source: trunk/LMDZ.GENERIC/libf/phystd/callcorrk.F90 @ 2613

Last change on this file since 2613 was 2543, checked in by aslmd, 3 years ago

Generic GCM:

Adding k-coefficients mixing on the fly
Working with MordernTrac?

JVO + YJ

  • Property svn:executable set to *
File size: 43.2 KB
Line 
1MODULE callcorrk_mod
2
3IMPLICIT NONE
4
5CONTAINS
6
7      subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf,           &
8          albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt,    &
9          tsurf,fract,dist_star,aerosol,muvar,                 &
10          dtlw,dtsw,fluxsurf_lw,                               &
11          fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw,               &
12          fluxabs_sw,fluxtop_dn,                               &
13          OLR_nu,OSR_nu,GSR_nu,                                &
14          int_dtaui,int_dtauv,                                 &
15          tau_col,cloudfrac,totcloudfrac,                      &
16          clearsky,firstcall,lastcall)
17
18      use mod_phys_lmdz_para, only : is_master
19      use radinc_h, only: L_NSPECTV, L_NSPECTI, naerkind, banddir, corrkdir,&
20                          L_LEVELS, L_NGAUSS, L_NLEVRAD, L_NLAYRAD, L_REFVAR
21      use radcommon_h, only: wrefvar, Cmk, fzeroi, fzerov, gasi, gasv, &
22                             glat_ig, gweight, pfgasref, pgasmax, pgasmin, &
23                             pgasref, tgasmax, tgasmin, tgasref, scalep, &
24                             ubari, wnoi, stellarf, glat, dwnv, dwni, tauray
25      use watercommon_h, only: psat_water, epsi
26      use datafile_mod, only: datadir
27      use ioipsl_getin_p_mod, only: getin_p
28      use gases_h, only: ngasmx
29      use radii_mod, only : su_aer_radii,co2_reffrad,h2o_reffrad,dust_reffrad,h2so4_reffrad,back2lay_reffrad
30      use aerosol_mod, only : iaero_co2,iaero_h2o,iaero_dust,iaero_h2so4, iaero_back2lay, iaero_aurora
31      use tracer_h, only: igcm_h2o_vap, igcm_h2o_ice, igcm_co2_ice
32      use comcstfi_mod, only: pi, mugaz, cpp
33      use callkeys_mod, only: varactive,diurnal,tracer,water,varfixed,satval,diagdtau,    &
34                              kastprof,strictboundcorrk,specOLR,CLFvarying,               &
35                              tplanckmin,tplanckmax,global1d
36      use optcv_mod, only: optcv
37      use optci_mod, only: optci
38      use recombin_corrk_mod, only: corrk_recombin, call_recombin
39      implicit none
40
41!==================================================================
42!
43!     Purpose
44!     -------
45!     Solve the radiative transfer using the correlated-k method for
46!     the gaseous absorption and the Toon et al. (1989) method for
47!     scatttering due to aerosols.
48!
49!     Authors
50!     -------
51!     Emmanuel 01/2001, Forget 09/2001
52!     Robin Wordsworth (2009)
53!
54!==================================================================
55
56!-----------------------------------------------------------------------
57!     Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid
58!     Layer #1 is the layer near the ground.
59!     Layer #nlayer is the layer at the top.
60!-----------------------------------------------------------------------
61
62
63      ! INPUT
64      INTEGER,INTENT(IN) :: ngrid                  ! Number of atmospheric columns.
65      INTEGER,INTENT(IN) :: nlayer                 ! Number of atmospheric layers.
66      REAL,INTENT(IN) :: pq(ngrid,nlayer,nq)       ! Tracers (kg/kg_of_air).
67      INTEGER,INTENT(IN) :: nq                     ! Number of tracers.
68      REAL,INTENT(IN) :: qsurf(ngrid,nq)           ! Tracers on surface (kg.m-2).
69      REAL,INTENT(IN) :: albedo(ngrid,L_NSPECTV)   ! Spectral Short Wavelengths Albedo. By MT2015
70      REAL,INTENT(IN) :: emis(ngrid)               ! Long Wave emissivity.
71      REAL,INTENT(IN) :: mu0(ngrid)                ! Cosine of sun incident angle.
72      REAL,INTENT(IN) :: pplev(ngrid,nlayer+1)     ! Inter-layer pressure (Pa).
73      REAL,INTENT(IN) :: pplay(ngrid,nlayer)       ! Mid-layer pressure (Pa).
74      REAL,INTENT(IN) :: pt(ngrid,nlayer)          ! Air temperature (K).
75      REAL,INTENT(IN) :: tsurf(ngrid)              ! Surface temperature (K).
76      REAL,INTENT(IN) :: fract(ngrid)              ! Fraction of day.
77      REAL,INTENT(IN) :: dist_star                 ! Distance star-planet (AU).
78      REAL,INTENT(IN) :: muvar(ngrid,nlayer+1)
79      REAL,INTENT(IN) :: cloudfrac(ngrid,nlayer)   ! Fraction of clouds (%).
80      logical,intent(in) :: clearsky
81      logical,intent(in) :: firstcall              ! Signals first call to physics.
82      logical,intent(in) :: lastcall               ! Signals last call to physics.
83     
84      ! OUTPUT
85      REAL,INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! Aerosol tau at reference wavelenght.
86      REAL,INTENT(OUT) :: dtlw(ngrid,nlayer)             ! Heating rate (K/s) due to LW radiation.
87      REAL,INTENT(OUT) :: dtsw(ngrid,nlayer)             ! Heating rate (K/s) due to SW radiation.
88      REAL,INTENT(OUT) :: fluxsurf_lw(ngrid)             ! Incident LW flux to surf (W/m2).
89      REAL,INTENT(OUT) :: fluxsurf_sw(ngrid)             ! Incident SW flux to surf (W/m2)
90      REAL,INTENT(OUT) :: fluxsurfabs_sw(ngrid)          ! Absorbed SW flux by the surface (W/m2). By MT2015.
91      REAL,INTENT(OUT) :: fluxtop_lw(ngrid)              ! Outgoing LW flux to space (W/m2).
92      REAL,INTENT(OUT) :: fluxabs_sw(ngrid)              ! SW flux absorbed by the planet (W/m2).
93      REAL,INTENT(OUT) :: fluxtop_dn(ngrid)              ! Incident top of atmosphere SW flux (W/m2).
94      REAL,INTENT(OUT) :: OLR_nu(ngrid,L_NSPECTI)        ! Outgoing LW radiation in each band (Normalized to the band width (W/m2/cm-1).
