :: fract(ngrid)              ! Fraction of day.
88      REAL,INTENT(IN) :: dist_star                 ! Distance star-planet (AU).
89      REAL,INTENT(IN) :: muvar(ngrid,nlayer+1)
90      REAL,INTENT(IN) :: cloudfrac(ngrid,nlayer)   ! Fraction of clouds (%).
91      logical,intent(in) :: clearsky
92      logical,intent(in) :: firstcall              ! Signals first call to physics.
93      logical,intent(in) :: lastcall               ! Signals last call to physics.
94     
95      ! OUTPUT
96      REAL,INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! Aerosol tau at reference wavelenght.
97      REAL,INTENT(OUT) :: dtlw(ngrid,nlayer)             ! Heating rate (K/s) due to LW radiation.
98      REAL,INTENT(OUT) :: dtsw(ngrid,nlayer)             ! Heating rate (K/s) due to SW radiation.
99      REAL,INTENT(OUT) :: fluxsurf_lw(ngrid)             ! Incident LW flux to surf (W/m2).
100      REAL,INTENT(OUT) :: fluxsurf_sw(ngrid)             ! Incident SW flux to surf (W/m2)
101      REAL,INTENT(OUT) :: fluxsurfabs_sw(ngrid)          ! Absorbed SW flux by the surface (W/m2). By MT2015.
102      REAL,INTENT(OUT) :: fluxtop_lw(ngrid)              ! Outgoing LW flux to space (W/m2).
103      REAL,INTENT(OUT) :: fluxabs_sw(ngrid)              ! SW flux absorbed by the planet (W/m2).
104      REAL,INTENT(OUT) :: fluxtop_dn(ngrid)              ! Incident top of atmosphere SW flux (W/m2).
105      REAL,INTENT(OUT) :: OLR_nu(ngrid,L_NSPECTI)        ! Outgoing LW radiation in each band (Normalized to the band width (W/m2/cm-1).
106      REAL,INTENT(OUT) :: OSR_nu(ngrid,L_NSPECTV)        ! Outgoing SW radiation in each band (Normalized to the band width (W/m2/cm-1).
107      REAL,INTENT(OUT) :: GSR_nu(ngrid,L_NSPECTV)        ! Surface SW radiation in each band (Normalized to the band width (W/m2/cm-1).
108      REAL,INTENT(OUT) :: tau_col(ngrid)                 ! Diagnostic from aeropacity.
109      REAL,INTENT(OUT) :: albedo_equivalent(ngrid)       ! Spectrally Integrated Albedo. For Diagnostic. By MT2015
110      REAL,INTENT(OUT) :: totcloudfrac(ngrid)            ! Column Fraction of clouds (%).
111      REAL,INTENT(OUT) :: int_dtaui(ngrid,nlayer,L_NSPECTI) ! VI optical thickness of layers within narrowbands for diags ().
112      REAL,INTENT(OUT) :: int_dtauv(ngrid,nlayer,L_NSPECTV) ! IR optical thickness of layers within narrowbands for diags ().
113     
114     
115     
116     
117
118      ! Globally varying aerosol optical properties on GCM grid ; not needed everywhere so not in radcommon_h.   
119      REAL :: QVISsQREF3d(ngrid,nlayer,L_NSPECTV,naerkind)
120      REAL :: omegaVIS3d(ngrid,nlayer,L_NSPECTV,naerkind)
121      REAL :: gVIS3d(ngrid,nlayer,L_NSPECTV,naerkind)
122      REAL :: QIRsQREF3d(ngrid,nlayer,L_NSPECTI,naerkind)
123      REAL :: omegaIR3d(ngrid,nlayer,L_NSPECTI,naerkind)
124      REAL :: gIR3d(ngrid,nlayer,L_NSPECTI,naerkind)
125
126!      REAL :: omegaREFvis3d(ngrid,nlayer,naerkind)
127!      REAL :: omegaREFir3d(ngrid,nlayer,naerkind) ! not sure of the point of these...
128
129      REAL,ALLOCATABLE,SAVE :: reffrad(:,:,:)  ! aerosol effective radius (m)
130      REAL,ALLOCATABLE,SAVE :: nueffrad(:,:,:) ! aerosol effective variance
131!$OMP THREADPRIVATE(reffrad,nueffrad)
132
133!-----------------------------------------------------------------------
134!     Declaration of the variables required by correlated-k subroutines
135!     Numbered from top to bottom (unlike in the GCM)
136!-----------------------------------------------------------------------
137
138      REAL*8 tmid(L_LEVELS),pmid(L_LEVELS)
139      REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS)
140
141      ! Optical values for the optci/cv subroutines
142      REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV)
143      ! NB: Arrays below are "save" to avoid reallocating them at every call
144      ! not because their content needs be reused from call to the next
145      REAL*8,allocatable,save :: dtaui(:,:,:)
146      REAL*8,allocatable,save :: dtauv(:,:,:)
147      REAL*8,allocatable,save :: cosbv(:,:,:)
148      REAL*8,allocatable,save :: cosbi(:,:,:)
149      REAL*8,allocatable,save :: wbari(:,:,:)
150      REAL*8,allocatable,save :: wbarv(:,:,:)
151!$OMP THREADPRIVATE(dtaui,dtauv,cosbv,cosbi,wbari,wbarv)
152      REAL*8,allocatable,save :: tauv(:,:,:)
153      REAL*8,allocatable,save :: taucumv(:,:,:)
154      REAL*8,allocatable,save :: taucumi(:,:,:)
155!$OMP THREADPRIVATE(tauv,taucumv,taucumi)
156      REAL*8 tauaero(L_LEVELS,naerkind)
157      REAL*8 nfluxtopv,nfluxtopi,nfluxtop,fluxtopvdn
158      REAL*8 nfluxoutv_nu(L_NSPECTV)                 ! Outgoing band-resolved VI flux at TOA (W/m2).
159      REAL*8 nfluxtopi_nu(L_NSPECTI)                 ! Net band-resolved IR flux at TOA (W/m2).
160      REAL*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI)         ! For 1D diagnostic.
161      REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD)
162      REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD)
163      REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD)
164      REAL*8 albi,acosz
165      REAL*8 albv(L_NSPECTV)                         ! Spectral Visible Albedo.
166
167      INTEGER ig,l,k,nw,iaer,iq
168
169      real*8,allocatable,save :: taugsurf(:,:)
170      real*8,allocatable,save :: taugsurfi(:,:)
171!$OMP THREADPRIVATE(taugsurf,taugsurfi)
172      real*8 qvar(L_LEVELS)   ! Mixing ratio of variable component (mol/mol). index 1 is the top of the atmosphere, index L_LEVELS is the bottom
173
174      ! Local aerosol optical properties for each column on RADIATIVE grid.
