[526] | 1 | subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
[253] | 2 | albedo,emis,mu0,pplev,pplay,pt, & |
---|
[586] | 3 | tsurf,fract,dist_star,aerosol,muvar, & |
---|
[253] | 4 | dtlw,dtsw,fluxsurf_lw, & |
---|
| 5 | fluxsurf_sw,fluxtop_lw,fluxabs_sw,fluxtop_dn, & |
---|
[538] | 6 | OLR_nu,OSR_nu, & |
---|
[787] | 7 | reffrad,nueffrad,tau_col,cloudfrac,totcloudfrac, & |
---|
[253] | 8 | clearsky,firstcall,lastcall) |
---|
| 9 | |
---|
| 10 | use radinc_h |
---|
| 11 | use radcommon_h |
---|
| 12 | use watercommon_h |
---|
[374] | 13 | use datafile_mod, only: datadir |
---|
[253] | 14 | use ioipsl_getincom |
---|
[471] | 15 | use gases_h |
---|
[728] | 16 | use radii_mod, only : su_aer_radii,co2_reffrad,h2o_reffrad,dust_reffrad,h2so4_reffrad |
---|
[726] | 17 | use aerosol_mod |
---|
[253] | 18 | |
---|
[787] | 19 | USE tracer_h |
---|
| 20 | |
---|
[253] | 21 | implicit none |
---|
| 22 | |
---|
| 23 | !================================================================== |
---|
| 24 | ! |
---|
| 25 | ! Purpose |
---|
| 26 | ! ------- |
---|
| 27 | ! Solve the radiative transfer using the correlated-k method for |
---|
| 28 | ! the gaseous absorption and the Toon et al. (1989) method for |
---|
| 29 | ! scatttering due to aerosols. |
---|
| 30 | ! |
---|
| 31 | ! Authors |
---|
| 32 | ! ------- |
---|
| 33 | ! Emmanuel 01/2001, Forget 09/2001 |
---|
| 34 | ! Robin Wordsworth (2009) |
---|
| 35 | ! |
---|
| 36 | !================================================================== |
---|
| 37 | |
---|
| 38 | #include "dimphys.h" |
---|
| 39 | #include "comcstfi.h" |
---|
| 40 | #include "callkeys.h" |
---|
| 41 | |
---|
| 42 | !----------------------------------------------------------------------- |
---|
| 43 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
---|
| 44 | ! Layer #1 is the layer near the ground. |
---|
| 45 | ! Layer #nlayermx is the layer at the top. |
---|
| 46 | |
---|
| 47 | ! INPUT |
---|
| 48 | INTEGER icount |
---|
| 49 | INTEGER ngrid,nlayer |
---|
| 50 | REAL aerosol(ngrid,nlayermx,naerkind) ! aerosol tau (kg/kg) |
---|
| 51 | REAL albedo(ngrid) ! SW albedo |
---|
| 52 | REAL emis(ngrid) ! LW emissivity |
---|
| 53 | REAL pplay(ngrid,nlayermx) ! pres. level in GCM mid of layer |
---|
| 54 | REAL pplev(ngrid,nlayermx+1) ! pres. level at GCM layer boundaries |
---|
| 55 | |
---|
| 56 | REAL pt(ngrid,nlayermx) ! air temperature (K) |
---|
| 57 | REAL tsurf(ngrid) ! surface temperature (K) |
---|
| 58 | REAL dist_star,mu0(ngrid) ! distance star-planet (AU) |
---|
| 59 | REAL fract(ngrid) ! fraction of day |
---|
| 60 | |
---|
| 61 | ! Globally varying aerosol optical properties on GCM grid |
---|
| 62 | ! Not needed everywhere so not in radcommon_h |
---|
[787] | 63 | REAL :: QVISsQREF3d(ngrid,nlayermx,L_NSPECTV,naerkind) |
---|
| 64 | REAL :: omegaVIS3d(ngrid,nlayermx,L_NSPECTV,naerkind) |
---|
| 65 | REAL :: gVIS3d(ngrid,nlayermx,L_NSPECTV,naerkind) |
---|
[253] | 66 | |
---|
[787] | 67 | REAL :: QIRsQREF3d(ngrid,nlayermx,L_NSPECTI,naerkind) |
---|
| 68 | REAL :: omegaIR3d(ngrid,nlayermx,L_NSPECTI,naerkind) |
---|
| 69 | REAL :: gIR3d(ngrid,nlayermx,L_NSPECTI,naerkind) |
---|
[253] | 70 | |
---|
[787] | 71 | ! REAL :: omegaREFvis3d(ngrid,nlayermx,naerkind) |
---|
| 72 | ! REAL :: omegaREFir3d(ngrid,nlayermx,naerkind) ! not sure of the point of these... |
---|
[253] | 73 | |
---|
[787] | 74 | !!! this is a local instance of a variable saved in physiq.F and being an argument |
---|
| 75 | REAL, INTENT(INOUT) :: reffrad(ngrid,nlayer,naerkind) |
---|
| 76 | REAL, INTENT(INOUT) :: nueffrad(ngrid,nlayermx,naerkind) |
---|
[253] | 77 | |
---|
[787] | 78 | !! OUTPUT |
---|
| 79 | REAL dtsw(ngrid,nlayermx) ! heating rate (K/s) due to SW |
---|
| 80 | REAL dtlw(ngrid,nlayermx) ! heating rate (K/s) due to LW |
---|
| 81 | REAL fluxsurf_lw(ngrid) ! incident LW flux to surf (W/m2) |
---|
| 82 | REAL fluxtop_lw(ngrid) ! outgoing LW flux to space (W/m2) |
---|
| 83 | REAL fluxsurf_sw(ngrid) ! incident SW flux to surf (W/m2) |
---|
| 84 | REAL fluxabs_sw(ngrid) ! SW flux absorbed by planet (W/m2) |
---|
| 85 | REAL fluxtop_dn(ngrid) ! incident top of atmosphere SW flux (W/m2) |
---|
[526] | 86 | REAL OLR_nu(ngrid,L_NSPECTI)! Outgoing LW radition in each band (Normalized to the band width (W/m2/cm-1) |
---|
| 87 | REAL OSR_nu(ngrid,L_NSPECTV)! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1) |
---|
[787] | 88 | |
---|
[253] | 89 | !----------------------------------------------------------------------- |
---|