95      REAL,INTENT(OUT) :: OSR_nu(ngrid,L_NSPECTV)        ! Outgoing SW radiation in each band (Normalized to the band width (W/m2/cm-1).
96      REAL,INTENT(OUT) :: GSR_nu(ngrid,L_NSPECTV)        ! Surface SW radiation in each band (Normalized to the band width (W/m2/cm-1).
97      REAL,INTENT(OUT) :: tau_col(ngrid)                 ! Diagnostic from aeropacity.
98      REAL,INTENT(OUT) :: albedo_equivalent(ngrid)       ! Spectrally Integrated Albedo. For Diagnostic. By MT2015
99      REAL,INTENT(OUT) :: totcloudfrac(ngrid)            ! Column Fraction of clouds (%).
100      REAL,INTENT(OUT) :: int_dtaui(ngrid,nlayer,L_NSPECTI) ! VI optical thickness of layers within narrowbands for diags ().
101      REAL,INTENT(OUT) :: int_dtauv(ngrid,nlayer,L_NSPECTV) ! IR optical thickness of layers within narrowbands for diags ().
102     
103     
104     
105     
106
107      ! Globally varying aerosol optical properties on GCM grid ; not needed everywhere so not in radcommon_h.   
108      REAL :: QVISsQREF3d(ngrid,nlayer,L_NSPECTV,naerkind)
109      REAL :: omegaVIS3d(ngrid,nlayer,L_NSPECTV,naerkind)
110      REAL :: gVIS3d(ngrid,nlayer,L_NSPECTV,naerkind)
111      REAL :: QIRsQREF3d(ngrid,nlayer,L_NSPECTI,naerkind)
112      REAL :: omegaIR3d(ngrid,nlayer,L_NSPECTI,naerkind)
113      REAL :: gIR3d(ngrid,nlayer,L_NSPECTI,naerkind)
114
115!      REAL :: omegaREFvis3d(ngrid,nlayer,naerkind)
116!      REAL :: omegaREFir3d(ngrid,nlayer,naerkind) ! not sure of the point of these...
117
118      REAL,ALLOCATABLE,SAVE :: reffrad(:,:,:)  ! aerosol effective radius (m)
119      REAL,ALLOCATABLE,SAVE :: nueffrad(:,:,:) ! aerosol effective variance
120!$OMP THREADPRIVATE(reffrad,nueffrad)
121
122!-----------------------------------------------------------------------
123!     Declaration of the variables required by correlated-k subroutines
124!     Numbered from top to bottom (unlike in the GCM)
125!-----------------------------------------------------------------------
126
127      REAL*8 tmid(L_LEVELS),pmid(L_LEVELS)
128      REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS)
129
130      ! Optical values for the optci/cv subroutines
131      REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV)
132      ! NB: Arrays below are "save" to avoid reallocating them at every call
133      ! not because their content needs be reused from call to the next
134      REAL*8,allocatable,save :: dtaui(:,:,:)
135      REAL*8,allocatable,save :: dtauv(:,:,:)
136      REAL*8,allocatable,save :: cosbv(:,:,:)
137      REAL*8,allocatable,save :: cosbi(:,:,:)
138      REAL*8,allocatable,save :: wbari(:,:,:)
139      REAL*8,allocatable,save :: wbarv(:,:,:)
140!$OMP THREADPRIVATE(dtaui,dtauv,cosbv,cosbi,wbari,wbarv)
141      REAL*8,allocatable,save :: tauv(:,:,:)
142      REAL*8,allocatable,save :: taucumv(:,:,:)
143      REAL*8,allocatable,save :: taucumi(:,:,:)
144!$OMP THREADPRIVATE(tauv,taucumv,taucumi)
145      REAL*8 tauaero(L_LEVELS,naerkind)
146      REAL*8 nfluxtopv,nfluxtopi,nfluxtop,fluxtopvdn
147      REAL*8 nfluxoutv_nu(L_NSPECTV)                 ! Outgoing band-resolved VI flux at TOA (W/m2).
148      REAL*8 nfluxtopi_nu(L_NSPECTI)                 ! Net band-resolved IR flux at TOA (W/m2).
149      REAL*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI)         ! For 1D diagnostic.
150      REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD)
151      REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD)
152      REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD)
153      REAL*8 albi,acosz
154      REAL*8 albv(L_NSPECTV)                         ! Spectral Visible Albedo.
155
156      INTEGER ig,l,k,nw,iaer
157
158      real*8,allocatable,save :: taugsurf(:,:)
159      real*8,allocatable,save :: taugsurfi(:,:)
160!$OMP THREADPRIVATE(taugsurf,taugsurfi)
161      real*8 qvar(L_LEVELS)   ! Mixing ratio of variable component (mol/mol).
162
163      ! Local aerosol optical properties for each column on RADIATIVE grid.
164      real*8,save,allocatable ::  QXVAER(:,:,:) ! Extinction coeff (QVISsQREF*QREFvis)
165      real*8,save,allocatable ::  QSVAER(:,:,:)
166      real*8,save,allocatable ::  GVAER(:,:,:)
167      real*8,save,allocatable ::  QXIAER(:,:,:) ! Extinction coeff (QIRsQREF*QREFir)
168      real*8,save,allocatable ::  QSIAER(:,:,:)
169      real*8,save,allocatable ::  GIAER(:,:,:)
170!$OMP THREADPRIVATE(QXVAER,QSVAER,GVAER,QXIAER,QSIAER,GIAER)
171      real, dimension(:,:,:), save, allocatable :: QREFvis3d
172      real, dimension(:,:,:), save, allocatable :: QREFir3d
173!$OMP THREADPRIVATE(QREFvis3d,QREFir3d)
174
175
176      ! Miscellaneous :
177      real*8  temp,temp1,temp2,pweight
178      character(len=10) :: tmp1
179      character(len=10) :: tmp2
180      character(len=100) :: message
181      character(len=10),parameter :: subname="callcorrk"
182
183      ! For fixed water vapour profiles.