175      real*8,save,allocatable ::  QXVAER(:,:,:) ! Extinction coeff (QVISsQREF*QREFvis)
176      real*8,save,allocatable ::  QSVAER(:,:,:)
177      real*8,save,allocatable ::  GVAER(:,:,:)
178      real*8,save,allocatable ::  QXIAER(:,:,:) ! Extinction coeff (QIRsQREF*QREFir)
179      real*8,save,allocatable ::  QSIAER(:,:,:)
180      real*8,save,allocatable ::  GIAER(:,:,:)
181!$OMP THREADPRIVATE(QXVAER,QSVAER,GVAER,QXIAER,QSIAER,GIAER)
182      real, dimension(:,:,:), save, allocatable :: QREFvis3d
183      real, dimension(:,:,:), save, allocatable :: QREFir3d
184!$OMP THREADPRIVATE(QREFvis3d,QREFir3d)
185
186
187      ! Miscellaneous :
188      real*8  temp,temp1,temp2,pweight
189      character(len=10) :: tmp1
190      character(len=10) :: tmp2
191      character(len=100) :: message
192      character(len=10),parameter :: subname="callcorrk"
193
194      ! For fixed water vapour profiles.
195      integer i_var
196      real RH
197      real*8 pq_temp(nlayer)
198! real(KIND=r8) :: pq_temp(nlayer) ! better F90 way.. DOESNT PORT TO F77!!!
199      real psat,qsat
200
201      logical OLRz
202      real*8 NFLUXGNDV_nu(L_NSPECTV)
203
204      ! Included by RW for runaway greenhouse 1D study.
205      real vtmp(nlayer)
206      REAL*8 muvarrad(L_LEVELS)
207     
208      ! Included by MT for albedo calculations.     
209      REAL*8 albedo_temp(L_NSPECTV) ! For equivalent albedo calculation.
210      REAL*8 surface_stellar_flux   ! Stellar flux reaching the surface. Useful for equivalent albedo calculation.
211     
212      ! local variable
213      integer ok ! status (returned by NetCDF functions)
214
215      integer igcm_generic_vap, igcm_generic_ice! index of the vap and ice of generic_tracer
216      logical call_ice_vap_generic ! to call only one time the ice/vap pair of a tracer
217      real, save :: metallicity ! metallicity of planet --- is not used here, but necessary to call function Psat_generic
218!$OMP THREADPRIVATE(metallicity)
219      REAL, SAVE :: qvap_deep   ! deep mixing ratio of water vapor when simulating bottom less planets
220!$OMP THREADPRIVATE(qvap_deep)
221
222!===============================================================
223!           I.a Initialization on first call
224!===============================================================
225
226
227      if(firstcall) then
228
229        ! test on allocated necessary because of CLFvarying (two calls to callcorrk in physiq)
230        if(.not.allocated(QXVAER)) then
231          allocate(QXVAER(L_LEVELS,L_NSPECTV,naerkind), stat=ok)
232          if (ok /= 0) then
233             write(*,*) "memory allocation failed for QXVAER!"
234             call abort_physic(subname,'allocation failurei for QXVAER',1)
235          endif
236        endif
237        if(.not.allocated(QSVAER)) then
238          allocate(QSVAER(L_LEVELS,L_NSPECTV,naerkind), stat=ok)
239          if (ok /= 0) then
240             write(*,*) "memory allocation failed for QSVAER!"
241             call abort_physic(subname,'allocation failure for QSVAER',1)
242          endif
243        endif
244        if(.not.allocated(GVAER)) then
245          allocate(GVAER(L_LEVELS,L_NSPECTV,naerkind), stat=ok)
246          if (ok /= 0) then
247             write(*,*) "memory allocation failed for GVAER!"
248             call abort_physic(subname,'allocation failure for GVAER',1)
249          endif
250        endif
251        if(.not.allocated(QXIAER)) then
252          allocate(QXIAER(L_LEVELS,L_NSPECTI,naerkind), stat=ok)
253          if (ok /= 0) then
254             write(*,*) "memory allocation failed for QXIAER!"
255             call abort_physic(subname,'allocation failure for QXIAER',1)
256          endif
257        endif
258        if(.not.allocated(QSIAER)) then
259          allocate(QSIAER(L_LEVELS,L_NSPECTI,naerkind), stat=ok)
260          if (ok /= 0) then
261             write(*,*) "memory allocation failed for QSIAER!"
262             call abort_physic(subname,'allocation failure for QSIAER',1)
263          endif
264        endif
265        if(.not.allocated(GIAER)) then
266          allocate(GIAER(L_LEVELS,L_NSPECTI,naerkind), stat=ok)
267          if (ok /= 0) then
268             write(*,*) "memory allocation failed for GIAER!"
269             call abort_physic(subname,'allocation failure for GIAER',1)
270          endif
271        endif
272
273         !!! ALLOCATED instances are necessary because of CLFvarying (strategy to call callcorrk twice in physiq...)
274         IF(.not.ALLOCATED(QREFvis3d))THEN
275           ALLOCATE(QREFvis3d(ngrid,nlayer,naerkind), stat=ok)
276           IF (ok/=0) THEN
277              write(*,*) "memory allocation failed for QREFvis3d!"
278              call abort_physic(subname,'allocation failure for QREFvis3d',1)
279           ENDIF
280         ENDIF
281         IF(.not.ALLOCATED(QREFir3d)) THEN
282           ALLOCATE(QREFir3d(ngrid,nlayer,naerkind), stat=ok)
283           IF (ok/=0) THEN
284              write(*,*) "memory allocation failed for QREFir3d!"
285              call abort_physic(subname,'allocation failure for QREFir3d',1)
286           ENDIF
287         ENDIF
288         ! Effective radius and variance of the aerosols
289         IF(.not.ALLOCATED(reffrad)) THEN
290           allocate(reffrad(ngrid,nlayer,naerkind), stat=ok)
291           IF (ok/=0) THEN
292              write(*,*) "memory allocation failed for reffrad!"
293              call abort_physic(subname,'allocation failure for reffrad',1)
294           ENDIF
295         ENDIF
296         IF(.not.ALLOCATED(nueffrad)) THEN
297           allocate(nueffrad(ngrid,nlayer,naerkind), stat=ok)
298           IF (ok/=0) THEN
299              write(*,*) "memory allocation failed for nueffrad!"
