[526] | 1 | subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
[253] | 2 | albedo,emis,mu0,pplev,pplay,pt, & |
---|
[586] | 3 | tsurf,fract,dist_star,aerosol,muvar, & |
---|
[253] | 4 | dtlw,dtsw,fluxsurf_lw, & |
---|
| 5 | fluxsurf_sw,fluxtop_lw,fluxabs_sw,fluxtop_dn, & |
---|
[538] | 6 | OLR_nu,OSR_nu, & |
---|
[526] | 7 | reffrad,tau_col,cloudfrac,totcloudfrac, & |
---|
[253] | 8 | clearsky,firstcall,lastcall) |
---|
| 9 | |
---|
| 10 | use radinc_h |
---|
| 11 | use radcommon_h |
---|
| 12 | use watercommon_h |
---|
[374] | 13 | use datafile_mod, only: datadir |
---|
[253] | 14 | use ioipsl_getincom |
---|
[471] | 15 | use gases_h |
---|
[253] | 16 | |
---|
| 17 | implicit none |
---|
| 18 | |
---|
| 19 | !================================================================== |
---|
| 20 | ! |
---|
| 21 | ! Purpose |
---|
| 22 | ! ------- |
---|
| 23 | ! Solve the radiative transfer using the correlated-k method for |
---|
| 24 | ! the gaseous absorption and the Toon et al. (1989) method for |
---|
| 25 | ! scatttering due to aerosols. |
---|
| 26 | ! |
---|
| 27 | ! Authors |
---|
| 28 | ! ------- |
---|
| 29 | ! Emmanuel 01/2001, Forget 09/2001 |
---|
| 30 | ! Robin Wordsworth (2009) |
---|
| 31 | ! |
---|
| 32 | !================================================================== |
---|
| 33 | |
---|
| 34 | #include "dimphys.h" |
---|
| 35 | #include "comcstfi.h" |
---|
| 36 | #include "callkeys.h" |
---|
| 37 | #include "tracer.h" |
---|
| 38 | |
---|
| 39 | !----------------------------------------------------------------------- |
---|
| 40 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
---|
| 41 | ! Layer #1 is the layer near the ground. |
---|
| 42 | ! Layer #nlayermx is the layer at the top. |
---|
| 43 | |
---|
| 44 | ! INPUT |
---|
| 45 | INTEGER icount |
---|
| 46 | INTEGER ngrid,nlayer |
---|
| 47 | REAL aerosol(ngrid,nlayermx,naerkind) ! aerosol tau (kg/kg) |
---|
| 48 | REAL albedo(ngrid) ! SW albedo |
---|
| 49 | REAL emis(ngrid) ! LW emissivity |
---|
| 50 | REAL pplay(ngrid,nlayermx) ! pres. level in GCM mid of layer |
---|
| 51 | REAL pplev(ngrid,nlayermx+1) ! pres. level at GCM layer boundaries |
---|
| 52 | |
---|
| 53 | REAL pt(ngrid,nlayermx) ! air temperature (K) |
---|
| 54 | REAL tsurf(ngrid) ! surface temperature (K) |
---|
| 55 | REAL dist_star,mu0(ngrid) ! distance star-planet (AU) |
---|
| 56 | REAL fract(ngrid) ! fraction of day |
---|
| 57 | |
---|
| 58 | ! Globally varying aerosol optical properties on GCM grid |
---|
| 59 | ! Not needed everywhere so not in radcommon_h |
---|
| 60 | REAL :: QVISsQREF3d(ngridmx,nlayermx,L_NSPECTV,naerkind) |
---|
| 61 | REAL :: omegaVIS3d(ngridmx,nlayermx,L_NSPECTV,naerkind) |
---|
| 62 | REAL :: gVIS3d(ngridmx,nlayermx,L_NSPECTV,naerkind) |
---|
| 63 | |
---|
| 64 | REAL :: QIRsQREF3d(ngridmx,nlayermx,L_NSPECTI,naerkind) |
---|
| 65 | REAL :: omegaIR3d(ngridmx,nlayermx,L_NSPECTI,naerkind) |
---|
| 66 | REAL :: gIR3d(ngridmx,nlayermx,L_NSPECTI,naerkind) |
---|
| 67 | |
---|
| 68 | REAL :: QREFvis3d(ngridmx,nlayermx,naerkind) |
---|
| 69 | REAL :: QREFir3d(ngridmx,nlayermx,naerkind) |
---|
| 70 | |
---|
| 71 | ! REAL :: omegaREFvis3d(ngridmx,nlayermx,naerkind) |
---|
| 72 | ! REAL :: omegaREFir3d(ngridmx,nlayermx,naerkind) ! not sure of the point of these... |
---|
| 73 | |
---|
| 74 | REAL reffrad(ngrid,nlayer,naerkind) |
---|
| 75 | REAL nueffrad(ngrid,nlayer,naerkind) |
---|