184      integer i_var
185      real RH
186      real*8 pq_temp(nlayer)
187! real(KIND=r8) :: pq_temp(nlayer) ! better F90 way.. DOESNT PORT TO F77!!!
188      real psat,qsat
189
190      logical OLRz
191      real*8 NFLUXGNDV_nu(L_NSPECTV)
192
193      ! Included by RW for runaway greenhouse 1D study.
194      real vtmp(nlayer)
195      REAL*8 muvarrad(L_LEVELS)
196     
197      ! Included by MT for albedo calculations.     
198      REAL*8 albedo_temp(L_NSPECTV) ! For equivalent albedo calculation.
199      REAL*8 surface_stellar_flux   ! Stellar flux reaching the surface. Useful for equivalent albedo calculation.
200
201
202!===============================================================
203!           I.a Initialization on first call
204!===============================================================
205
206
207      if(firstcall) then
208
209        ! test on allocated necessary because of CLFvarying (two calls to callcorrk in physiq)
210        if(.not.allocated(QXVAER)) allocate(QXVAER(L_LEVELS,L_NSPECTV,naerkind))
211        if(.not.allocated(QSVAER)) allocate(QSVAER(L_LEVELS,L_NSPECTV,naerkind))
212        if(.not.allocated(GVAER)) allocate(GVAER(L_LEVELS,L_NSPECTV,naerkind))
213        if(.not.allocated(QXIAER)) allocate(QXIAER(L_LEVELS,L_NSPECTI,naerkind))
214        if(.not.allocated(QSIAER)) allocate(QSIAER(L_LEVELS,L_NSPECTI,naerkind))
215        if(.not.allocated(GIAER)) allocate(GIAER(L_LEVELS,L_NSPECTI,naerkind))
216
217         !!! ALLOCATED instances are necessary because of CLFvarying (strategy to call callcorrk twice in physiq...)
218         IF(.not.ALLOCATED(QREFvis3d)) ALLOCATE(QREFvis3d(ngrid,nlayer,naerkind))
219         IF(.not.ALLOCATED(QREFir3d)) ALLOCATE(QREFir3d(ngrid,nlayer,naerkind))
220         ! Effective radius and variance of the aerosols
221         IF(.not.ALLOCATED(reffrad)) allocate(reffrad(ngrid,nlayer,naerkind))
222         IF(.not.ALLOCATED(nueffrad)) allocate(nueffrad(ngrid,nlayer,naerkind))
223
224#ifndef MESOSCALE
225         call system('rm -f surf_vals_long.out')
226#endif
227
228         if(naerkind.gt.4)then
229            message='Code not general enough to deal with naerkind > 4 yet.'
230            call abort_physic(subname,message,1)
231         endif
232         call su_aer_radii(ngrid,nlayer,reffrad,nueffrad)
233         
234         
235!--------------------------------------------------
236!             Set up correlated k
237!--------------------------------------------------
238
239
240         print*, "callcorrk: Correlated-k data base folder:",trim(datadir)
241         call getin_p("corrkdir",corrkdir)
242         print*, "corrkdir = ",corrkdir
243         write( tmp1, '(i3)' ) L_NSPECTI
244         write( tmp2, '(i3)' ) L_NSPECTV
245         banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2))
246         banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir))
247
248         call setspi            ! Basic infrared properties.
249         call setspv            ! Basic visible properties.
250         call sugas_corrk       ! Set up gaseous absorption properties.
251         call suaer_corrk       ! Set up aerosol optical properties.
252       
253
254         ! now that L_NGAUSS has been initialized (by sugas_corrk)
255         ! allocate related arrays
256         if(.not.allocated(dtaui)) ALLOCATE(dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS))
257         if(.not.allocated(dtauv)) ALLOCATE(dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS))
258         if(.not.allocated(cosbv)) ALLOCATE(cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS))
259         if(.not.allocated(cosbi)) ALLOCATE(cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS))
260         if(.not.allocated(wbari)) ALLOCATE(wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS))
261         if(.not.allocated(wbarv)) ALLOCATE(wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS))
262         if(.not.allocated(tauv)) ALLOCATE(tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS))
263         if(.not.allocated(taucumv)) ALLOCATE(taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS))
264         if(.not.allocated(taucumi)) ALLOCATE(taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS))
265         if(.not.allocated(taugsurf)) ALLOCATE(taugsurf(L_NSPECTV,L_NGAUSS-1))
266         if(.not.allocated(taugsurfi)) ALLOCATE(taugsurfi(L_NSPECTI,L_NGAUSS-1))
267
268         if((igcm_h2o_vap.eq.0) .and. varactive)then
269            message='varactive in callcorrk but no h2o_vap tracer.'
270            call abort_physic(subname,message,1)
271         endif
272
273      end if ! of if (firstcall)
274
275!=======================================================================
276!          I.b  Initialization on every call   
277!=======================================================================
278 
279      qxvaer(:,:,:)=0.0
280      qsvaer(:,:,:)=0.0
281      gvaer(:,:,:) =0.0
282
283      qxiaer(:,:,:)=0.0
284      qsiaer(:,:,:)=0.0
285      giaer(:,:,:) =0.0
286
287      OLR_nu(:,:) = 0.
288      OSR_nu(:,:) = 0.
289      GSR_nu(:,:) = 0.
290
291!--------------------------------------------------
292!     Effective radius and variance of the aerosols
293!--------------------------------------------------
294
295      do iaer=1,naerkind
296
297         if ((iaer.eq.iaero_co2).and.tracer.and.(igcm_co2_ice.gt.0)) then ! Treat condensed co2 particles.