300              call abort_physic(subname,'allocation failure for nueffrad',1)
301           ENDIF
302         ENDIF
303
304#ifndef MESOSCALE
305         if (is_master) call system('rm -f surf_vals_long.out')
306#endif
307
308         call su_aer_radii(ngrid,nlayer,reffrad,nueffrad)
309         
310         
311!--------------------------------------------------
312!             Set up correlated k
313!--------------------------------------------------
314
315      !this block is now done at firstcall of physiq_mod
316         ! print*, "callcorrk: Correlated-k data base folder:",trim(datadir)
317         ! call getin_p("corrkdir",corrkdir)
318         ! print*, "corrkdir = ",corrkdir
319         ! write( tmp1, '(i3)' ) L_NSPECTI
320         ! write( tmp2, '(i3)' ) L_NSPECTV
321         ! banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2))
322         ! banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir))
323
324         ! call setspi            ! Basic infrared properties.
325         ! call setspv            ! Basic visible properties.
326         ! call sugas_corrk       ! Set up gaseous absorption properties.
327         ! call suaer_corrk       ! Set up aerosol optical properties.
328       
329
330         ! now that L_NGAUSS has been initialized (by sugas_corrk)
331         ! allocate related arrays
332         if(.not.allocated(dtaui)) then
333           ALLOCATE(dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS), stat=ok)
334           if (ok/=0) then
335              write(*,*) "memory allocation failed for dtaui!"
336              call abort_physic(subname,'allocation failure for dtaui',1)
337           endif
338         endif
339         if(.not.allocated(dtauv)) then
340           ALLOCATE(dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS), stat=ok)
341           if (ok/=0) then
342              write(*,*) "memory allocation failed for dtauv!"
343              call abort_physic(subname,'allocation failure for dtauv',1)
344           endif
345         endif
346         if(.not.allocated(cosbv)) then
347           ALLOCATE(cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS), stat=ok)
348           if (ok/=0) then
349              write(*,*) "memory allocation failed for cosbv!"
350              call abort_physic(subname,'allocation failure for cobsv',1)
351           endif
352         endif
353         if(.not.allocated(cosbi)) then
354           ALLOCATE(cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS), stat=ok)
355           if (ok/=0) then
356              write(*,*) "memory allocation failed for cosbi!"
357              call abort_physic(subname,'allocation failure for cobsi',1)
358           endif
359         endif
360         if(.not.allocated(wbari)) then
361           ALLOCATE(wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS), stat=ok)
362           if (ok/=0) then
363              write(*,*) "memory allocation failed for wbari!"
364              call abort_physic(subname,'allocation failure for wbari',1)
365           endif
366         endif
367         if(.not.allocated(wbarv)) then
368           ALLOCATE(wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS), stat=ok)
369           if (ok/=0) then
370              write(*,*) "memory allocation failed for wbarv!"
371              call abort_physic(subname,'allocation failure for wbarv',1)
372           endif
373         endif
374         if(.not.allocated(tauv)) then
375           ALLOCATE(tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS), stat=ok)
376           if (ok/=0) then
377              write(*,*) "memory allocation failed for tauv!"
378              call abort_physic(subname,'allocation failure for tauv',1)
379           endif
380         endif
381         if(.not.allocated(taucumv)) then
382           ALLOCATE(taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS), stat=ok)
383           if (ok/=0) then
384              write(*,*) "memory allocation failed for taucumv!"
385              call abort_physic(subname,'allocation failure for taucumv',1)
386           endif
387         endif
388         if(.not.allocated(taucumi)) then
389           ALLOCATE(taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS), stat=ok)
390           if (ok/=0) then
391              write(*,*) "memory allocation failed for taucumi!"
392              call abort_physic(subname,'allocation failure for taucumi',1)
393           endif
394         endif
395         if(.not.allocated(taugsurf)) then
396           ALLOCATE(taugsurf(L_NSPECTV,L_NGAUSS-1), stat=ok)
397           if (ok/=0) then
398              write(*,*) "memory allocation failed for taugsurf!"
399              call abort_physic(subname,'allocation failure for taugsurf',1)
400           endif
401         endif
402         if(.not.allocated(taugsurfi)) then
403           ALLOCATE(taugsurfi(L_NSPECTI,L_NGAUSS-1), stat=ok)
404           if (ok/=0) then
405              write(*,*) "memory allocation failed for taugsurfi!"
406              call abort_physic(subname,'allocation failure for taugsurfi',1)
407           endif
408         endif
409
410         if((igcm_h2o_vap.eq.0) .and. varactive .and. water)then
411            message='varactive in callcorrk but no h2o_vap tracer.'
412            call abort_physic(subname,message,1)
413         endif
414
415         if(varfixed .and. generic_condensation .and. .not. water)then
416            write(*,*) "Deep water vapor mixing ratio ? (no effect if negative) "
417            qvap_deep=-1. ! default value
418            call getin_p("qvap_deep",qvap_deep)
419            write(*,*) " qvap_deep = ",qvap_deep
420
421            metallicity=0.0 ! default value --- is not used here but necessary to call function Psat_generic
422            call getin_p("metallicity",metallicity) ! --- is not used here but necessary to call function Psat_generic
423         endif
424
425      end if ! of if (firstcall)
426
427!=======================================================================
428!          I.b  Initialization on every call   
429!=======================================================================
430 
431      qxvaer(:,:,:)=0.0
432      qsvaer(:,:,:)=0.0
433      gvaer(:,:,:) =0.0
434
435      qxiaer(:,:,:)=0.0
436      qsiaer(:,:,:)=0.0
437      giaer(:,:,:) =0.0
438
439      OLR_nu(:,:) = 0.
440      OSR_nu(:,:) = 0.
441      GSR_nu(:,:) = 0.
442
443!--------------------------------------------------
444!     Effective radius and variance of the aerosols
445!--------------------------------------------------
446
447      do iaer=1,naerkind
448
449         if ((iaer.eq.iaero_co2).and.tracer.and.(igcm_co2_ice.gt.0)) then ! Treat condensed co2 particles.
450            call co2_reffrad(ngrid,nlayer,nq,pq,reffrad(1,1,iaero_co2))
451            if (is_master) then
452               print*,'Max. CO2 ice particle size = ',maxval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um'
453               print*,'Min. CO2 ice particle size = ',minval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um'
454            end if
455         end if
456         
457         if ((iaer.eq.iaero_h2o).and.water) then ! Treat condensed water particles. To be generalized for other aerosols ...