| 76 | |
---|
| 77 | ! OUTPUT |
---|
| 78 | REAL dtsw(ngridmx,nlayermx) ! heating rate (K/s) due to SW |
---|
| 79 | REAL dtlw(ngridmx,nlayermx) ! heating rate (K/s) due to LW |
---|
| 80 | REAL fluxsurf_lw(ngridmx) ! incident LW flux to surf (W/m2) |
---|
| 81 | REAL fluxtop_lw(ngridmx) ! outgoing LW flux to space (W/m2) |
---|
| 82 | REAL fluxsurf_sw(ngridmx) ! incident SW flux to surf (W/m2) |
---|
| 83 | REAL fluxabs_sw(ngridmx) ! SW flux absorbed by planet (W/m2) |
---|
| 84 | REAL fluxtop_dn(ngridmx) ! incident top of atmosphere SW flux (W/m2) |
---|
[526] | 85 | REAL OLR_nu(ngrid,L_NSPECTI)! Outgoing LW radition in each band (Normalized to the band width (W/m2/cm-1) |
---|
| 86 | REAL OSR_nu(ngrid,L_NSPECTV)! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1) |
---|
[253] | 87 | !----------------------------------------------------------------------- |
---|
| 88 | ! Declaration of the variables required by correlated-k subroutines |
---|
| 89 | ! Numbered from top to bottom unlike in the GCM! |
---|
| 90 | |
---|
| 91 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
---|
| 92 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
---|
| 93 | |
---|
| 94 | ! Optical values for the optci/cv subroutines |
---|
| 95 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
---|
| 96 | REAL*8 dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 97 | REAL*8 dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 98 | REAL*8 cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 99 | REAL*8 cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 100 | REAL*8 wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 101 | REAL*8 wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 102 | REAL*8 tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 103 | REAL*8 taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 104 | REAL*8 taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
| 105 | |
---|
| 106 | REAL*8 tauaero(L_LEVELS+1,naerkind) |
---|
| 107 | REAL*8 nfluxtopv,nfluxtopi,nfluxtop |
---|
[366] | 108 | real*8 nfluxoutv_nu(L_NSPECTV) ! outgoing band-resolved VI flux at TOA (W/m2) |
---|
| 109 | real*8 nfluxtopi_nu(L_NSPECTI) ! net band-resolved IR flux at TOA (W/m2) |
---|
[253] | 110 | real*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! for 1D diagnostic |
---|
| 111 | REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) |
---|
| 112 | REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) |
---|
| 113 | REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) |
---|
| 114 | REAL*8 albi,albv,acosz |
---|
| 115 | |
---|
| 116 | INTEGER ig,l,k,nw,iaer,irad |
---|
| 117 | |
---|
| 118 | real fluxtoplanet |
---|
[590] | 119 | real szangle |
---|
| 120 | logical global1d |
---|
| 121 | save szangle,global1d |
---|
[253] | 122 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
| 123 | real*8 taugsurfi(L_NSPECTI,L_NGAUSS-1) |
---|
| 124 | |
---|
[305] | 125 | real*8 qvar(L_LEVELS) ! mixing ratio of variable component (mol/mol) |
---|
[253] | 126 | REAL pq(ngridmx,nlayer,nq) |
---|
| 127 | REAL qsurf(ngridmx,nqmx) ! tracer on surface (e.g. kg.m-2) |
---|
| 128 | integer nq |
---|
| 129 | |
---|
| 130 | ! Local aerosol optical properties for each column on RADIATIVE grid |
---|
| 131 | real*8 QXVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
| 132 | real*8 QSVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