| 90 | ! Declaration of the variables required by correlated-k subroutines |
---|
| 91 | ! Numbered from top to bottom unlike in the GCM! |
---|
| 92 | |
---|
| 93 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
---|
| 94 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
---|
| 95 | |
---|
| 96 | ! Optical values for the optci/cv subroutines |
---|
| 97 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
---|
| 98 | REAL*8 dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 99 | REAL*8 dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 100 | REAL*8 cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 101 | REAL*8 cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 102 | REAL*8 wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 103 | REAL*8 wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 104 | REAL*8 tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 105 | REAL*8 taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 106 | REAL*8 taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
| 107 | |
---|
| 108 | REAL*8 tauaero(L_LEVELS+1,naerkind) |
---|
| 109 | REAL*8 nfluxtopv,nfluxtopi,nfluxtop |
---|
[366] | 110 | real*8 nfluxoutv_nu(L_NSPECTV) ! outgoing band-resolved VI flux at TOA (W/m2) |
---|
| 111 | real*8 nfluxtopi_nu(L_NSPECTI) ! net band-resolved IR flux at TOA (W/m2) |
---|
[253] | 112 | real*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! for 1D diagnostic |
---|
| 113 | REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) |
---|
| 114 | REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) |
---|
| 115 | REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) |
---|
| 116 | REAL*8 albi,albv,acosz |
---|
| 117 | |
---|
| 118 | INTEGER ig,l,k,nw,iaer,irad |
---|
| 119 | |
---|
| 120 | real fluxtoplanet |
---|
[590] | 121 | real szangle |
---|
| 122 | logical global1d |
---|
| 123 | save szangle,global1d |
---|
[253] | 124 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
| 125 | real*8 taugsurfi(L_NSPECTI,L_NGAUSS-1) |
---|
| 126 | |
---|
[305] | 127 | real*8 qvar(L_LEVELS) ! mixing ratio of variable component (mol/mol) |
---|
[787] | 128 | REAL pq(ngrid,nlayer,nq) |
---|
| 129 | REAL qsurf(ngrid,nq) ! tracer on surface (e.g. kg.m-2) |
---|
[253] | 130 | integer nq |
---|
| 131 | |
---|
| 132 | ! Local aerosol optical properties for each column on RADIATIVE grid |
---|
| 133 | real*8 QXVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
| 134 | real*8 QSVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
| 135 | real*8 GVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
| 136 | real*8 QXIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
| 137 | real*8 QSIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
| 138 | real*8 GIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
| 139 | |
---|
| 140 | save qxvaer, qsvaer, gvaer |
---|
| 141 | save qxiaer, qsiaer, giaer |
---|
| 142 | |
---|
[787] | 143 | !REAL :: QREFvis3d(ngrid,nlayermx,naerkind) |
---|
| 144 | !REAL :: QREFir3d(ngrid,nlayermx,naerkind) |
---|
| 145 | !save QREFvis3d, QREFir3d |
---|
| 146 | real, dimension(:,:,:), save, allocatable :: QREFvis3d |
---|
| 147 | real, dimension(:,:,:), save, allocatable :: QREFir3d |
---|
| 148 | |
---|
[253] | 149 | REAL tau_col(ngrid) ! diagnostic from aeropacity |
---|
| 150 | |
---|
| 151 | ! Misc. |
---|
| 152 | logical firstcall, lastcall, nantest |
---|
| 153 | real*8 tempv(L_NSPECTV) |
---|
| 154 | real*8 tempi(L_NSPECTI) |
---|
| 155 | real*8 temp,temp1,temp2,pweight |
---|
| 156 | character(len=10) :: tmp1 |
---|
| 157 | character(len=10) :: tmp2 |
---|
| 158 | |
---|
| 159 | ! for fixed water vapour profiles |
---|
| 160 | integer i_var |
---|
| 161 | real RH |
---|
| 162 | real*8 pq_temp(nlayer) |
---|
| 163 | real ptemp, Ttemp, qsat |
---|
| 164 | |
---|
| 165 | ! real(KIND=r8) :: pq_temp(nlayer) ! better F90 way.. DOESNT PORT TO F77!!! |
---|
| 166 | |
---|
[305] | 167 | !real ptime, pday |
---|
[253] | 168 | logical OLRz |
---|
| 169 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
---|
| 170 | |
---|
| 171 | ! for H2O cloud fraction in aeropacity |
---|
[787] | 172 | real cloudfrac(ngrid,nlayermx) |
---|
| 173 | real totcloudfrac(ngrid) |
---|
[253] | 174 | logical clearsky |
---|
| 175 | |
---|
| 176 | ! for weird cloud test |
---|
[787] | 177 | real pqtest(ngrid,nlayer,nq) |
---|
[253] | 178 | |
---|
| 179 | real maxrad, minrad |
---|
[728] | 180 | |
---|
[253] | 181 | real CBRT |
---|
| 182 | external CBRT |
---|
| 183 | |
---|
[366] | 184 | ! included by RW for runaway greenhouse 1D study |