458            call h2o_reffrad(ngrid,nlayer,pq(1,1,igcm_h2o_ice),pt, &
459                             reffrad(1,1,iaero_h2o),nueffrad(1,1,iaero_h2o))
460            if (is_master) then
461               print*,'Max. H2O cloud particle size = ',maxval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um'
462               print*,'Min. H2O cloud particle size = ',minval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um'
463            end if
464         endif
465         
466         if(iaer.eq.iaero_dust)then
467            call dust_reffrad(ngrid,nlayer,reffrad(1,1,iaero_dust))
468            if (is_master) then
469               print*,'Dust particle size = ',reffrad(1,1,iaer)/1.e-6,' um'
470            end if
471         endif
472         
473         if(iaer.eq.iaero_h2so4)then
474            call h2so4_reffrad(ngrid,nlayer,reffrad(1,1,iaero_h2so4))
475            if (is_master) then
476               print*,'H2SO4 particle size =',reffrad(1,1,iaer)/1.e-6,' um'
477            end if
478         endif
479         
480          if(iaer.eq.iaero_back2lay)then
481            call back2lay_reffrad(ngrid,reffrad(1,1,iaero_back2lay),nlayer,pplev)
482         endif
483
484         !  For n-layer aerosol size set once for all at firstcall in su_aer_radii
485
486!         if(iaer.eq.iaero_aurora)then
487!           call aurora_reffrad(ngrid,nlayer,reffrad(1,1,iaero_aurora))
488!         endif
489       
490     end do !iaer=1,naerkind.
491
492
493      ! How much light do we get ?
494      do nw=1,L_NSPECTV
495         stel(nw)=stellarf(nw)/(dist_star**2)
496      end do
497
498      ! Get 3D aerosol optical properties.
499      call aeroptproperties(ngrid,nlayer,reffrad,nueffrad,         &
500           QVISsQREF3d,omegaVIS3d,gVIS3d,                          &
501           QIRsQREF3d,omegaIR3d,gIR3d,                             &
502           QREFvis3d,QREFir3d)                                     
503
504      ! Get aerosol optical depths.
505      call aeropacity(ngrid,nlayer,nq,pplay,pplev, pt,pq,aerosol,      &
506           reffrad,nueffrad,QREFvis3d,QREFir3d,                             &
507           tau_col,cloudfrac,totcloudfrac,clearsky)               
508 
509!-----------------------------------------------------------------------   
510      do ig=1,ngrid ! Starting Big Loop over every GCM column
511!-----------------------------------------------------------------------
512
513
514!=======================================================================
515!              II.  Transformation of the GCM variables
516!=======================================================================
517
518
519!-----------------------------------------------------------------------
520!    Aerosol optical properties Qext, Qscat and g.
521!    The transformation in the vertical is the same as for temperature.
522!-----------------------------------------------------------------------
523           
524           
525            do iaer=1,naerkind
526               ! Shortwave.
527               do nw=1,L_NSPECTV
528               
529                  do l=1,nlayer
530
531                     temp1=QVISsQREF3d(ig,nlayer+1-l,nw,iaer)         &
532                         *QREFvis3d(ig,nlayer+1-l,iaer)
533
534                     temp2=QVISsQREF3d(ig,max(nlayer-l,1),nw,iaer)    &
535                         *QREFvis3d(ig,max(nlayer-l,1),iaer)
536
537                     qxvaer(2*l,nw,iaer)  = temp1
538                     qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2
539
540                     temp1=temp1*omegavis3d(ig,nlayer+1-l,nw,iaer)
541                     temp2=temp2*omegavis3d(ig,max(nlayer-l,1),nw,iaer)
542
543                     qsvaer(2*l,nw,iaer)  = temp1
544                     qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2
545
546                     temp1=gvis3d(ig,nlayer+1-l,nw,iaer)
547                     temp2=gvis3d(ig,max(nlayer-l,1),nw,iaer)
548
549                     gvaer(2*l,nw,iaer)  = temp1
550                     gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2
551
552                  end do ! nlayer
553
554                  qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer)
555                  qxvaer(2*nlayer+1,nw,iaer)=0.
556
557                  qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer)
558                  qsvaer(2*nlayer+1,nw,iaer)=0.
559
560                  gvaer(1,nw,iaer)=gvaer(2,nw,iaer)
561                  gvaer(2*nlayer+1,nw,iaer)=0.
562
563               end do ! L_NSPECTV
564             
565               do nw=1,L_NSPECTI
566                  ! Longwave
567                  do l=1,nlayer
568
569                     temp1=QIRsQREF3d(ig,nlayer+1-l,nw,iaer)         &
570                          *QREFir3d(ig,nlayer+1-l,iaer)
571
572                     temp2=QIRsQREF3d(ig,max(nlayer-l,1),nw,iaer)    &
573                          *QREFir3d(ig,max(nlayer-l,1),iaer)
574
575                     qxiaer(2*l,nw,iaer)  = temp1
576                     qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2
577
578                     temp1=temp1*omegair3d(ig,nlayer+1-l,nw,iaer)
579                     temp2=temp2*omegair3d(ig,max(nlayer-l,1),nw,iaer)
580
581                     qsiaer(2*l,nw,iaer)  = temp1
582                     qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2
583
584                     temp1=gir3d(ig,nlayer+1-l,nw,iaer)
585                     temp2=gir3d(ig,max(nlayer-l,1),nw,iaer)
586
587                     giaer(2*l,nw,iaer)  = temp1
588                     giaer(2*l+1,nw,iaer)=(temp1+temp2)/2
589
590                  end do ! nlayer
591
592                  qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer)
593                  qxiaer(2*nlayer+1,nw,iaer)=0.
594
595                  qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer)
596                  qsiaer(2*nlayer+1,nw,iaer)=0.
597
598                  giaer(1,nw,iaer)=giaer(2,nw,iaer)
599                  giaer(2*nlayer+1,nw,iaer)=0.
600
601               end do ! L_NSPECTI
602               
603            end do ! naerkind
604
605            ! Test / Correct for freaky s. s. albedo values.
606            do iaer=1,naerkind
607               do k=1,L_LEVELS
608
609                  do nw=1,L_NSPECTV
610                     if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then
611                        message='Serious problems with qsvaer values'
612                        call abort_physic(subname,message,1)
613                     endif
614                     if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then
615                        qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer)
616                     endif
617                  end do
618
619                  do nw=1,L_NSPECTI
620                     if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then
621                        message='Serious problems with qsvaer values'
622                        call abort_physic(subname,message,1)
623                     endif
624                     if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then
625                        qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer)
626                     endif
627                  end do
628
629               end do ! L_LEVELS
630            end do ! naerkind
631
632!-----------------------------------------------------------------------
633!     Aerosol optical depths
634!-----------------------------------------------------------------------
635           
636         do iaer=1,naerkind     ! a bug was here           
637            do k=0,nlayer-1
638               
639               pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/   &
640                       (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))
641               ! As 'aerosol' is at reference (visible) wavelenght we scale it as
642               ! it will be multplied by qxi/v in optci/v
643               temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer)
644               tauaero(2*k+2,iaer)=max(temp*pweight,0.d0)
645               tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0)
646
647            end do
648            ! boundary conditions
649            tauaero(1,iaer)          = tauaero(2,iaer)
650            !tauaero(1,iaer)          = 0.