298            call co2_reffrad(ngrid,nlayer,nq,pq,reffrad(1,1,iaero_co2))
299            if (is_master) then
300               print*,'Max. CO2 ice particle size = ',maxval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um'
301               print*,'Min. CO2 ice particle size = ',minval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um'
302            end if
303         end if
304         
305         if ((iaer.eq.iaero_h2o).and.water) then ! Treat condensed water particles. To be generalized for other aerosols ...
306            call h2o_reffrad(ngrid,nlayer,pq(1,1,igcm_h2o_ice),pt, &
307                             reffrad(1,1,iaero_h2o),nueffrad(1,1,iaero_h2o))
308            if (is_master) then
309               print*,'Max. H2O cloud particle size = ',maxval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um'
310               print*,'Min. H2O cloud particle size = ',minval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um'
311            end if
312         endif
313         
314         if(iaer.eq.iaero_dust)then
315            call dust_reffrad(ngrid,nlayer,reffrad(1,1,iaero_dust))
316            if (is_master) then
317               print*,'Dust particle size = ',reffrad(1,1,iaer)/1.e-6,' um'
318            end if
319         endif
320         
321         if(iaer.eq.iaero_h2so4)then
322            call h2so4_reffrad(ngrid,nlayer,reffrad(1,1,iaero_h2so4))
323            if (is_master) then
324               print*,'H2SO4 particle size =',reffrad(1,1,iaer)/1.e-6,' um'
325            end if
326         endif
327         
328          if(iaer.eq.iaero_back2lay)then
329            call back2lay_reffrad(ngrid,reffrad(1,1,iaero_back2lay),nlayer,pplev)
330         endif
331
332         !  For n-layer aerosol size set once for all at firstcall in su_aer_radii
333
334!         if(iaer.eq.iaero_aurora)then
335!           call aurora_reffrad(ngrid,nlayer,reffrad(1,1,iaero_aurora))
336!         endif
337       
338     end do !iaer=1,naerkind.
339
340
341      ! How much light do we get ?
342      do nw=1,L_NSPECTV
343         stel(nw)=stellarf(nw)/(dist_star**2)
344      end do
345
346      ! Get 3D aerosol optical properties.
347      call aeroptproperties(ngrid,nlayer,reffrad,nueffrad,         &
348           QVISsQREF3d,omegaVIS3d,gVIS3d,                          &
349           QIRsQREF3d,omegaIR3d,gIR3d,                             &
350           QREFvis3d,QREFir3d)                                     
351
352      ! Get aerosol optical depths.
353      call aeropacity(ngrid,nlayer,nq,pplay,pplev,pq,aerosol,      &
354           reffrad,QREFvis3d,QREFir3d,                             &
355           tau_col,cloudfrac,totcloudfrac,clearsky)               
356         
357
358
359!-----------------------------------------------------------------------   
360      do ig=1,ngrid ! Starting Big Loop over every GCM column
361!-----------------------------------------------------------------------
362
363
364!=======================================================================
365!              II.  Transformation of the GCM variables
366!=======================================================================
367
368
369!-----------------------------------------------------------------------
370!    Aerosol optical properties Qext, Qscat and g.
371!    The transformation in the vertical is the same as for temperature.
372!-----------------------------------------------------------------------
373           
374           
375            do iaer=1,naerkind
376               ! Shortwave.
377               do nw=1,L_NSPECTV
378               
379                  do l=1,nlayer
380
381                     temp1=QVISsQREF3d(ig,nlayer+1-l,nw,iaer)         &
382                         *QREFvis3d(ig,nlayer+1-l,iaer)
383
384                     temp2=QVISsQREF3d(ig,max(nlayer-l,1),nw,iaer)    &
385                         *QREFvis3d(ig,max(nlayer-l,1),iaer)
386
387                     qxvaer(2*l,nw,iaer)  = temp1
388                     qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2
389
390                     temp1=temp1*omegavis3d(ig,nlayer+1-l,nw,iaer)
391                     temp2=temp2*omegavis3d(ig,max(nlayer-l,1),nw,iaer)
392
393                     qsvaer(2*l,nw,iaer)  = temp1
394                     qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2
395
396                     temp1=gvis3d(ig,nlayer+1-l,nw,iaer)
397                     temp2=gvis3d(ig,max(nlayer-l,1),nw,iaer)
398
399                     gvaer(2*l,nw,iaer)  = temp1
400                     gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2
401
402                  end do ! nlayer
403
404                  qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer)
405                  qxvaer(2*nlayer+1,nw,iaer)=0.
406
407                  qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer)
408                  qsvaer(2*nlayer+1,nw,iaer)=0.
409
410                  gvaer(1,nw,iaer)=gvaer(2,nw,iaer)
411                  gvaer(2*nlayer+1,nw,iaer)=0.
412
413               end do ! L_NSPECTV
414             
415               do nw=1,L_NSPECTI
416                  ! Longwave
417                  do l=1,nlayer
418
419                     temp1=QIRsQREF3d(ig,nlayer+1-l,nw,iaer)         &
420                          *QREFir3d(ig,nlayer+1-l,iaer)
421
422                     temp2=QIRsQREF3d(ig,max(nlayer-l,1),nw,iaer)    &
423                          *QREFir3d(ig,max(nlayer-l,1),iaer)
424
425                     qxiaer(2*l,nw,iaer)  = temp1
426                     qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2
427
428                     temp1=temp1*omegair3d(ig,nlayer+1-l,nw,iaer)
429                     temp2=temp2*omegair3d(ig,max(nlayer-l,1),nw,iaer)
430
431                     qsiaer(2*l,nw,iaer)  = temp1
432                     qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2
433
434                     temp1=gir3d(ig,nlayer+1-l,nw,iaer)
435                     temp2=gir3d(ig,max(nlayer-l,1),nw,iaer)
436
437                     giaer(2*l,nw,iaer)  = temp1
438                     giaer(2*l+1,nw,iaer)=(temp1+temp2)/2
439
440                  end do ! nlayer
441
442                  qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer)
443                  qxiaer(2*nlayer+1,nw,iaer)=0.