---|
[787] | 185 | real muvar(ngrid,nlayermx+1) |
---|
[305] | 186 | real vtmp(nlayermx) |
---|
| 187 | REAL*8 muvarrad(L_LEVELS) |
---|
| 188 | |
---|
[726] | 189 | |
---|
| 190 | !=============================================================== |
---|
[253] | 191 | ! Initialization on first call |
---|
| 192 | |
---|
| 193 | qxvaer(:,:,:)=0.0 |
---|
| 194 | qsvaer(:,:,:)=0.0 |
---|
| 195 | gvaer(:,:,:) =0.0 |
---|
| 196 | |
---|
| 197 | qxiaer(:,:,:)=0.0 |
---|
| 198 | qsiaer(:,:,:)=0.0 |
---|
| 199 | giaer(:,:,:) =0.0 |
---|
| 200 | |
---|
| 201 | if(firstcall) then |
---|
| 202 | |
---|
[787] | 203 | ALLOCATE(QREFvis3d(ngrid,nlayermx,naerkind)) |
---|
| 204 | ALLOCATE(QREFir3d(ngrid,nlayermx,naerkind)) |
---|
| 205 | |
---|
[253] | 206 | call system('rm -f surf_vals_long.out') |
---|
| 207 | |
---|
| 208 | !-------------------------------------------------- |
---|
| 209 | ! Effective radius and variance of the aerosols |
---|
[728] | 210 | if(naerkind.gt.4)then |
---|
| 211 | print*,'Code not general enough to deal with naerkind > 4 yet.' |
---|
| 212 | call abort |
---|
| 213 | endif |
---|
[787] | 214 | call su_aer_radii(ngrid,reffrad,nueffrad) |
---|
[728] | 215 | |
---|
| 216 | |
---|
[253] | 217 | |
---|
[728] | 218 | !-------------------------------------------------- |
---|
| 219 | ! set up correlated k |
---|
[374] | 220 | print*, "callcorrk: Correlated-k data base folder:",trim(datadir) |
---|
[253] | 221 | call getin("corrkdir",corrkdir) |
---|
| 222 | print*, "corrkdir = ",corrkdir |
---|
| 223 | write( tmp1, '(i3)' ) L_NSPECTI |
---|
| 224 | write( tmp2, '(i3)' ) L_NSPECTV |
---|
| 225 | banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
---|
| 226 | banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
---|
| 227 | |
---|
| 228 | call sugas_corrk ! set up gaseous absorption properties |
---|
| 229 | call setspi ! basic infrared properties |
---|
| 230 | call setspv ! basic visible properties |
---|
| 231 | call suaer_corrk ! set up aerosol optical properties |
---|
| 232 | |
---|
| 233 | Cmk= 0.01 * 1.0 / (g * mugaz * 1.672621e-27) ! q_main=1.0 assumed |
---|
| 234 | |
---|
| 235 | if((igcm_h2o_vap.eq.0) .and. varactive)then |
---|
| 236 | print*,'varactive in callcorrk but no h2o_vap tracer.' |
---|
| 237 | stop |
---|
| 238 | endif |
---|
| 239 | |
---|
[716] | 240 | OLR_nu(:,:) = 0. |
---|
| 241 | OSR_nu(:,:) = 0. |
---|
[538] | 242 | |
---|
[787] | 243 | if (ngrid.eq.1) then |
---|
[590] | 244 | PRINT*, 'Simulate global averaged conditions ?' |
---|
| 245 | global1d = .false. ! default value |
---|
| 246 | call getin("global1d",global1d) |
---|
| 247 | write(*,*) "global1d = ",global1d |
---|
[622] | 248 | ! Test of incompatibility: |
---|
| 249 | ! if global1d is true, there should not be any diurnal cycle |
---|
| 250 | if (global1d.and.diurnal) then |
---|
| 251 | print*,'if global1d is true, diurnal must be set to false' |
---|
| 252 | stop |
---|
| 253 | endif |
---|
| 254 | |
---|
[590] | 255 | if (global1d) then |
---|
| 256 | PRINT *,'Solar Zenith angle (deg.) ?' |
---|
| 257 | PRINT *,'(assumed for averaged solar flux S/4)' |
---|
| 258 | szangle=60.0 ! default value |
---|
| 259 | call getin("szangle",szangle) |
---|
| 260 | write(*,*) "szangle = ",szangle |
---|
| 261 | endif |
---|
| 262 | endif |
---|
| 263 | |
---|
[253] | 264 | firstcall=.false. |
---|
| 265 | |
---|
| 266 | end if |
---|
| 267 | |
---|
| 268 | !======================================================================= |
---|
| 269 | ! Initialization on every call |
---|
| 270 | |
---|
[728] | 271 | !-------------------------------------------------- |
---|
| 272 | ! Effective radius and variance of the aerosols |
---|
[726] | 273 | do iaer=1,naerkind |
---|
[650] | 274 | |
---|
[728] | 275 | if ((iaer.eq.iaero_co2).and.tracer.and.(igcm_co2_ice.gt.0)) then ! treat condensed co2 particles. |
---|
[787] | 276 | call co2_reffrad(ngrid,nq,pq,reffrad) |
---|
| 277 | print*,'Max. CO2 ice particle size = ',maxval(reffrad(1:ngrid,1:nlayermx,iaer))/1.e-6,' um' |
---|
| 278 | print*,'Min. CO2 ice particle size = ',minval(reffrad(1:ngrid,1:nlayermx,iaer))/1.e-6,' um' |
---|
[728] | 279 | end if |
---|
| 280 | if ((iaer.eq.iaero_h2o).and.water) then ! treat condensed water particles. to be generalized for other aerosols |
---|
[787] | 281 | call h2o_reffrad(ngrid,nq,pq,pt,reffrad,nueffrad) |
---|
| 282 | print*,'Max. H2O cloud particle size = ',maxval(reffrad(1:ngrid,1:nlayermx,iaer))/1.e-6,' um' |
---|