651            !JL18 at time of testing, the two above conditions gave the same results bit for bit.
652           
653         end do ! naerkind
654
655         ! Albedo and Emissivity.
656         albi=1-emis(ig)   ! Long Wave.
657         DO nw=1,L_NSPECTV ! Short Wave loop.
658            albv(nw)=albedo(ig,nw)
659         ENDDO
660
661         acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude.
662
663!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
664!!! Note by JL13 : In the following, some indices were changed in the interpolations,
665!!!                so that the model results are less dependent on the number of layers !
666!!!
667!!!           ---  The older versions are commented with the comment !JL13index  ---
668!!!
669!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
670
671
672      !-----------------------------------------------------------------------
673      !     Water vapour (to be generalised for other gases eventually ...)
674      !-----------------------------------------------------------------------
675           
676      if (water) then
677         if(varactive)then
678
679            i_var=igcm_h2o_vap
680            do l=1,nlayer
681               qvar(2*l)   = pq(ig,nlayer+1-l,i_var)
682               qvar(2*l+1) = pq(ig,nlayer+1-l,i_var)   
683               !JL13index   qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig,max(nlayer-l,1),i_var))/2   
684               !JL13index   Average approximation as for temperature...
685            end do
686            qvar(1)=qvar(2)
687
688         elseif(varfixed)then
689
690            do l=1,nlayer ! Here we will assign fixed water vapour profiles globally.
691               RH = satval * ((pplay(ig,l)/pplev(ig,1) - 0.02) / 0.98)
692               if(RH.lt.0.0) RH=0.0
693               
694               call Psat_water(pt(ig,l),pplay(ig,l),psat,qsat)
695
696               !pq_temp(l) = qsat      ! fully saturated everywhere
697               pq_temp(l) = RH * qsat ! ~realistic profile (e.g. 80% saturation at ground)
698            end do
699           
700            do l=1,nlayer
701               qvar(2*l)   = pq_temp(nlayer+1-l)
702               qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp(max(nlayer-l,1)))/2
703            end do
704           
705            qvar(1)=qvar(2)
706
707            ! Lowest layer of atmosphere
708            RH = satval * (1 - 0.02) / 0.98
709            if(RH.lt.0.0) RH=0.0
710
711            qvar(2*nlayer+1)= RH * qsat ! ~realistic profile (e.g. 80% saturation at ground)
712   
713         else
714            do k=1,L_LEVELS
715               qvar(k) = 1.0D-7
716            end do
717         end if ! varactive/varfixed
718     
719      endif ! if (water)
720
721      !-----------------------------------------------------------------------
722      !  GCS (Generic Condensable Specie) Vapor
723      !  If you have GCS tracers and they are : variable & radiatively active
724      !
725      !  NC22
726      !-----------------------------------------------------------------------
727
728      if (generic_condensation .and. .not. water ) then
729
730         ! For now, only one GCS tracer can be both variable and radiatively active
731         ! If you set two GCS tracers, that are variable and radiatively active,
732         ! the last one in tracer.def will be chosen as the one that will be vadiatively active
733
734         do iq=1,nq
735
736            call generic_tracer_index(nq,iq,igcm_generic_vap,igcm_generic_ice,call_ice_vap_generic)
737           
738            if (call_ice_vap_generic) then ! to call only one time the ice/vap pair of a tracer
739
740               if(varactive)then
741
742                  i_var=igcm_generic_vap
743                  do l=1,nlayer
744                     qvar(2*l)   = pq(ig,nlayer+1-l,i_var)
745                     qvar(2*l+1) = pq(ig,nlayer+1-l,i_var)   
746                     !JL13index            qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig,max(nlayer-l,1),i_var))/2   
747                     !JL13index            ! Average approximation as for temperature...
748                  end do
749                  qvar(1)=qvar(2)
750
751               elseif(varfixed .and. (qvap_deep .ge. 0))then
752
753                  do l=1,nlayer ! Here we will assign fixed water vapour profiles globally.
754                                         
755                     call Psat_generic(pt(ig,l),pplay(ig,l),metallicity,psat,qsat)
756
757                     if (qsat .lt. qvap_deep) then
758                        pq_temp(l) = qsat      ! fully saturated everywhere
759                     else
760                        pq_temp(l) = qvap_deep
761                     end if
762
763                  end do
764                 
765                  do l=1,nlayer
766                     qvar(2*l)   = pq_temp(nlayer+1-l)
767                     qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp(max(nlayer-l,1)))/2
768                  end do
769                 
770                  qvar(1)=qvar(2)
771         
772               else
773                  do k=1,L_LEVELS
774                     qvar(k) = 1.0D-7
775                  end do
776               end if ! varactive/varfixed
777
778            endif
779
780         end do ! do iq=1,nq loop on tracers
781
782      end if ! if (generic_condensation .and. .not. water )
783
784      !-----------------------------------------------------------------------
785      !  No Water vapor and No GCS (Generic Condensable Specie) vapor
786      !-----------------------------------------------------------------------
787
788      if (.not. generic_condensation .and. .not. water ) then
789         do k=1,L_LEVELS
790            qvar(k) = 1.0D-7
791         end do
792      end if ! if (.not. generic_condensation .and. .not. water )
793
794
795      if(.not.kastprof)then
796         ! IMPORTANT: Now convert from kg/kg to mol/mol.
797         do k=1,L_LEVELS
798            if (water) then
799               qvar(k) = qvar(k)/(epsi+qvar(k)*(1.-epsi))
800            endif
801            if (generic_condensation .and. .not. water) then
802               do iq=1,nq
803                  call generic_tracer_index(nq,iq,igcm_generic_vap,igcm_generic_ice,call_ice_vap_generic)
804                  if (call_ice_vap_generic) then ! to call only one time the ice/vap pair of a tracer
805
806                     epsi_generic=constants_epsi_generic(iq)
807
808                     qvar(k) = qvar(k)/(epsi_generic+qvar(k)*(1.-epsi_generic))
809
810                  endif
811               end do ! do iq=1,nq loop on tracers
812            endif
813         end do
814      end if
815
816!-----------------------------------------------------------------------
817!     kcm mode only !