| 133 | real*8 GVAER(L_LEVELS+1,L_NSPECTV,naerkind) |
---|
| 134 | real*8 QXIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
| 135 | real*8 QSIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
| 136 | real*8 GIAER(L_LEVELS+1,L_NSPECTI,naerkind) |
---|
| 137 | |
---|
| 138 | save qxvaer, qsvaer, gvaer |
---|
| 139 | save qxiaer, qsiaer, giaer |
---|
| 140 | save QREFvis3d, QREFir3d |
---|
| 141 | |
---|
| 142 | REAL tau_col(ngrid) ! diagnostic from aeropacity |
---|
| 143 | |
---|
| 144 | ! Misc. |
---|
| 145 | logical firstcall, lastcall, nantest |
---|
| 146 | real*8 tempv(L_NSPECTV) |
---|
| 147 | real*8 tempi(L_NSPECTI) |
---|
| 148 | real*8 temp,temp1,temp2,pweight |
---|
| 149 | character(len=10) :: tmp1 |
---|
| 150 | character(len=10) :: tmp2 |
---|
| 151 | |
---|
| 152 | ! for fixed water vapour profiles |
---|
| 153 | integer i_var |
---|
| 154 | real RH |
---|
| 155 | real*8 pq_temp(nlayer) |
---|
| 156 | real ptemp, Ttemp, qsat |
---|
| 157 | |
---|
| 158 | ! real(KIND=r8) :: pq_temp(nlayer) ! better F90 way.. DOESNT PORT TO F77!!! |
---|
| 159 | |
---|
[305] | 160 | !real ptime, pday |
---|
[253] | 161 | logical OLRz |
---|
| 162 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
---|
| 163 | |
---|
| 164 | ! for H2O cloud fraction in aeropacity |
---|
| 165 | real cloudfrac(ngridmx,nlayermx) |
---|
| 166 | real totcloudfrac(ngridmx) |
---|
| 167 | logical clearsky |
---|
| 168 | |
---|
| 169 | ! for weird cloud test |
---|
| 170 | real pqtest(ngridmx,nlayer,nq) |
---|
| 171 | |
---|
| 172 | ! are particle radii fixed? |
---|
[650] | 173 | logical, save :: radfixed |
---|
[253] | 174 | real maxrad, minrad |
---|
| 175 | |
---|
[650] | 176 | ! Local water cloud optical properties |
---|
| 177 | real, parameter :: rad_froid=35.0e-6 |
---|
| 178 | real, parameter :: rad_chaud=10.0e-6 |
---|
| 179 | real, parameter :: coef_chaud=0.13 |
---|
| 180 | real, parameter :: coef_froid=0.09 |
---|
| 181 | real zfice |
---|
| 182 | |
---|
[253] | 183 | real CBRT |
---|
| 184 | external CBRT |
---|
| 185 | |
---|
[366] | 186 | ! included by RW for runaway greenhouse 1D study |
---|
[305] | 187 | real muvar(ngridmx,nlayermx+1) |
---|
| 188 | real vtmp(nlayermx) |
---|
| 189 | REAL*8 muvarrad(L_LEVELS) |
---|
| 190 | |
---|
[253] | 191 | !======================================================================= |
---|
| 192 | ! Initialization on first call |
---|
| 193 | |
---|
| 194 | qxvaer(:,:,:)=0.0 |
---|
| 195 | qsvaer(:,:,:)=0.0 |
---|
| 196 | gvaer(:,:,:) =0.0 |
---|
| 197 | |
---|
| 198 | qxiaer(:,:,:)=0.0 |
---|
| 199 | qsiaer(:,:,:)=0.0 |
---|
| 200 | giaer(:,:,:) =0.0 |
---|
[650] | 201 | radfixed=.false. |
---|
[253] | 202 | |
---|
| 203 | if(firstcall) then |
---|
[650] | 204 | if(kastprof)then |
---|
| 205 | radfixed=.true. |
---|
| 206 | endif |
---|
[253] | 207 | |
---|
| 208 | call system('rm -f surf_vals_long.out') |
---|
| 209 | |
---|
| 210 | !-------------------------------------------------- |
---|
| 211 | ! Effective radius and variance of the aerosols |
---|
| 212 | |
---|
[486] | 213 | do iaer=1,naerkind |
---|
[253] | 214 | ! these values will change once the microphysics gets to work |
---|
| 215 | ! UNLESS tracer=.false., in which case we should be working with |
---|
| 216 | ! a fixed aerosol layer, and be able to define reffrad in a |
---|
| 217 | ! .def file. To be improved! |
---|
| 218 | |
---|
[486] | 219 | if(iaer.eq.1)then ! CO2 ice |