| 283 | print*,'Min. H2O cloud particle size = ',minval(reffrad(1:ngrid,1:nlayermx,iaer))/1.e-6,' um' |
---|
[253] | 284 | endif |
---|
[726] | 285 | if(iaer.eq.iaero_dust)then |
---|
[787] | 286 | call dust_reffrad(ngrid,reffrad) |
---|
[726] | 287 | print*,'Dust particle size = ',reffrad(1,1,iaer)/1.e-6,' um' |
---|
[253] | 288 | endif |
---|
[726] | 289 | if(iaer.eq.iaero_h2so4)then |
---|
[787] | 290 | call h2so4_reffrad(ngrid,reffrad) |
---|
[726] | 291 | print*,'H2SO4 particle size =',reffrad(1,1,iaer)/1.e-6,' um' |
---|
[253] | 292 | endif |
---|
[728] | 293 | end do !iaer=1,naerkind |
---|
[253] | 294 | |
---|
| 295 | |
---|
| 296 | ! how much light we get |
---|
| 297 | fluxtoplanet=0 |
---|
| 298 | do nw=1,L_NSPECTV |
---|
| 299 | stel(nw)=stellarf(nw)/(dist_star**2) |
---|
| 300 | fluxtoplanet=fluxtoplanet + stel(nw) |
---|
| 301 | end do |
---|
| 302 | |
---|
| 303 | call aeroptproperties(ngrid,nlayer,reffrad,nueffrad, & |
---|
| 304 | QVISsQREF3d,omegaVIS3d,gVIS3d, & |
---|
| 305 | QIRsQREF3d,omegaIR3d,gIR3d, & |
---|
| 306 | QREFvis3d,QREFir3d) ! get 3D aerosol optical properties |
---|
| 307 | |
---|
| 308 | call aeropacity(ngrid,nlayer,nq,pplay,pplev,pq,aerosol, & |
---|
| 309 | reffrad,QREFvis3d,QREFir3d, & |
---|
| 310 | tau_col,cloudfrac,totcloudfrac,clearsky) ! get aerosol optical depths |
---|
| 311 | |
---|
| 312 | !----------------------------------------------------------------------- |
---|
| 313 | ! Starting Big Loop over every GCM column |
---|
[787] | 314 | do ig=1,ngrid |
---|
[253] | 315 | |
---|
| 316 | !======================================================================= |
---|
| 317 | ! Transformation of the GCM variables |
---|
| 318 | |
---|
| 319 | !----------------------------------------------------------------------- |
---|
| 320 | ! Aerosol optical properties Qext, Qscat and g |
---|
| 321 | ! The transformation in the vertical is the same as for temperature |
---|
| 322 | |
---|
| 323 | ! shortwave |
---|
| 324 | do iaer=1,naerkind |
---|
| 325 | DO nw=1,L_NSPECTV |
---|
| 326 | do l=1,nlayermx |
---|
| 327 | |
---|
| 328 | temp1=QVISsQREF3d(ig,nlayermx+1-l,nw,iaer) & |
---|
| 329 | *QREFvis3d(ig,nlayermx+1-l,iaer) |
---|
| 330 | |
---|
| 331 | temp2=QVISsQREF3d(ig,max(nlayermx-l,1),nw,iaer) & |
---|
| 332 | *QREFvis3d(ig,max(nlayermx-l,1),iaer) |
---|
| 333 | |
---|
| 334 | qxvaer(2*l,nw,iaer) = temp1 |
---|
| 335 | qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 336 | |
---|
| 337 | temp1=temp1*omegavis3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 338 | temp2=temp2*omegavis3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 339 | |
---|
| 340 | qsvaer(2*l,nw,iaer) = temp1 |
---|
| 341 | qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 342 | |
---|
| 343 | temp1=gvis3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 344 | temp2=gvis3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 345 | |
---|
| 346 | gvaer(2*l,nw,iaer) = temp1 |
---|
| 347 | gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 348 | |
---|
| 349 | end do |
---|
| 350 | |
---|
| 351 | qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) |
---|
| 352 | qxvaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 353 | |
---|
| 354 | qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) |
---|
| 355 | qsvaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 356 | |
---|
| 357 | gvaer(1,nw,iaer)=gvaer(2,nw,iaer) |
---|
| 358 | gvaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 359 | |
---|
| 360 | end do |
---|
| 361 | |
---|
| 362 | ! longwave |
---|
| 363 | DO nw=1,L_NSPECTI |
---|
| 364 | do l=1,nlayermx |
---|
| 365 | |
---|
| 366 | temp1=QIRsQREF3d(ig,nlayermx+1-l,nw,iaer) & |
---|
| 367 | *QREFir3d(ig,nlayermx+1-l,iaer) |
---|
| 368 | |
---|
| 369 | temp2=QIRsQREF3d(ig,max(nlayermx-l,1),nw,iaer) & |
---|
| 370 | *QREFir3d(ig,max(nlayermx-l,1),iaer) |
---|
| 371 | |
---|
| 372 | qxiaer(2*l,nw,iaer) = temp1 |
---|
| 373 | qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 374 | |
---|
| 375 | temp1=temp1*omegair3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 376 | temp2=temp2*omegair3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 377 | |
---|
| 378 | qsiaer(2*l,nw,iaer) = temp1 |
---|
| 379 | qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 380 | |
---|
| 381 | temp1=gir3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 382 | temp2=gir3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 383 | |
---|
| 384 | giaer(2*l,nw,iaer) = temp1 |
---|
| 385 | giaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 386 | |