818!-----------------------------------------------------------------------
819
820      if(kastprof)then
821     
822         if(.not.global1d)then ! garde-fou/safeguard added by MT (to be removed in the future)
823           message='You have to fix mu0, the cosinus of the solar angle'
824           call abort_physic(subname,message,1)
825         endif
826         
827         ! Initial values equivalent to mugaz.
828         DO l=1,nlayer
829            muvarrad(2*l)   = mugaz
830            muvarrad(2*l+1) = mugaz
831         END DO
832
833         if(ngasmx.gt.1)then
834
835            DO l=1,nlayer
836               muvarrad(2*l)   =  muvar(ig,nlayer+2-l)
837               muvarrad(2*l+1) = (muvar(ig,nlayer+2-l) + &
838                                  muvar(ig,max(nlayer+1-l,1)))/2
839            END DO
840     
841            muvarrad(1) = muvarrad(2)
842            muvarrad(2*nlayer+1) = muvar(ig,1)
843
844            print*,'Recalculating qvar with VARIABLE epsi for kastprof'
845            print*,'Assumes that the variable gas is H2O!!!'
846            print*,'Assumes that there is only one tracer'
847           
848            !i_var=igcm_h2o_vap
849            i_var=1
850           
851            if(nq.gt.1)then
852               message='Need 1 tracer only to run kcm1d.e'
853               call abort_physic(subname,message,1)
854            endif
855           
856            do l=1,nlayer
857               vtmp(l)=pq(ig,l,i_var)/(epsi+pq(ig,l,i_var)*(1.-epsi))
858               !vtmp(l)=pq(ig,l,i_var)*muvar(ig,l+1)/mH2O !JL to be changed
859            end do
860
861            do l=1,nlayer
862               qvar(2*l)   = vtmp(nlayer+1-l)
863               qvar(2*l+1) = vtmp(nlayer+1-l)
864!               qvar(2*l+1) = ( vtmp(nlayer+1-l) + vtmp(max(nlayer-l,1)) )/2
865            end do
866            qvar(1)=qvar(2)
867
868            write(*,*)trim(subname),' :Warning: reducing qvar in callcorrk.'
869            write(*,*)trim(subname),' :Temperature profile no longer consistent ', &
870                   'with saturated H2O. qsat=',satval
871                   
872            do k=1,L_LEVELS
873               qvar(k) = qvar(k)*satval
874            end do
875
876         endif
877      else ! if kastprof
878         DO l=1,nlayer
879            muvarrad(2*l)   = muvar(ig,nlayer+2-l)
880            muvarrad(2*l+1) = (muvar(ig,nlayer+2-l)+muvar(ig,max(nlayer+1-l,1)))/2
881         END DO
882     
883         muvarrad(1) = muvarrad(2)
884         muvarrad(2*nlayer+1)=muvar(ig,1)         
885      endif ! if kastprof
886     
887      ! Keep values inside limits for which we have radiative transfer coefficients !!!
888      if(L_REFVAR.gt.1)then ! (there was a bug here)
889         do k=1,L_LEVELS
890            if(qvar(k).lt.wrefvar(1))then
891               qvar(k)=wrefvar(1)+1.0e-8
892            elseif(qvar(k).gt.wrefvar(L_REFVAR))then
893               qvar(k)=wrefvar(L_REFVAR)-1.0e-8
894            endif
895         end do
896      endif
897
898!-----------------------------------------------------------------------
899!     Pressure and temperature
900!-----------------------------------------------------------------------
901
902      DO l=1,nlayer
903         plevrad(2*l)   = pplay(ig,nlayer+1-l)/scalep
904         plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep
905         tlevrad(2*l)   = pt(ig,nlayer+1-l)
906         tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2
907      END DO
908     
909      plevrad(1) = 0.
910!      plevrad(2) = 0.   !! JL18 enabling this line puts the radiative top at p=0 which was the idea before, but does not seem to perform best after all.
911      if (aerovenus) then
912!!  GG19 modified below after SL routines
913        plevrad(2) = 0.
914      endif
915
916      tlevrad(1) = tlevrad(2)
917      tlevrad(2*nlayer+1)=tsurf(ig)
918     
919      pmid(1) = pplay(ig,nlayer)/scalep   
920      if (aerovenus) then
921!! GG19 modified below after SL routines
922        pmid(1) = max(pgasmin,0.0001*plevrad(3))
923      endif
924      pmid(2) =  pmid(1)
925
926      tmid(1) = tlevrad(2)
927      tmid(2) = tmid(1)
928   
929      DO l=1,L_NLAYRAD-1
930         tmid(2*l+1) = tlevrad(2*l+1)
931         tmid(2*l+2) = tlevrad(2*l+1)
932         pmid(2*l+1) = plevrad(2*l+1)
933         pmid(2*l+2) = plevrad(2*l+1)
934      END DO
935      pmid(L_LEVELS) = plevrad(L_LEVELS)
936      tmid(L_LEVELS) = tlevrad(L_LEVELS)
937
938!!Alternative interpolation:
939!         pmid(3) = pmid(1)
940!         pmid(4) = pmid(1)
941!         tmid(3) = tmid(1)
942!         tmid(4) = tmid(1)
943!      DO l=2,L_NLAYRAD-1
944!         tmid(2*l+1) = tlevrad(2*l)
945!         tmid(2*l+2) = tlevrad(2*l)
946!         pmid(2*l+1) = plevrad(2*l)
947!         pmid(2*l+2) = plevrad(2*l)
948!      END DO
949!      pmid(L_LEVELS) = plevrad(L_LEVELS-1)
950!      tmid(L_LEVELS) = tlevrad(L_LEVELS-1)
951
952      ! Test for out-of-bounds pressure.
953      if(plevrad(3).lt.pgasmin)then
954         print*,'Minimum pressure is outside the radiative'
955         print*,'transfer kmatrix bounds, exiting.'
956         message="Minimum pressure outside of kmatrix bounds"
957         call abort_physic(subname,message,1)
958      elseif(plevrad(L_LEVELS).gt.pgasmax)then
959         print*,'Maximum pressure is outside the radiative'
960         print*,'transfer kmatrix bounds, exiting.'
961         message="Minimum pressure outside of kmatrix bounds"
962         call abort_physic(subname,message,1)
963      endif
964
965      ! Test for out-of-bounds temperature.
966      ! -- JVO 20 : Also add a sanity test checking that tlevrad is
967      !             within Planck function temperature boundaries,
968      !             which would cause gfluxi/sfluxi to crash.