---|
| 220 | do l=1,nlayer |
---|
| 221 | do ig=1,ngrid |
---|
| 222 | reffrad(ig,l,iaer) = 1.e-4 |
---|
| 223 | nueffrad(ig,l,iaer) = 0.1 |
---|
| 224 | enddo |
---|
| 225 | enddo |
---|
| 226 | endif |
---|
[253] | 227 | |
---|
[486] | 228 | if(iaer.eq.2)then ! H2O ice |
---|
| 229 | do l=1,nlayer |
---|
| 230 | do ig=1,ngrid |
---|
| 231 | reffrad(ig,l,iaer) = 1.e-5 |
---|
| 232 | nueffrad(ig,l,iaer) = 0.1 |
---|
| 233 | enddo |
---|
| 234 | enddo |
---|
| 235 | endif |
---|
| 236 | |
---|
| 237 | if(iaer.eq.3)then ! dust |
---|
| 238 | do l=1,nlayer |
---|
| 239 | do ig=1,ngrid |
---|
| 240 | reffrad(ig,l,iaer) = 1.e-5 |
---|
| 241 | nueffrad(ig,l,iaer) = 0.1 |
---|
| 242 | enddo |
---|
| 243 | enddo |
---|
| 244 | endif |
---|
| 245 | |
---|
| 246 | if(iaer.gt.3)then |
---|
| 247 | print*,'Error in callcorrk, naerkind is too high.' |
---|
| 248 | print*,'The code still needs generalisation to arbitrary' |
---|
| 249 | print*,'aerosol kinds and number.' |
---|
| 250 | call abort |
---|
| 251 | endif |
---|
| 252 | |
---|
| 253 | enddo |
---|
| 254 | |
---|
[374] | 255 | print*, "callcorrk: Correlated-k data base folder:",trim(datadir) |
---|
[253] | 256 | call getin("corrkdir",corrkdir) |
---|
| 257 | print*, "corrkdir = ",corrkdir |
---|
| 258 | write( tmp1, '(i3)' ) L_NSPECTI |
---|
| 259 | write( tmp2, '(i3)' ) L_NSPECTV |
---|
| 260 | banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
---|
| 261 | banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
---|
| 262 | |
---|
| 263 | call sugas_corrk ! set up gaseous absorption properties |
---|
| 264 | call setspi ! basic infrared properties |
---|
| 265 | call setspv ! basic visible properties |
---|
| 266 | call suaer_corrk ! set up aerosol optical properties |
---|
| 267 | |
---|
| 268 | Cmk= 0.01 * 1.0 / (g * mugaz * 1.672621e-27) ! q_main=1.0 assumed |
---|
| 269 | |
---|
| 270 | if((igcm_h2o_vap.eq.0) .and. varactive)then |
---|
| 271 | print*,'varactive in callcorrk but no h2o_vap tracer.' |
---|
| 272 | stop |
---|
| 273 | endif |
---|
| 274 | |
---|
[716] | 275 | OLR_nu(:,:) = 0. |
---|
| 276 | OSR_nu(:,:) = 0. |
---|
[538] | 277 | |
---|
[590] | 278 | if (ngridmx.eq.1) then |
---|
| 279 | PRINT*, 'Simulate global averaged conditions ?' |
---|
| 280 | global1d = .false. ! default value |
---|
| 281 | call getin("global1d",global1d) |
---|
| 282 | write(*,*) "global1d = ",global1d |
---|
[622] | 283 | ! Test of incompatibility: |
---|
| 284 | ! if global1d is true, there should not be any diurnal cycle |
---|
| 285 | if (global1d.and.diurnal) then |
---|
| 286 | print*,'if global1d is true, diurnal must be set to false' |
---|
| 287 | stop |
---|
| 288 | endif |
---|
| 289 | |
---|
[590] | 290 | if (global1d) then |
---|
| 291 | PRINT *,'Solar Zenith angle (deg.) ?' |
---|
| 292 | PRINT *,'(assumed for averaged solar flux S/4)' |
---|
| 293 | szangle=60.0 ! default value |
---|
| 294 | call getin("szangle",szangle) |
---|
| 295 | write(*,*) "szangle = ",szangle |
---|
| 296 | endif |
---|
| 297 | endif |
---|
| 298 | |
---|
[253] | 299 | firstcall=.false. |
---|
| 300 | |
---|
| 301 | end if |
---|
| 302 | |
---|
| 303 | !======================================================================= |
---|
| 304 | ! Initialization on every call |
---|
| 305 | |
---|
| 306 | do l=1,nlayer |
---|
| 307 | do ig=1,ngrid |
---|
| 308 | do iaer=1,naerkind |
---|