---|
| 387 | end do |
---|
| 388 | |
---|
| 389 | qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer) |
---|
| 390 | qxiaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 391 | |
---|
| 392 | qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer) |
---|
| 393 | qsiaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 394 | |
---|
| 395 | giaer(1,nw,iaer)=giaer(2,nw,iaer) |
---|
| 396 | giaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 397 | |
---|
| 398 | end do |
---|
| 399 | end do |
---|
| 400 | |
---|
| 401 | ! test / correct for freaky s. s. albedo values |
---|
| 402 | do iaer=1,naerkind |
---|
| 403 | do k=1,L_LEVELS+1 |
---|
| 404 | |
---|
| 405 | do nw=1,L_NSPECTV |
---|
| 406 | if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then |
---|
[726] | 407 | print*,'Serious problems with qsvaer values' |
---|
| 408 | print*,'in callcorrk' |
---|
[253] | 409 | call abort |
---|
| 410 | endif |
---|
| 411 | if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then |
---|
| 412 | qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer) |
---|
| 413 | endif |
---|
| 414 | end do |
---|
| 415 | |
---|
| 416 | do nw=1,L_NSPECTI |
---|
| 417 | if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then |
---|
[726] | 418 | print*,'Serious problems with qsiaer values' |
---|
| 419 | print*,'in callcorrk' |
---|
[253] | 420 | call abort |
---|
| 421 | endif |
---|
| 422 | if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then |
---|
| 423 | qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer) |
---|
| 424 | endif |
---|
| 425 | end do |
---|
| 426 | |
---|
| 427 | end do |
---|
| 428 | end do |
---|
| 429 | |
---|
| 430 | !----------------------------------------------------------------------- |
---|
| 431 | ! Aerosol optical depths |
---|
| 432 | |
---|
| 433 | do iaer=1,naerkind ! a bug was here |
---|
| 434 | do k=0,nlayer-1 |
---|
| 435 | |
---|
| 436 | pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ & |
---|
| 437 | (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) |
---|
| 438 | |
---|
| 439 | temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer) |
---|
| 440 | |
---|
[588] | 441 | tauaero(2*k+2,iaer)=max(temp*pweight,0.d0) |
---|
| 442 | tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0) |
---|
[253] | 443 | ! |
---|
| 444 | end do |
---|
| 445 | ! boundary conditions |
---|
| 446 | tauaero(1,iaer) = tauaero(2,iaer) |
---|
| 447 | tauaero(L_LEVELS+1,iaer) = tauaero(L_LEVELS,iaer) |
---|
| 448 | !tauaero(1,iaer) = 0. |
---|
| 449 | !tauaero(L_LEVELS+1,iaer) = 0. |
---|
| 450 | end do |
---|
| 451 | |
---|
| 452 | ! Albedo and emissivity |
---|
| 453 | albi=1-emis(ig) ! longwave |
---|
| 454 | albv=albedo(ig) ! shortwave |
---|
| 455 | |
---|
| 456 | if(noradsurf.and.(albv.gt.0.0))then |
---|
| 457 | print*,'For open lower boundary in callcorrk must' |
---|
| 458 | print*,'have surface albedo set to zero!' |
---|
| 459 | call abort |
---|
| 460 | endif |
---|
| 461 | |
---|
[787] | 462 | if ((ngrid.eq.1).and.(global1d)) then ! fixed zenith angle 'szangle' in 1D simulations w/ globally-averaged sunlight |
---|
[253] | 463 | acosz = cos(pi*szangle/180.0) |
---|
| 464 | print*,'acosz=',acosz,', szangle=',szangle |
---|
| 465 | else |
---|
[590] | 466 | acosz=mu0(ig) ! cosine of sun incident angle : 3D simulations or local 1D simulations using latitude |
---|
[253] | 467 | endif |
---|
| 468 | |
---|
| 469 | !----------------------------------------------------------------------- |
---|
[305] | 470 | ! Water vapour (to be generalised for other gases eventually) |
---|
[253] | 471 | |
---|
[305] | 472 | if(varactive)then |
---|
[253] | 473 | |
---|
| 474 | i_var=igcm_h2o_vap |
---|
| 475 | do l=1,nlayer |
---|
| 476 | qvar(2*l) = pq(ig,nlayer+1-l,i_var) |
---|
| 477 | qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig,max(nlayer-l,1),i_var))/2 |
---|
| 478 | ! Average approximation as for temperature... |
---|
| 479 | end do |
---|
| 480 | qvar(1)=qvar(2) |
---|
| 481 | |
---|
| 482 | elseif(varfixed)then |
---|
| 483 | |
---|
| 484 | do l=1,nlayermx ! here we will assign fixed water vapour profiles globally |
---|
| 485 | RH = satval * ((pplay(ig,l)/pplev(ig,1) - 0.02) / 0.98) |
---|
| 486 | if(RH.lt.0.0) RH=0.0 |
---|
| 487 | |
---|
| 488 | ptemp=pplay(ig,l) |
---|
| 489 | Ttemp=pt(ig,l) |
---|
| 490 | call watersat(Ttemp,ptemp,qsat) |
---|
| 491 | |
---|
| 492 | !pq_temp(l) = qsat ! fully saturated everywhere |
---|
| 493 | pq_temp(l) = RH * qsat ! ~realistic profile (e.g. 80% saturation at ground) |