969      do k=1,L_LEVELS
970
971         if(tlevrad(k).lt.tgasmin)then
972            print*,'Minimum temperature is outside the radiative'
973            print*,'transfer kmatrix bounds'
974            print*,"k=",k," tlevrad(k)=",tlevrad(k)
975            print*,"tgasmin=",tgasmin
976            if (strictboundcorrk) then
977              message="Minimum temperature outside of kmatrix bounds"
978              call abort_physic(subname,message,1)
979            else
980              print*,'***********************************************'
981              print*,'we allow model to continue with tlevrad<tgasmin'
982              print*,'  ... we assume we know what you are doing ... '
983              print*,'  ... but do not let this happen too often ... '
984              print*,'***********************************************'
985              !tlevrad(k)=tgasmin ! Used in the source function !
986            endif
987         elseif(tlevrad(k).gt.tgasmax)then
988            print*,'Maximum temperature is outside the radiative'
989            print*,'transfer kmatrix bounds, exiting.'
990            print*,"k=",k," tlevrad(k)=",tlevrad(k)
991            print*,"tgasmax=",tgasmax
992            if (strictboundcorrk) then
993              message="Maximum temperature outside of kmatrix bounds"
994              call abort_physic(subname,message,1)
995            else
996              print*,'***********************************************'
997              print*,'we allow model to continue with tlevrad>tgasmax' 
998              print*,'  ... we assume we know what you are doing ... '
999              print*,'  ... but do not let this happen too often ... '
1000              print*,'***********************************************'
1001              !tlevrad(k)=tgasmax ! Used in the source function !
1002            endif
1003         endif
1004
1005         if (tlevrad(k).lt.tplanckmin) then
1006            print*,'Minimum temperature is outside the boundaries for'
1007            print*,'Planck function integration set in callphys.def, aborting.'
1008            print*,"k=",k," tlevrad(k)=",tlevrad(k)
1009            print*,"tplanckmin=",tplanckmin
1010            message="Minimum temperature outside Planck function bounds - Change tplanckmin in callphys.def"
1011            call abort_physic(subname,message,1)
1012          else if (tlevrad(k).gt.tplanckmax) then
1013            print*,'Maximum temperature is outside the boundaries for'
1014            print*,'Planck function integration set in callphys.def, aborting.'
1015            print*,"k=",k," tlevrad(k)=",tlevrad(k)
1016            print*,"tplanckmax=",tplanckmax
1017            message="Maximum temperature outside Planck function bounds - Change tplanckmax in callphys.def"
1018            call abort_physic(subname,message,1)
1019          endif
1020
1021      enddo
1022
1023      do k=1,L_NLAYRAD+1
1024         if(tmid(k).lt.tgasmin)then
1025            print*,'Minimum temperature is outside the radiative'
1026            print*,'transfer kmatrix bounds, exiting.'
1027            print*,"k=",k," tmid(k)=",tmid(k)
1028            print*,"tgasmin=",tgasmin
1029            if (strictboundcorrk) then
1030              message="Minimum temperature outside of kmatrix bounds"
1031              call abort_physic(subname,message,1)
1032            else
1033              print*,'***********************************************'
1034              print*,'we allow model to continue but with tmid=tgasmin'
1035              print*,'  ... we assume we know what you are doing ... '
1036              print*,'  ... but do not let this happen too often ... '
1037              print*,'***********************************************'
1038              tmid(k)=tgasmin
1039            endif
1040         elseif(tmid(k).gt.tgasmax)then
1041            print*,'Maximum temperature is outside the radiative'
1042            print*,'transfer kmatrix bounds, exiting.'
1043            print*,"k=",k," tmid(k)=",tmid(k)
1044            print*,"tgasmax=",tgasmax
1045            if (strictboundcorrk) then
1046              message="Maximum temperature outside of kmatrix bounds"
1047              call abort_physic(subname,message,1)
1048            else
1049              print*,'***********************************************'
1050              print*,'we allow model to continue but with tmid=tgasmax'
1051              print*,'  ... we assume we know what you are doing ... '
1052              print*,'  ... but do not let this happen too often ... '
1053              print*,'***********************************************'
1054              tmid(k)=tgasmax
1055            endif
1056         endif
1057      enddo
1058
1059!=======================================================================
1060!          III. Calling the main radiative transfer subroutines
1061!=======================================================================
1062
1063! ----------------------------------------------------------------
1064! Recombine reference corrk tables if needed - Added by JVO, 2020.
1065         if (corrk_recombin) then
1066           call call_recombin(ig,nlayer,pq(ig,:,:),pplay(ig,:),pt(ig,:),qvar(:),tmid(:),pmid(:))
1067         endif
1068! ----------------------------------------------------------------
1069
1070         Cmk= 0.01 * 1.0 / (glat(ig) * mugaz * 1.672621e-27) ! q_main=1.0 assumed.
1071         glat_ig=glat(ig)
1072
1073!-----------------------------------------------------------------------
1074!        Short Wave Part
1075!-----------------------------------------------------------------------
1076
1077         if(fract(ig) .ge. 1.0e-4) then ! Only during daylight.
1078            if((ngrid.eq.1).and.(global1d))then
1079               do nw=1,L_NSPECTV
1080                  stel_fract(nw)= stel(nw)* 0.25 / acosz ! globally averaged = divide by 4, and we correct for solar zenith angle
1081               end do
1082            else
1083               do nw=1,L_NSPECTV
1084                  stel_fract(nw)= stel(nw) * fract(ig)
1085               end do
1086            endif
1087
1088            call optcv(dtauv,tauv,taucumv,plevrad,                 &
1089                 qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero,   &
1090                 tmid,pmid,taugsurf,qvar,muvarrad)
1091
1092            call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv,  &
1093                 acosz,stel_fract,                                 &
1094                 nfluxtopv,fluxtopvdn,nfluxoutv_nu,nfluxgndv_nu,   &
1095                 fmnetv,fluxupv,fluxdnv,fzerov,taugsurf)
1096
1097         else ! During the night, fluxes = 0.
1098            nfluxtopv       = 0.0d0
1099            fluxtopvdn      = 0.0d0
1100            nfluxoutv_nu(:) = 0.0d0
1101            nfluxgndv_nu(:) = 0.0d0
1102            do l=1,L_NLAYRAD
1103               fmnetv(l)=0.0d0
1104               fluxupv(l)=0.0d0
1105               fluxdnv(l)=0.0d0
1106            end do
1107         end if
1108
1109
1110         ! Equivalent Albedo Calculation (for OUTPUT). MT2015
1111         if(fract(ig) .ge. 1.0e-4) then ! equivalent albedo makes sense only during daylight.       
1112            surface_stellar_flux=sum(nfluxgndv_nu(1:L_NSPECTV))     
1113            if(surface_stellar_flux .gt. 1.0e-3) then ! equivalent albedo makes sense only if the stellar flux received by the surface is positive.