| 309 | nueffrad(ig,l,iaer) = 0.1 ! stays at 0.1 |
---|
| 310 | enddo |
---|
| 311 | enddo |
---|
| 312 | enddo |
---|
| 313 | |
---|
[305] | 314 | |
---|
[650] | 315 | |
---|
[253] | 316 | if(radfixed)then |
---|
| 317 | do l=1,nlayer |
---|
| 318 | do ig=1,ngrid |
---|
| 319 | reffrad(ig,l,1) = 5.e-5 ! CO2 ice |
---|
| 320 | enddo |
---|
| 321 | enddo |
---|
| 322 | print*,'CO2 ice particle size = ',reffrad(1,1,1)/1.e-6,' um' |
---|
| 323 | if(naerkind.ge.2)then |
---|
| 324 | do l=1,nlayer |
---|
| 325 | do ig=1,ngrid |
---|
[305] | 326 | !reffrad(ig,l,2) = 2.e-5 ! H2O ice |
---|
[650] | 327 | reffrad(ig,l,2) = rad_chaud ! H2O ice |
---|
| 328 | |
---|
| 329 | zfice = 1.0 - (pt(ig,l)-T_h2O_ice_clouds) / (T_h2O_ice_liq-T_h2O_ice_clouds) |
---|
| 330 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
| 331 | reffrad(ig,l,2)= rad_chaud * (1.-zfice) + rad_froid * zfice |
---|
| 332 | nueffrad(ig,l,2) = coef_chaud * (1.-zfice) + coef_froid * zfice |
---|
[253] | 333 | enddo |
---|
| 334 | enddo |
---|
| 335 | print*,'H2O ice particle size = ',reffrad(1,1,2)/1.e-6,' um' |
---|
| 336 | endif |
---|
| 337 | if(naerkind.eq.3)then |
---|
| 338 | do l=1,nlayer |
---|
| 339 | do ig=1,ngrid |
---|
| 340 | reffrad(ig,l,naerkind) = 2.e-6 ! dust |
---|
| 341 | enddo |
---|
| 342 | enddo |
---|
| 343 | print*,'Dust particle size = ',reffrad(1,1,naerkind)/1.e-6,' um' |
---|
| 344 | endif |
---|
| 345 | if(naerkind.gt.3)then |
---|
| 346 | print*,'Code not general enough to deal with naerkind > 3 yet.' |
---|
| 347 | call abort |
---|
| 348 | endif |
---|
| 349 | |
---|
| 350 | else |
---|
| 351 | |
---|
| 352 | maxrad=0.0 |
---|
[305] | 353 | !averad=0.0 |
---|
[253] | 354 | minrad=1.0 |
---|
| 355 | do l=1,nlayer |
---|
[305] | 356 | |
---|
| 357 | !masse = (pplev(ig,l) - pplev(ig,l+1))/g |
---|
| 358 | |
---|
[253] | 359 | do ig=1,ngrid |
---|
[596] | 360 | !if(tracer)then |
---|
| 361 | if(tracer.and.igcm_co2_ice.gt.0)then |
---|
[538] | 362 | |
---|
| 363 | if(igcm_co2_ice.lt.1)then |
---|
| 364 | print*,'Tracers but no CO2 ice still seems to be a problem...' |
---|
| 365 | print*,'Aborting in callcorrk.' |
---|
| 366 | stop |
---|
| 367 | endif |
---|
| 368 | |
---|
[253] | 369 | reffrad(ig,l,1) = CBRT( 3*pq(ig,l,igcm_co2_ice)/ & |
---|
| 370 | (4*Nmix_co2*pi*rho_co2) ) |
---|
| 371 | endif |
---|
| 372 | reffrad(ig,l,1) = max(reffrad(ig,l,1),1.e-6) |
---|
| 373 | reffrad(ig,l,1) = min(reffrad(ig,l,1),500.e-6) |
---|
| 374 | |
---|
[305] | 375 | !averad = averad + reffrad(ig,l,1)*area(ig) |
---|
[253] | 376 | maxrad = max(reffrad(ig,l,1),maxrad) |
---|
| 377 | minrad = min(reffrad(ig,l,1),minrad) |
---|
| 378 | enddo |
---|
| 379 | enddo |
---|
| 380 | if(igcm_co2_ice.gt.0)then |
---|
| 381 | print*,'Max. CO2 ice particle size = ',maxrad/1.e-6,' um' |
---|
| 382 | print*,'Min. CO2 ice particle size = ',minrad/1.e-6,' um' |
---|
| 383 | endif |
---|
| 384 | |
---|
| 385 | if((naerkind.ge.2).and.water)then |
---|
| 386 | maxrad=0.0 |
---|
| 387 | minrad=1.0 |
---|
| 388 | do l=1,nlayer |
---|
| 389 | do ig=1,ngrid |
---|
| 390 | reffrad(ig,l,2) = CBRT( 3*pq(ig,l,igcm_h2o_ice)/ & |
---|
| 391 | (4*Nmix_h2o*pi*rho_ice) ) |
---|
| 392 | reffrad(ig,l,2) = max(reffrad(ig,l,2),1.e-6) |
---|
| 393 | reffrad(ig,l,2) = min(reffrad(ig,l,2),100.e-6) |
---|
| 394 | |
---|
| 395 | maxrad = max(reffrad(ig,l,2),maxrad) |
---|
| 396 | minrad = min(reffrad(ig,l,2),minrad) |
---|
| 397 | enddo |