---|
| 494 | end do |
---|
| 495 | |
---|
| 496 | do l=1,nlayer |
---|
| 497 | qvar(2*l) = pq_temp(nlayer+1-l) |
---|
| 498 | qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp(max(nlayer-l,1)))/2 |
---|
| 499 | end do |
---|
| 500 | qvar(1)=qvar(2) |
---|
| 501 | |
---|
| 502 | ! Lowest layer of atmosphere |
---|
| 503 | RH = satval * (1 - 0.02) / 0.98 |
---|
| 504 | if(RH.lt.0.0) RH=0.0 |
---|
| 505 | |
---|
| 506 | ptemp = pplev(ig,1) |
---|
| 507 | Ttemp = tsurf(ig) |
---|
| 508 | call watersat(Ttemp,ptemp,qsat) |
---|
| 509 | |
---|
| 510 | !qvar(2*nlayermx+1)=qsat ! fully saturated everywhere |
---|
| 511 | qvar(2*nlayermx+1)= RH * qsat ! ~realistic profile (e.g. 80% saturation at ground) |
---|
[538] | 512 | !qvar=0.005 ! completely constant profile (JL) |
---|
[253] | 513 | |
---|
| 514 | else |
---|
| 515 | do k=1,L_LEVELS |
---|
| 516 | qvar(k) = 1.0D-7 |
---|
| 517 | end do |
---|
| 518 | end if |
---|
| 519 | |
---|
[538] | 520 | if(.not.kastprof)then |
---|
[305] | 521 | ! IMPORTANT: Now convert from kg/kg to mol/mol |
---|
[728] | 522 | do k=1,L_LEVELS |
---|
| 523 | qvar(k) = qvar(k)/(epsi+qvar(k)*(1.-epsi)) |
---|
| 524 | end do |
---|
[538] | 525 | end if |
---|
[253] | 526 | |
---|
[366] | 527 | !----------------------------------------------------------------------- |
---|
| 528 | ! kcm mode only |
---|
[305] | 529 | if(kastprof)then |
---|
| 530 | |
---|
[486] | 531 | ! initial values equivalent to mugaz |
---|
[305] | 532 | DO l=1,nlayer |
---|
[366] | 533 | muvarrad(2*l) = mugaz |
---|
| 534 | muvarrad(2*l+1) = mugaz |
---|
| 535 | END DO |
---|
| 536 | |
---|
[486] | 537 | !do k=1,L_LEVELS |
---|
| 538 | ! qvar(k) = 0.0 |
---|
| 539 | !end do |
---|
| 540 | !print*,'ASSUMING qH2O=0 EVERYWHERE IN CALLCORRK!' |
---|
[366] | 541 | endif |
---|
| 542 | |
---|
| 543 | |
---|
| 544 | if(kastprof.and.(ngasmx.gt.1))then |
---|
| 545 | |
---|
| 546 | DO l=1,nlayer |
---|
[305] | 547 | muvarrad(2*l) = muvar(ig,nlayer+2-l) |
---|
| 548 | muvarrad(2*l+1) = (muvar(ig,nlayer+2-l) + & |
---|
| 549 | muvar(ig,max(nlayer+1-l,1)))/2 |
---|
| 550 | END DO |
---|
| 551 | |
---|
| 552 | muvarrad(1) = muvarrad(2) |
---|
| 553 | muvarrad(2*nlayermx+1)=muvar(ig,1) |
---|
| 554 | |
---|
| 555 | print*,'Recalculating qvar with VARIABLE epsi for kastprof' |
---|
[538] | 556 | print*,'Assumes that the variable gas is H2O!!!' |
---|
| 557 | print*,'Assumes that there is only one tracer' |
---|
| 558 | !i_var=igcm_h2o_vap |
---|
| 559 | i_var=1 |
---|
[787] | 560 | if(nq.gt.1)then |
---|
[538] | 561 | print*,'Need 1 tracer only to run kcm1d.e' |
---|
| 562 | stop |
---|
| 563 | endif |
---|
[305] | 564 | do l=1,nlayer |
---|
| 565 | vtmp(l)=pq(ig,l,i_var)*muvar(ig,l+1)/mH2O |
---|
| 566 | end do |
---|
| 567 | |
---|
| 568 | do l=1,nlayer |
---|
| 569 | qvar(2*l) = vtmp(nlayer+1-l) |
---|
| 570 | qvar(2*l+1) = ( vtmp(nlayer+1-l) + vtmp(max(nlayer-l,1)) )/2 |
---|
| 571 | end do |
---|
| 572 | qvar(1)=qvar(2) |
---|
| 573 | |
---|
[538] | 574 | print*,'Warning: reducing qvar in callcorrk.' |
---|
| 575 | print*,'Temperature profile no longer consistent ', & |
---|
| 576 | 'with saturated H2O.' |
---|
| 577 | do k=1,L_LEVELS |
---|
| 578 | qvar(k) = qvar(k)*satval |
---|
| 579 | end do |
---|
| 580 | |
---|
[305] | 581 | endif |
---|
| 582 | |
---|
[253] | 583 | ! Keep values inside limits for which we have radiative transfer coefficients |
---|
| 584 | if(L_REFVAR.gt.1)then ! there was a bug here! |
---|
| 585 | do k=1,L_LEVELS |
---|
| 586 | if(qvar(k).lt.wrefvar(1))then |
---|
| 587 | qvar(k)=wrefvar(1)+1.0e-8 |
---|
| 588 | elseif(qvar(k).gt.wrefvar(L_REFVAR))then |
---|
| 589 | qvar(k)=wrefvar(L_REFVAR)-1.0e-8 |
---|
| 590 | endif |
---|
| 591 | end do |
---|
| 592 | endif |
---|
| 593 | |
---|
| 594 | !----------------------------------------------------------------------- |
---|
| 595 | ! Pressure and temperature |
---|
| 596 | |
---|
| 597 | DO l=1,nlayer |
---|
| 598 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
---|
| 599 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
---|
| 600 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
---|
| 601 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 |
---|
| 602 | END DO |
---|
| 603 | |
---|
[600] | 604 | plevrad(1) = 0. |
---|
[253] | 605 | plevrad(2) = max(pgasmin,0.0001*plevrad(3)) |
---|
| 606 | |
---|
| 607 | tlevrad(1) = tlevrad(2) |
---|
| 608 | tlevrad(2*nlayermx+1)=tsurf(ig) |
---|
| 609 | |
---|
| 610 | tmid(1) = tlevrad(2) |
---|