1114               DO nw=1,L_NSPECTV                 
1115                  albedo_temp(nw)=albedo(ig,nw)*nfluxgndv_nu(nw)
1116               ENDDO
1117               albedo_temp(1:L_NSPECTV)=albedo_temp(1:L_NSPECTV)/surface_stellar_flux
1118               albedo_equivalent(ig)=sum(albedo_temp(1:L_NSPECTV))
1119            else
1120               albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0.
1121            endif
1122         else
1123            albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0.
1124         endif
1125
1126
1127!-----------------------------------------------------------------------
1128!        Long Wave Part
1129!-----------------------------------------------------------------------
1130
1131         call optci(plevrad,tlevrad,dtaui,taucumi,                  &
1132              qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid,    &
1133              taugsurfi,qvar,muvarrad)
1134
1135         call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi,      &
1136              wnoi,dwni,cosbi,wbari,nfluxtopi,nfluxtopi_nu,         &
1137              fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi)
1138
1139!-----------------------------------------------------------------------
1140!     Transformation of the correlated-k code outputs
1141!     (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw)
1142
1143!     Flux incident at the top of the atmosphere
1144         fluxtop_dn(ig)=fluxtopvdn
1145
1146         fluxtop_lw(ig)  = real(nfluxtopi)
1147         fluxabs_sw(ig)  = real(-nfluxtopv)
1148         fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD))
1149         fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD))
1150         
1151!        Flux absorbed by the surface. By MT2015.         
1152         fluxsurfabs_sw(ig) = fluxsurf_sw(ig)*(1.-albedo_equivalent(ig))
1153
1154         if(fluxtop_dn(ig).lt.0.0)then
1155            print*,'Achtung! fluxtop_dn has lost the plot!'
1156            print*,'fluxtop_dn=',fluxtop_dn(ig)
1157            print*,'acosz=',acosz
1158            print*,'aerosol=',aerosol(ig,:,:)
1159            print*,'temp=   ',pt(ig,:)
1160            print*,'pplay=  ',pplay(ig,:)
1161            message="Achtung! fluxtop_dn has lost the plot!"
1162            call abort_physic(subname,message,1)
1163         endif
1164
1165!     Spectral output, for exoplanet observational comparison
1166         if(specOLR)then
1167            do nw=1,L_NSPECTI
1168               OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth
1169            end do
1170            do nw=1,L_NSPECTV
1171               GSR_nu(ig,nw)=nfluxgndv_nu(nw)/DWNV(nw)
1172               OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth
1173            end do
1174         endif
1175
1176!     Finally, the heating rates
1177
1178         DO l=2,L_NLAYRAD
1179            dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1))  &
1180                *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1)))
1181            dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1))  &
1182                *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1)))
1183         END DO     
1184
1185!     These are values at top of atmosphere
1186         dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv)           &
1187             *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2)))
1188         dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi)           &
1189             *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2)))
1190
1191      !  Optical thickness diagnostics (added by JVO)
1192      if (diagdtau) then
1193        do l=1,L_NLAYRAD
1194          do nw=1,L_NSPECTV
1195            int_dtauv(ig,l,nw) = 0.0d0
1196             DO k=1,L_NGAUSS
1197              ! Output exp(-tau) because gweight ponderates exp and not tau itself
1198              int_dtauv(ig,l,nw)= int_dtauv(ig,l,nw) + exp(-dtauv(l,nw,k))*gweight(k)
1199             ENDDO
1200          enddo
1201          do nw=1,L_NSPECTI
1202           int_dtaui(ig,l,nw) = 0.0d0
1203             DO k=1,L_NGAUSS
1204              ! Output exp(-tau) because gweight ponderates exp and not tau itself
1205              int_dtaui(ig,l,nw)= int_dtaui(ig,l,nw) + exp(-dtaui(l,nw,k))*gweight(k)
1206             ENDDO
1207          enddo
1208        enddo
1209      endif       
1210
1211
1212!-----------------------------------------------------------------------   
1213      end do ! End of big loop over every GCM column.
1214!-----------------------------------------------------------------------
1215
1216
1217
1218!-----------------------------------------------------------------------
1219!     Additional diagnostics
1220!-----------------------------------------------------------------------
1221
1222      ! IR spectral output, for exoplanet observational comparison
1223      if(lastcall.and.(ngrid.eq.1))then  ! could disable the 1D output, they are in the diagfi and diagspec... JL12
1224
1225         print*,'Saving scalar quantities in surf_vals.out...'
1226         print*,'psurf = ', pplev(1,1),' Pa'
1227         open(116,file='surf_vals.out')
1228         write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1),         &
1229                      real(-nfluxtopv),real(nfluxtopi)
1230         close(116)
1231
1232
1233!          USEFUL COMMENT - Do Not Remove.
1234!
1235!           if(specOLR)then
1236!               open(117,file='OLRnu.out')
1237!               do nw=1,L_NSPECTI
1238!                  write(117,*) OLR_nu(1,nw)
1239!               enddo
1240!               close(117)
1241!
1242!               open(127,file='OSRnu.out')
1243!               do nw=1,L_NSPECTV
1244!                  write(127,*) OSR_nu(1,nw)
1245!               enddo
1246!               close(127)
1247!           endif
1248
1249           ! OLR vs altitude: do it as a .txt file.
1250         OLRz=.false.
1251         if(OLRz)then
1252            print*,'saving IR vertical flux for OLRz...'
1253            open(118,file='OLRz_plevs.out')
1254            open(119,file='OLRz.out')
1255            do l=1,L_NLAYRAD
1256               write(118,*) plevrad(2*l)
1257               do nw=1,L_NSPECTI
1258                  write(119,*) fluxupi_nu(l,nw)
1259               enddo
1260            enddo
1261            close(118)
1262            close(119)
1263         endif
1264
1265      endif
1266
1267      ! See physiq.F for explanations about CLFvarying. This is temporary.
1268      if (lastcall .and. .not.CLFvarying) then
1269        IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi )
1270        IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv )
1271!$OMP BARRIER
1272!$OMP MASTER
1273        IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref )
1274        IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref )
1275        IF( ALLOCATED( wrefvar ) ) DEALLOCATE( wrefvar )
1276        IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref )
1277        IF( ALLOCATED( gweight ) ) DEALLOCATE( gweight )
1278!$OMP END MASTER
1279!$OMP BARRIER
1280        IF ( ALLOCATED(reffrad)) DEALLOCATE(reffrad)
1281        IF ( ALLOCATED(nueffrad)) DEALLOCATE(nueffrad)
1282      endif
1283
1284
1285    end subroutine callcorrk
1286
1287END MODULE callcorrk_mod
Note: See TracBrowser for help on using the repository browser.