444
445                  qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer)
446                  qsiaer(2*nlayer+1,nw,iaer)=0.
447
448                  giaer(1,nw,iaer)=giaer(2,nw,iaer)
449                  giaer(2*nlayer+1,nw,iaer)=0.
450
451               end do ! L_NSPECTI
452               
453            end do ! naerkind
454
455            ! Test / Correct for freaky s. s. albedo values.
456            do iaer=1,naerkind
457               do k=1,L_LEVELS
458
459                  do nw=1,L_NSPECTV
460                     if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then
461                        message='Serious problems with qsvaer values'
462                        call abort_physic(subname,message,1)
463                     endif
464                     if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then
465                        qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer)
466                     endif
467                  end do
468
469                  do nw=1,L_NSPECTI
470                     if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then
471                        message='Serious problems with qsvaer values'
472                        call abort_physic(subname,message,1)
473                     endif
474                     if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then
475                        qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer)
476                     endif
477                  end do
478
479               end do ! L_LEVELS
480            end do ! naerkind
481
482!-----------------------------------------------------------------------
483!     Aerosol optical depths
484!-----------------------------------------------------------------------
485           
486         do iaer=1,naerkind     ! a bug was here           
487            do k=0,nlayer-1
488               
489               pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/   &
490                       (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))
491               ! As 'aerosol' is at reference (visible) wavelenght we scale it as
492               ! it will be multplied by qxi/v in optci/v
493               temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer)
494               tauaero(2*k+2,iaer)=max(temp*pweight,0.d0)
495               tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0)
496
497            end do
498            ! boundary conditions
499            tauaero(1,iaer)          = tauaero(2,iaer)
500            !tauaero(1,iaer)          = 0.
501            !JL18 at time of testing, the two above conditions gave the same results bit for bit.
502           
503         end do ! naerkind
504
505         ! Albedo and Emissivity.
506         albi=1-emis(ig)   ! Long Wave.
507         DO nw=1,L_NSPECTV ! Short Wave loop.
508            albv(nw)=albedo(ig,nw)
509         ENDDO
510
511         acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude.
512
513!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
514!!! Note by JL13 : In the following, some indices were changed in the interpolations,
515!!!                so that the model results are less dependent on the number of layers !
516!!!
517!!!           ---  The older versions are commented with the comment !JL13index  ---
518!!!
519!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
520
521
522!-----------------------------------------------------------------------
523!     Water vapour (to be generalised for other gases eventually ...)
524!-----------------------------------------------------------------------
525     
526      if(varactive)then
527
528         i_var=igcm_h2o_vap
529         do l=1,nlayer
530            qvar(2*l)   = pq(ig,nlayer+1-l,i_var)
531            qvar(2*l+1) = pq(ig,nlayer+1-l,i_var)   
532!JL13index            qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig,max(nlayer-l,1),i_var))/2   
533!JL13index            ! Average approximation as for temperature...
534         end do
535         qvar(1)=qvar(2)
536
537      elseif(varfixed)then
538
539         do l=1,nlayer ! Here we will assign fixed water vapour profiles globally.
540            RH = satval * ((pplay(ig,l)/pplev(ig,1) - 0.02) / 0.98)
541            if(RH.lt.0.0) RH=0.0
542           
543            call Psat_water(pt(ig,l),pplay(ig,l),psat,qsat)
544
545            !pq_temp(l) = qsat      ! fully saturated everywhere
546            pq_temp(l) = RH * qsat ! ~realistic profile (e.g. 80% saturation at ground)
547         end do
548         
549         do l=1,nlayer
550            qvar(2*l)   = pq_temp(nlayer+1-l)
551            qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp(max(nlayer-l,1)))/2
552         end do
553         
554         qvar(1)=qvar(2)
555
556         ! Lowest layer of atmosphere
557         RH = satval * (1 - 0.02) / 0.98
558         if(RH.lt.0.0) RH=0.0
559
560         qvar(2*nlayer+1)= RH * qsat ! ~realistic profile (e.g. 80% saturation at ground)
561 
562      else
563         do k=1,L_LEVELS
564            qvar(k) = 1.0D-7
565         end do
566      end if ! varactive/varfixed
567
568      if(.not.kastprof)then
569         ! IMPORTANT: Now convert from kg/kg to mol/mol.
570         do k=1,L_LEVELS
571            qvar(k) = qvar(k)/(epsi+qvar(k)*(1.-epsi))
572         end do
573      end if
574
575!-----------------------------------------------------------------------
576!     kcm mode only !
577!-----------------------------------------------------------------------
578
579      if(kastprof)then
580     
581         if(.not.global1d)then ! garde-fou/safeguard added by MT (to be removed in the future)
582           message='You have to fix mu0, the cosinus of the solar angle'
583           call abort_physic(subname,message,1)
584         endif
585         
586         ! Initial values equivalent to mugaz.
587         DO l=1,nlayer
588            muvarrad(2*l)   = mugaz
589            muvarrad(2*l+1) = mugaz
590         END DO
591
592         if(ngasmx.gt.1)then
593
594            DO l=1,nlayer
595               muvarrad(2*l)   =  muvar(ig,nlayer+2-l)
596               muvarrad(2*l+1) = (muvar(ig,nlayer+2-l) + &
597                                  muvar(ig,max(nlayer+1-l,1)))/2
598            END DO
599     
600            muvarrad(1) = muvarrad(2)
601            muvarrad(2*nlayer+1) = muvar(ig,1)
602
603            print*,'Recalculating qvar with VARIABLE epsi for kastprof'
604            print*,'Assumes that the variable gas is H2O!!!'