---|
| 398 | enddo |
---|
| 399 | print*,'Max. H2O ice particle size = ',maxrad/1.e-6,' um' |
---|
| 400 | print*,'Min. H2O ice particle size = ',minrad/1.e-6,' um' |
---|
| 401 | endif |
---|
| 402 | |
---|
| 403 | if(naerkind.eq.3)then |
---|
| 404 | do l=1,nlayer |
---|
| 405 | do ig=1,ngrid |
---|
| 406 | reffrad(ig,l,naerkind) = 2.e-6 ! dust |
---|
| 407 | enddo |
---|
| 408 | enddo |
---|
| 409 | endif |
---|
| 410 | |
---|
| 411 | endif |
---|
| 412 | |
---|
[305] | 413 | |
---|
[253] | 414 | ! how much light we get |
---|
| 415 | fluxtoplanet=0 |
---|
| 416 | do nw=1,L_NSPECTV |
---|
| 417 | stel(nw)=stellarf(nw)/(dist_star**2) |
---|
| 418 | fluxtoplanet=fluxtoplanet + stel(nw) |
---|
| 419 | end do |
---|
| 420 | |
---|
| 421 | call aeroptproperties(ngrid,nlayer,reffrad,nueffrad, & |
---|
| 422 | QVISsQREF3d,omegaVIS3d,gVIS3d, & |
---|
| 423 | QIRsQREF3d,omegaIR3d,gIR3d, & |
---|
| 424 | QREFvis3d,QREFir3d) ! get 3D aerosol optical properties |
---|
| 425 | |
---|
| 426 | call aeropacity(ngrid,nlayer,nq,pplay,pplev,pq,aerosol, & |
---|
| 427 | reffrad,QREFvis3d,QREFir3d, & |
---|
| 428 | tau_col,cloudfrac,totcloudfrac,clearsky) ! get aerosol optical depths |
---|
| 429 | |
---|
| 430 | !----------------------------------------------------------------------- |
---|
| 431 | ! Starting Big Loop over every GCM column |
---|
| 432 | do ig=1,ngridmx |
---|
| 433 | |
---|
| 434 | !======================================================================= |
---|
| 435 | ! Transformation of the GCM variables |
---|
| 436 | |
---|
| 437 | !----------------------------------------------------------------------- |
---|
| 438 | ! Aerosol optical properties Qext, Qscat and g |
---|
| 439 | ! The transformation in the vertical is the same as for temperature |
---|
| 440 | |
---|
| 441 | ! shortwave |
---|
| 442 | do iaer=1,naerkind |
---|
| 443 | DO nw=1,L_NSPECTV |
---|
| 444 | do l=1,nlayermx |
---|
| 445 | |
---|
| 446 | temp1=QVISsQREF3d(ig,nlayermx+1-l,nw,iaer) & |
---|
| 447 | *QREFvis3d(ig,nlayermx+1-l,iaer) |
---|
| 448 | |
---|
| 449 | temp2=QVISsQREF3d(ig,max(nlayermx-l,1),nw,iaer) & |
---|
| 450 | *QREFvis3d(ig,max(nlayermx-l,1),iaer) |
---|
| 451 | |
---|
| 452 | qxvaer(2*l,nw,iaer) = temp1 |
---|
| 453 | qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 454 | |
---|
| 455 | temp1=temp1*omegavis3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 456 | temp2=temp2*omegavis3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 457 | |
---|
| 458 | qsvaer(2*l,nw,iaer) = temp1 |
---|
| 459 | qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 460 | |
---|
| 461 | temp1=gvis3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 462 | temp2=gvis3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 463 | |
---|
| 464 | gvaer(2*l,nw,iaer) = temp1 |
---|
| 465 | gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 466 | |
---|
| 467 | end do |
---|
| 468 | |
---|
| 469 | qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) |
---|
| 470 | qxvaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 471 | |
---|
| 472 | qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) |
---|
| 473 | qsvaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 474 | |
---|
| 475 | gvaer(1,nw,iaer)=gvaer(2,nw,iaer) |
---|
| 476 | gvaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 477 | |
---|
| 478 | end do |
---|
| 479 | |
---|
| 480 | ! longwave |
---|