| 611 | tmid(2) = tlevrad(2) |
---|
| 612 | pmid(1) = plevrad(2) |
---|
| 613 | pmid(2) = plevrad(2) |
---|
| 614 | |
---|
| 615 | DO l=1,L_NLAYRAD-1 |
---|
| 616 | tmid(2*l+1) = tlevrad(2*l+1) |
---|
| 617 | tmid(2*l+2) = tlevrad(2*l+1) |
---|
| 618 | pmid(2*l+1) = plevrad(2*l+1) |
---|
| 619 | pmid(2*l+2) = plevrad(2*l+1) |
---|
| 620 | END DO |
---|
| 621 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
---|
| 622 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
---|
| 623 | |
---|
| 624 | ! test for out-of-bounds pressure |
---|
| 625 | if(plevrad(3).lt.pgasmin)then |
---|
| 626 | print*,'Minimum pressure is outside the radiative' |
---|
| 627 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 628 | call abort |
---|
| 629 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
---|
| 630 | print*,'Maximum pressure is outside the radiative' |
---|
| 631 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 632 | call abort |
---|
| 633 | endif |
---|
| 634 | |
---|
| 635 | ! test for out-of-bounds temperature |
---|
| 636 | do k=1,L_LEVELS |
---|
| 637 | if(tlevrad(k).lt.tgasmin)then |
---|
| 638 | print*,'Minimum temperature is outside the radiative' |
---|
| 639 | print*,'transfer kmatrix bounds, exiting.' |
---|
[486] | 640 | !print*,'WARNING, OVERRIDING FOR TEST' |
---|
| 641 | call abort |
---|
[253] | 642 | elseif(tlevrad(k).gt.tgasmax)then |
---|
| 643 | print*,'Maximum temperature is outside the radiative' |
---|
| 644 | print*,'transfer kmatrix bounds, exiting.' |
---|
[728] | 645 | print*,'level,grid,T',k,ig,tlevrad(k) |
---|
| 646 | print*,'WARNING, OVERRIDING FOR TEST' |
---|
| 647 | !call abort |
---|
| 648 | tlevrad(k)=tgasmax |
---|
[253] | 649 | endif |
---|
| 650 | enddo |
---|
| 651 | |
---|
| 652 | !======================================================================= |
---|
| 653 | ! Calling the main radiative transfer subroutines |
---|
| 654 | |
---|
| 655 | |
---|
| 656 | !----------------------------------------------------------------------- |
---|
| 657 | ! Shortwave |
---|
| 658 | |
---|
| 659 | if(fract(ig) .ge. 1.0e-4) then ! only during daylight! |
---|
| 660 | |
---|
| 661 | fluxtoplanet=0. |
---|
| 662 | |
---|
[787] | 663 | if((ngrid.eq.1).and.(global1d))then |
---|
[253] | 664 | do nw=1,L_NSPECTV |
---|
| 665 | stel_fract(nw)= stel(nw) * 0.25 / acosz |
---|
| 666 | fluxtoplanet=fluxtoplanet + stel_fract(nw) |
---|
| 667 | ! globally averaged = divide by 4 |
---|
| 668 | ! but we correct for solar zenith angle |
---|
| 669 | end do |
---|
| 670 | else |
---|
| 671 | do nw=1,L_NSPECTV |
---|
| 672 | stel_fract(nw)= stel(nw) * fract(ig) |
---|
| 673 | fluxtoplanet=fluxtoplanet + stel_fract(nw) |
---|
| 674 | end do |
---|
| 675 | endif |
---|
| 676 | |
---|
| 677 | call optcv(dtauv,tauv,taucumv,plevrad, & |
---|
| 678 | qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, & |
---|
[305] | 679 | tmid,pmid,taugsurf,qvar,muvarrad) |
---|
[253] | 680 | |
---|
| 681 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & |
---|
[366] | 682 | acosz,stel_fract,gweight, & |
---|
| 683 | nfluxtopv,nfluxoutv_nu,nfluxgndv_nu, & |
---|
[253] | 684 | fmnetv,fluxupv,fluxdnv,fzerov,taugsurf) |
---|
| 685 | |
---|
| 686 | else ! during the night, fluxes = 0 |
---|
[366] | 687 | nfluxtopv = 0.0 |
---|
| 688 | nfluxoutv_nu(:) = 0.0 |
---|
| 689 | nfluxgndv_nu(:) = 0.0 |
---|
[253] | 690 | do l=1,L_NLAYRAD |
---|
| 691 | fmnetv(l)=0.0 |
---|
| 692 | fluxupv(l)=0.0 |
---|
| 693 | fluxdnv(l)=0.0 |
---|
| 694 | end do |
---|
| 695 | end if |
---|
| 696 | |
---|
| 697 | !----------------------------------------------------------------------- |
---|
| 698 | ! Longwave |
---|
| 699 | |
---|
| 700 | call optci(plevrad,tlevrad,dtaui,taucumi, & |
---|
| 701 | qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid, & |
---|
[305] | 702 | taugsurfi,qvar,muvarrad) |
---|
[538] | 703 | |
---|
[253] | 704 | call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, & |
---|
| 705 | wnoi,dwni,cosbi,wbari,gweight,nfluxtopi,nfluxtopi_nu, & |
---|
| 706 | fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) |
---|
| 707 | |
---|
| 708 | !----------------------------------------------------------------------- |
---|
| 709 | ! Transformation of the correlated-k code outputs |
---|
| 710 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
---|
| 711 | |
---|
| 712 | ! Flux incident at the top of the atmosphere |
---|
| 713 | fluxtop_dn(ig)=fluxdnv(1) |
---|
| 714 | |
---|
| 715 | fluxtop_lw(ig) = real(nfluxtopi) |
---|
| 716 | fluxabs_sw(ig) = real(-nfluxtopv) |