605            print*,'Assumes that there is only one tracer'
606           
607            !i_var=igcm_h2o_vap
608            i_var=1
609           
610            if(nq.gt.1)then
611               message='Need 1 tracer only to run kcm1d.e'
612               call abort_physic(subname,message,1)
613            endif
614           
615            do l=1,nlayer
616               vtmp(l)=pq(ig,l,i_var)/(epsi+pq(ig,l,i_var)*(1.-epsi))
617               !vtmp(l)=pq(ig,l,i_var)*muvar(ig,l+1)/mH2O !JL to be changed
618            end do
619
620            do l=1,nlayer
621               qvar(2*l)   = vtmp(nlayer+1-l)
622               qvar(2*l+1) = vtmp(nlayer+1-l)
623!               qvar(2*l+1) = ( vtmp(nlayer+1-l) + vtmp(max(nlayer-l,1)) )/2
624            end do
625            qvar(1)=qvar(2)
626
627            write(*,*)trim(subname),' :Warning: reducing qvar in callcorrk.'
628            write(*,*)trim(subname),' :Temperature profile no longer consistent ', &
629                   'with saturated H2O. qsat=',satval
630                   
631            do k=1,L_LEVELS
632               qvar(k) = qvar(k)*satval
633            end do
634
635         endif
636      else ! if kastprof
637         DO l=1,nlayer
638            muvarrad(2*l)   = muvar(ig,nlayer+2-l)
639            muvarrad(2*l+1) = (muvar(ig,nlayer+2-l)+muvar(ig,max(nlayer+1-l,1)))/2
640         END DO
641     
642         muvarrad(1) = muvarrad(2)
643         muvarrad(2*nlayer+1)=muvar(ig,1)         
644      endif ! if kastprof
645     
646      ! Keep values inside limits for which we have radiative transfer coefficients !!!
647      if(L_REFVAR.gt.1)then ! (there was a bug here)
648         do k=1,L_LEVELS
649            if(qvar(k).lt.wrefvar(1))then
650               qvar(k)=wrefvar(1)+1.0e-8
651            elseif(qvar(k).gt.wrefvar(L_REFVAR))then
652               qvar(k)=wrefvar(L_REFVAR)-1.0e-8
653            endif
654         end do
655      endif
656
657!-----------------------------------------------------------------------
658!     Pressure and temperature
659!-----------------------------------------------------------------------
660
661      DO l=1,nlayer
662         plevrad(2*l)   = pplay(ig,nlayer+1-l)/scalep
663         plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep
664         tlevrad(2*l)   = pt(ig,nlayer+1-l)
665         tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2
666      END DO
667     
668      plevrad(1) = 0.
669!      plevrad(2) = 0.   !! JL18 enabling this line puts the radiative top at p=0 which was the idea before, but does not seem to perform best after all.
670
671      tlevrad(1) = tlevrad(2)
672      tlevrad(2*nlayer+1)=tsurf(ig)
673     
674      pmid(1) = pplay(ig,nlayer)/scalep
675      pmid(2) =  pmid(1)
676
677      tmid(1) = tlevrad(2)
678      tmid(2) = tmid(1)
679   
680      DO l=1,L_NLAYRAD-1
681         tmid(2*l+1) = tlevrad(2*l+1)
682         tmid(2*l+2) = tlevrad(2*l+1)
683         pmid(2*l+1) = plevrad(2*l+1)
684         pmid(2*l+2) = plevrad(2*l+1)
685      END DO
686      pmid(L_LEVELS) = plevrad(L_LEVELS)
687      tmid(L_LEVELS) = tlevrad(L_LEVELS)
688
689!!Alternative interpolation:
690!         pmid(3) = pmid(1)
691!         pmid(4) = pmid(1)
692!         tmid(3) = tmid(1)
693!         tmid(4) = tmid(1)
694!      DO l=2,L_NLAYRAD-1
695!         tmid(2*l+1) = tlevrad(2*l)
696!         tmid(2*l+2) = tlevrad(2*l)
697!         pmid(2*l+1) = plevrad(2*l)
698!         pmid(2*l+2) = plevrad(2*l)
699!      END DO
700!      pmid(L_LEVELS) = plevrad(L_LEVELS-1)
701!      tmid(L_LEVELS) = tlevrad(L_LEVELS-1)
702
703      ! Test for out-of-bounds pressure.
704      if(plevrad(3).lt.pgasmin)then
705         print*,'Minimum pressure is outside the radiative'
706         print*,'transfer kmatrix bounds, exiting.'
707         message="Minimum pressure outside of kmatrix bounds"
708         call abort_physic(subname,message,1)
709      elseif(plevrad(L_LEVELS).gt.pgasmax)then
710         print*,'Maximum pressure is outside the radiative'
711         print*,'transfer kmatrix bounds, exiting.'
712         message="Minimum pressure outside of kmatrix bounds"
713         call abort_physic(subname,message,1)
714      endif
715
716      ! Test for out-of-bounds temperature.
717      ! -- JVO 20 : Also add a sanity test checking that tlevrad is
718      !             within Planck function temperature boundaries,
719      !             which would cause gfluxi/sfluxi to crash.
720      do k=1,L_LEVELS
721
722         if(tlevrad(k).lt.tgasmin)then
723            print*,'Minimum temperature is outside the radiative'
724            print*,'transfer kmatrix bounds'
725            print*,"k=",k," tlevrad(k)=",tlevrad(k)
726            print*,"tgasmin=",tgasmin
727            if (strictboundcorrk) then
728              message="Minimum temperature outside of kmatrix bounds"
729              call abort_physic(subname,message,1)
730            else
731              print*,'***********************************************'
732              print*,'we allow model to continue with tlevrad<tgasmin'
733              print*,'  ... we assume we know what you are doing ... '
734              print*,'  ... but do not let this happen too often ... '
735              print*,'***********************************************'
736              !tlevrad(k)=tgasmin ! Used in the source function !
737            endif
738         elseif(tlevrad(k).gt.tgasmax)then
739            print*,'Maximum temperature is outside the radiative'
740            print*,'transfer kmatrix bounds, exiting.'