| 481 | DO nw=1,L_NSPECTI |
---|
| 482 | do l=1,nlayermx |
---|
| 483 | |
---|
| 484 | temp1=QIRsQREF3d(ig,nlayermx+1-l,nw,iaer) & |
---|
| 485 | *QREFir3d(ig,nlayermx+1-l,iaer) |
---|
| 486 | |
---|
| 487 | temp2=QIRsQREF3d(ig,max(nlayermx-l,1),nw,iaer) & |
---|
| 488 | *QREFir3d(ig,max(nlayermx-l,1),iaer) |
---|
| 489 | |
---|
| 490 | qxiaer(2*l,nw,iaer) = temp1 |
---|
| 491 | qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 492 | |
---|
| 493 | temp1=temp1*omegair3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 494 | temp2=temp2*omegair3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 495 | |
---|
| 496 | qsiaer(2*l,nw,iaer) = temp1 |
---|
| 497 | qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 498 | |
---|
| 499 | temp1=gir3d(ig,nlayermx+1-l,nw,iaer) |
---|
| 500 | temp2=gir3d(ig,max(nlayermx-l,1),nw,iaer) |
---|
| 501 | |
---|
| 502 | giaer(2*l,nw,iaer) = temp1 |
---|
| 503 | giaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 504 | |
---|
| 505 | end do |
---|
| 506 | |
---|
| 507 | qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer) |
---|
| 508 | qxiaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 509 | |
---|
| 510 | qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer) |
---|
| 511 | qsiaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 512 | |
---|
| 513 | giaer(1,nw,iaer)=giaer(2,nw,iaer) |
---|
| 514 | giaer(2*nlayermx+1,nw,iaer)=0. |
---|
| 515 | |
---|
| 516 | end do |
---|
| 517 | end do |
---|
| 518 | |
---|
| 519 | ! test / correct for freaky s. s. albedo values |
---|
| 520 | do iaer=1,naerkind |
---|
| 521 | do k=1,L_LEVELS+1 |
---|
| 522 | |
---|
| 523 | do nw=1,L_NSPECTV |
---|
| 524 | if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then |
---|
| 525 | print*,'Serious problems with qsvaer values in callcorrk' |
---|
| 526 | call abort |
---|
| 527 | endif |
---|
| 528 | if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then |
---|
| 529 | qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer) |
---|
| 530 | endif |
---|
| 531 | end do |
---|
| 532 | |
---|
| 533 | do nw=1,L_NSPECTI |
---|
| 534 | if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then |
---|
| 535 | print*,'Serious problems with qsiaer values in callcorrk' |
---|
| 536 | call abort |
---|
| 537 | endif |
---|
| 538 | if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then |
---|
| 539 | qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer) |
---|
| 540 | endif |
---|
| 541 | end do |
---|
| 542 | |
---|
| 543 | end do |
---|
| 544 | end do |
---|
| 545 | |
---|
| 546 | !----------------------------------------------------------------------- |
---|
| 547 | ! Aerosol optical depths |
---|
| 548 | |
---|
| 549 | do iaer=1,naerkind ! a bug was here |
---|
| 550 | do k=0,nlayer-1 |
---|
| 551 | |
---|
| 552 | pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ & |
---|
| 553 | (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) |
---|
| 554 | |
---|
| 555 | temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer) |
---|
| 556 | |
---|
[588] | 557 | tauaero(2*k+2,iaer)=max(temp*pweight,0.d0) |
---|
| 558 | tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0) |
---|
[253] | 559 | ! |
---|
| 560 | end do |
---|
| 561 | ! boundary conditions |
---|
| 562 | tauaero(1,iaer) = tauaero(2,iaer) |
---|
| 563 | tauaero(L_LEVELS+1,iaer) = tauaero(L_LEVELS,iaer) |
---|
| 564 | !tauaero(1,iaer) = 0. |