---|
| 717 | fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD)) |
---|
| 718 | fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) |
---|
| 719 | |
---|
| 720 | if(fluxtop_dn(ig).lt.0.0)then |
---|
| 721 | print*,'Achtung! fluxtop_dn has lost the plot!' |
---|
| 722 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
| 723 | print*,'acosz=',acosz |
---|
| 724 | print*,'aerosol=',aerosol(ig,:,:) |
---|
| 725 | print*,'temp= ',pt(ig,:) |
---|
| 726 | print*,'pplay= ',pplay(ig,:) |
---|
| 727 | call abort |
---|
| 728 | endif |
---|
| 729 | |
---|
| 730 | ! Spectral output, for exoplanet observational comparison |
---|
| 731 | if(specOLR)then |
---|
| 732 | do nw=1,L_NSPECTI |
---|
[526] | 733 | OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth |
---|
[253] | 734 | end do |
---|
| 735 | do nw=1,L_NSPECTV |
---|
[366] | 736 | !GSR_nu(ig,nw)=nfluxgndv_nu(nw) |
---|
[526] | 737 | OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth |
---|
[253] | 738 | end do |
---|
| 739 | endif |
---|
| 740 | |
---|
| 741 | ! Finally, the heating rates |
---|
| 742 | |
---|
[586] | 743 | DO l=2,L_NLAYRAD |
---|
| 744 | dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & |
---|
| 745 | *g/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
| 746 | dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) & |
---|
| 747 | *g/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
| 748 | END DO |
---|
[253] | 749 | |
---|
| 750 | ! These are values at top of atmosphere |
---|
[586] | 751 | dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & |
---|
| 752 | *g/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
| 753 | dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) & |
---|
| 754 | *g/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
[253] | 755 | |
---|
| 756 | ! --------------------------------------------------------------- |
---|
| 757 | end do ! end of big loop over every GCM column (ig = 1:ngrid) |
---|
| 758 | |
---|
| 759 | |
---|
| 760 | !----------------------------------------------------------------------- |
---|
| 761 | ! Additional diagnostics |
---|
| 762 | |
---|
| 763 | ! IR spectral output, for exoplanet observational comparison |
---|
| 764 | |
---|
| 765 | |
---|
[526] | 766 | if(lastcall.and.(ngrid.eq.1))then ! could disable the 1D output, they are in the diagfi and diagspec... JL12 |
---|
| 767 | |
---|
[305] | 768 | print*,'Saving scalar quantities in surf_vals.out...' |
---|
| 769 | print*,'psurf = ', pplev(1,1),' Pa' |
---|
[253] | 770 | open(116,file='surf_vals.out') |
---|
| 771 | write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1), & |
---|
| 772 | real(-nfluxtopv),real(nfluxtopi) |
---|
| 773 | close(116) |
---|
| 774 | |
---|
[538] | 775 | ! I am useful, please don`t remove me! |
---|
[526] | 776 | ! if(specOLR)then |
---|
| 777 | ! open(117,file='OLRnu.out') |
---|
| 778 | ! do nw=1,L_NSPECTI |
---|
| 779 | ! write(117,*) OLR_nu(1,nw) |
---|
| 780 | ! enddo |
---|
| 781 | ! close(117) |
---|
| 782 | ! |
---|
| 783 | ! open(127,file='OSRnu.out') |
---|
| 784 | ! do nw=1,L_NSPECTV |
---|
| 785 | ! write(127,*) OSR_nu(1,nw) |
---|
| 786 | ! enddo |
---|
| 787 | ! close(127) |
---|
| 788 | ! endif |
---|
[253] | 789 | |
---|
| 790 | ! OLR vs altitude: do it as a .txt file |
---|
| 791 | OLRz=.false. |
---|
| 792 | if(OLRz)then |
---|
| 793 | print*,'saving IR vertical flux for OLRz...' |
---|
| 794 | open(118,file='OLRz_plevs.out') |
---|
| 795 | open(119,file='OLRz.out') |
---|
| 796 | do l=1,L_NLAYRAD |
---|
| 797 | write(118,*) plevrad(2*l) |
---|
| 798 | do nw=1,L_NSPECTI |
---|
| 799 | write(119,*) fluxupi_nu(l,nw) |
---|
| 800 | enddo |
---|
| 801 | enddo |
---|
| 802 | close(118) |
---|
| 803 | close(119) |
---|
| 804 | endif |
---|
| 805 | |
---|
[305] | 806 | endif |
---|
[253] | 807 | |
---|
[486] | 808 | ! see physiq.F for explanations about CLFvarying. This is temporary. |
---|
[470] | 809 | if (lastcall .and. .not.CLFvarying) then |
---|
| 810 | IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi ) |
---|
| 811 | IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv ) |
---|
| 812 | IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref ) |
---|
| 813 | IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref ) |
---|
| 814 | IF( ALLOCATED( wrefvar ) ) DEALLOCATE( wrefvar ) |
---|
| 815 | IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref ) |
---|
| 816 | endif |
---|
| 817 | |
---|
[716] | 818 | |
---|
[253] | 819 | end subroutine callcorrk |
---|