741            print*,"k=",k," tlevrad(k)=",tlevrad(k)
742            print*,"tgasmax=",tgasmax
743            if (strictboundcorrk) then
744              message="Maximum temperature outside of kmatrix bounds"
745              call abort_physic(subname,message,1)
746            else
747              print*,'***********************************************'
748              print*,'we allow model to continue with tlevrad>tgasmax' 
749              print*,'  ... we assume we know what you are doing ... '
750              print*,'  ... but do not let this happen too often ... '
751              print*,'***********************************************'
752              !tlevrad(k)=tgasmax ! Used in the source function !
753            endif
754         endif
755
756         if (tlevrad(k).lt.tplanckmin) then
757            print*,'Minimum temperature is outside the boundaries for'
758            print*,'Planck function integration set in callphys.def, aborting.'
759            print*,"k=",k," tlevrad(k)=",tlevrad(k)
760            print*,"tplanckmin=",tplanckmin
761            message="Minimum temperature outside Planck function bounds - Change tplanckmin in callphys.def"
762            call abort_physic(subname,message,1)
763          else if (tlevrad(k).gt.tplanckmax) then
764            print*,'Maximum temperature is outside the boundaries for'
765            print*,'Planck function integration set in callphys.def, aborting.'
766            print*,"k=",k," tlevrad(k)=",tlevrad(k)
767            print*,"tplanckmax=",tplanckmax
768            message="Maximum temperature outside Planck function bounds - Change tplanckmax in callphys.def"
769            call abort_physic(subname,message,1)
770          endif
771
772      enddo
773
774      do k=1,L_NLAYRAD+1
775         if(tmid(k).lt.tgasmin)then
776            print*,'Minimum temperature is outside the radiative'
777            print*,'transfer kmatrix bounds, exiting.'
778            print*,"k=",k," tmid(k)=",tmid(k)
779            print*,"tgasmin=",tgasmin
780            if (strictboundcorrk) then
781              message="Minimum temperature outside of kmatrix bounds"
782              call abort_physic(subname,message,1)
783            else
784              print*,'***********************************************'
785              print*,'we allow model to continue but with tmid=tgasmin'
786              print*,'  ... we assume we know what you are doing ... '
787              print*,'  ... but do not let this happen too often ... '
788              print*,'***********************************************'
789              tmid(k)=tgasmin
790            endif
791         elseif(tmid(k).gt.tgasmax)then
792            print*,'Maximum temperature is outside the radiative'
793            print*,'transfer kmatrix bounds, exiting.'
794            print*,"k=",k," tmid(k)=",tmid(k)
795            print*,"tgasmax=",tgasmax
796            if (strictboundcorrk) then
797              message="Maximum temperature outside of kmatrix bounds"
798              call abort_physic(subname,message,1)
799            else
800              print*,'***********************************************'
801              print*,'we allow model to continue but with tmid=tgasmax'
802              print*,'  ... we assume we know what you are doing ... '
803              print*,'  ... but do not let this happen too often ... '
804              print*,'***********************************************'
805              tmid(k)=tgasmax
806            endif
807         endif
808      enddo
809
810!=======================================================================
811!          III. Calling the main radiative transfer subroutines
812!=======================================================================
813
814! ----------------------------------------------------------------
815! Recombine reference corrk tables if needed - Added by JVO, 2020.
816         if (corrk_recombin) then
817           call call_recombin(ig,nlayer,pq(ig,:,:),pplay(ig,:),pt(ig,:),qvar(:),tmid(:),pmid(:))
818         endif
819! ----------------------------------------------------------------
820
821         Cmk= 0.01 * 1.0 / (glat(ig) * mugaz * 1.672621e-27) ! q_main=1.0 assumed.
822         glat_ig=glat(ig)
823
824!-----------------------------------------------------------------------
825!        Short Wave Part
826!-----------------------------------------------------------------------
827
828         if(fract(ig) .ge. 1.0e-4) then ! Only during daylight.
829            if((ngrid.eq.1).and.(global1d))then
830               do nw=1,L_NSPECTV
831                  stel_fract(nw)= stel(nw)* 0.25 / acosz ! globally averaged = divide by 4, and we correct for solar zenith angle
832               end do
833            else
834               do nw=1,L_NSPECTV
835                  stel_fract(nw)= stel(nw) * fract(ig)
836               end do
837            endif
838
839            call optcv(dtauv,tauv,taucumv,plevrad,                 &
840                 qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero,   &
841                 tmid,pmid,taugsurf,qvar,muvarrad)
842
843            call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv,  &
844                 acosz,stel_fract,                                 &
845                 nfluxtopv,fluxtopvdn,nfluxoutv_nu,nfluxgndv_nu,   &
846                 fmnetv,fluxupv,fluxdnv,fzerov,taugsurf)
847
848         else ! During the night, fluxes = 0.
849            nfluxtopv       = 0.0d0
850            fluxtopvdn      = 0.0d0
851            nfluxoutv_nu(:) = 0.0d0
852            nfluxgndv_nu(:) = 0.0d0
853            do l=1,L_NLAYRAD
854               fmnetv(l)=0.0d0
855               fluxupv(l)=0.0d0
856               fluxdnv(l)=0.0d0
857            end do
858         end if
859
860
861         ! Equivalent Albedo Calculation (for OUTPUT). MT2015
862         if(fract(ig) .ge. 1.0e-4) then ! equivalent albedo makes sense only during daylight.       
863            surface_stellar_flux=sum(nfluxgndv_nu(1:L_NSPECTV))     
864            if(surface_stellar_flux .gt. 1.0e-3) then ! equivalent albedo makes sense only if the stellar flux received by the surface is positive.
865               DO nw=1,L_NSPECTV                 
866                  albedo_temp(nw)=albedo(ig,nw)*nfluxgndv_nu(nw)
867               ENDDO
868               albedo_temp(1:L_NSPECTV)=albedo_temp(1:L_NSPECTV)/surface_stellar_flux
869               albedo_equivalent(ig)=sum(albedo_temp(1:L_NSPECTV))
870            else
871               albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0.
872            endif
873         else
874            albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0.
875         endif
876
877
878!-----------------------------------------------------------------------
879!        Long Wave Part
880!-----------------------------------------------------------------------
881
882         call optci(plevrad,tlevrad,dtaui,taucumi,                  &
883              qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid,    &
884              taugsurfi,qvar,muvarrad)
885
886         call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi,      &
887              wnoi,dwni,cosbi,wbari,nfluxtopi,nfluxtopi_nu,         &
888              fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi)
889
890!-----------------------------------------------------------------------
891!     Transformation of the correlated-k code outputs
892!     (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw)
893
894!     Flux incident at the top of the atmosphere
895         fluxtop_dn(ig)=fluxtopvdn
896
897         fluxtop_lw(ig)  = real(nfluxtopi)
898         fluxabs_sw(ig)  = real(-nfluxtopv)
899         fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD))
900         fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD))
901         
902!        Flux absorbed by the surface. By MT2015.         
903         fluxsurfabs_sw(ig) = fluxsurf_sw(ig)*(1.-albedo_equivalent(ig))
904
905         if(fluxtop_dn(ig).lt.0.0)then
906            print*,'Achtung! fluxtop_dn has lost the plot!'
907            print*,'fluxtop_dn=',fluxtop_dn(ig)
908            print*,'acosz=',acosz
909            print*,'aerosol=',aerosol(ig,:,:)
910            print*,'temp=   ',pt(ig,:)
911            print*,'pplay=  ',pplay(ig,:)
912            message="Achtung! fluxtop_dn has lost the plot!"
913            call abort_physic(subname,message,1)
914         endif
915
916!     Spectral output, for exoplanet observational comparison
917         if(specOLR)then
918            do nw=1,L_NSPECTI
919               OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth
920            end do
921            do nw=1,L_NSPECTV
922               GSR_nu(ig,nw)=nfluxgndv_nu(nw)/DWNV(nw)
923               OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth
924            end do
925         endif
926
927!     Finally, the heating rates
928
929         DO l=2,L_NLAYRAD
930            dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1))  &
931                *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1)))
932            dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1))  &
933                *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1)))
934         END DO     
935
936!     These are values at top of atmosphere
937         dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv)           &
938             *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2)))
939         dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi)           &
940             *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2)))
941
942      !  Optical thickness diagnostics (added by JVO)
943      if (diagdtau) then
944        do l=1,L_NLAYRAD
945          do nw=1,L_NSPECTV
946            int_dtauv(ig,l,nw) = 0.0d0
947             DO k=1,L_NGAUSS
948              ! Output exp(-tau) because gweight ponderates exp and not tau itself
949              int_dtauv(ig,l,nw)= int_dtauv(ig,l,nw) + exp(-dtauv(l,nw,k))*gweight(k)
950             ENDDO
951          enddo
952          do nw=1,L_NSPECTI
953           int_dtaui(ig,l,nw) = 0.0d0
954             DO k=1,L_NGAUSS
955              ! Output exp(-tau) because gweight ponderates exp and not tau itself
956              int_dtaui(ig,l,nw)= int_dtaui(ig,l,nw) + exp(-dtaui(l,nw,k))*gweight(k)
957             ENDDO
958          enddo
959        enddo
960      endif       
961
962
963!-----------------------------------------------------------------------   
964      end do ! End of big loop over every GCM column.
965!-----------------------------------------------------------------------
966
967
968
969!-----------------------------------------------------------------------
970!     Additional diagnostics
971!-----------------------------------------------------------------------
972
973      ! IR spectral output, for exoplanet observational comparison
974      if(lastcall.and.(ngrid.eq.1))then  ! could disable the 1D output, they are in the diagfi and diagspec... JL12
975
976         print*,'Saving scalar quantities in surf_vals.out...'
977         print*,'psurf = ', pplev(1,1),' Pa'
978         open(116,file='surf_vals.out')
979         write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1),         &
980                      real(-nfluxtopv),real(nfluxtopi)
981         close(116)
982
983
984!          USEFUL COMMENT - Do Not Remove.
985!
986!           if(specOLR)then
987!               open(117,file='OLRnu.out')
988!               do nw=1,L_NSPECTI
989!                  write(117,*) OLR_nu(1,nw)
990!               enddo
991!               close(117)
992!
993!               open(127,file='OSRnu.out')
994!               do nw=1,L_NSPECTV
995!                  write(127,*) OSR_nu(1,nw)
996!               enddo
997!               close(127)
998!           endif
999
1000           ! OLR vs altitude: do it as a .txt file.
1001         OLRz=.false.
1002         if(OLRz)then
1003            print*,'saving IR vertical flux for OLRz...'
1004            open(118,file='OLRz_plevs.out')
1005            open(119,file='OLRz.out')
1006            do l=1,L_NLAYRAD
1007               write(118,*) plevrad(2*l)
1008               do nw=1,L_NSPECTI
1009                  write(119,*) fluxupi_nu(l,nw)
1010               enddo
1011            enddo
1012            close(118)
1013            close(119)
1014         endif
1015
1016      endif
1017
1018      ! See physiq.F for explanations about CLFvarying. This is temporary.
1019      if (lastcall .and. .not.CLFvarying) then
1020        IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi )
1021        IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv )
1022!$OMP BARRIER
1023!$OMP MASTER
1024        IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref )
1025        IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref )
1026        IF( ALLOCATED( wrefvar ) ) DEALLOCATE( wrefvar )
1027        IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref )
1028        IF( ALLOCATED( gweight ) ) DEALLOCATE( gweight )
1029!$OMP END MASTER
1030!$OMP BARRIER
1031        IF ( ALLOCATED(reffrad)) DEALLOCATE(reffrad)
1032        IF ( ALLOCATED(nueffrad)) DEALLOCATE(nueffrad)
1033      endif
1034
1035
1036    end subroutine callcorrk
1037
1038END MODULE callcorrk_mod
Note: See TracBrowser for help on using the repository browser.