---|
| 565 | !tauaero(L_LEVELS+1,iaer) = 0. |
---|
| 566 | end do |
---|
| 567 | |
---|
| 568 | ! Albedo and emissivity |
---|
| 569 | albi=1-emis(ig) ! longwave |
---|
| 570 | albv=albedo(ig) ! shortwave |
---|
| 571 | |
---|
| 572 | if(noradsurf.and.(albv.gt.0.0))then |
---|
| 573 | print*,'For open lower boundary in callcorrk must' |
---|
| 574 | print*,'have surface albedo set to zero!' |
---|
| 575 | call abort |
---|
| 576 | endif |
---|
| 577 | |
---|
[590] | 578 | if ((ngridmx.eq.1).and.(global1d)) then ! fixed zenith angle 'szangle' in 1D simulations w/ globally-averaged sunlight |
---|
[253] | 579 | acosz = cos(pi*szangle/180.0) |
---|
| 580 | print*,'acosz=',acosz,', szangle=',szangle |
---|
| 581 | else |
---|
[590] | 582 | acosz=mu0(ig) ! cosine of sun incident angle : 3D simulations or local 1D simulations using latitude |
---|
[253] | 583 | endif |
---|
| 584 | |
---|
| 585 | !----------------------------------------------------------------------- |
---|
[305] | 586 | ! Water vapour (to be generalised for other gases eventually) |
---|
[253] | 587 | |
---|
[305] | 588 | if(varactive)then |
---|
[253] | 589 | |
---|
| 590 | i_var=igcm_h2o_vap |
---|
| 591 | do l=1,nlayer |
---|
| 592 | qvar(2*l) = pq(ig,nlayer+1-l,i_var) |
---|
| 593 | qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig,max(nlayer-l,1),i_var))/2 |
---|
| 594 | ! Average approximation as for temperature... |
---|
| 595 | end do |
---|
| 596 | qvar(1)=qvar(2) |
---|
| 597 | |
---|
| 598 | elseif(varfixed)then |
---|
| 599 | |
---|
| 600 | do l=1,nlayermx ! here we will assign fixed water vapour profiles globally |
---|
| 601 | RH = satval * ((pplay(ig,l)/pplev(ig,1) - 0.02) / 0.98) |
---|
| 602 | if(RH.lt.0.0) RH=0.0 |
---|
| 603 | |
---|
| 604 | ptemp=pplay(ig,l) |
---|
| 605 | Ttemp=pt(ig,l) |
---|
| 606 | call watersat(Ttemp,ptemp,qsat) |
---|
| 607 | |
---|
| 608 | !pq_temp(l) = qsat ! fully saturated everywhere |
---|
| 609 | pq_temp(l) = RH * qsat ! ~realistic profile (e.g. 80% saturation at ground) |
---|
| 610 | end do |
---|
| 611 | |
---|
| 612 | do l=1,nlayer |
---|
| 613 | qvar(2*l) = pq_temp(nlayer+1-l) |
---|
| 614 | qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp(max(nlayer-l,1)))/2 |
---|
| 615 | end do |
---|
| 616 | qvar(1)=qvar(2) |
---|
| 617 | |
---|
| 618 | ! Lowest layer of atmosphere |
---|
| 619 | RH = satval * (1 - 0.02) / 0.98 |
---|
| 620 | if(RH.lt.0.0) RH=0.0 |
---|
| 621 | |
---|
| 622 | ptemp = pplev(ig,1) |
---|
| 623 | Ttemp = tsurf(ig) |
---|
| 624 | call watersat(Ttemp,ptemp,qsat) |
---|
| 625 | |
---|
| 626 | !qvar(2*nlayermx+1)=qsat ! fully saturated everywhere |
---|
| 627 | qvar(2*nlayermx+1)= RH * qsat ! ~realistic profile (e.g. 80% saturation at ground) |
---|
[538] | 628 | !qvar=0.005 ! completely constant profile (JL) |
---|
[253] | 629 | |
---|
| 630 | else |
---|
| 631 | do k=1,L_LEVELS |
---|
| 632 | qvar(k) = 1.0D-7 |
---|
| 633 | end do |
---|
| 634 | end if |
---|
| 635 | |
---|
[538] | 636 | if(.not.kastprof)then |
---|
[305] | 637 | ! IMPORTANT: Now convert from kg/kg to mol/mol |
---|
[253] | 638 | do k=1,L_LEVELS |
---|
| 639 | qvar(k) = qvar(k)/epsi |
---|
| 640 | end do |
---|
[538] | 641 | end if |
---|
[253] | 642 | |
---|
[366] | 643 | !----------------------------------------------------------------------- |
---|
| 644 | ! kcm mode only |
---|
[305] | 645 | if(kastprof)then |
---|
| 646 | |
---|
[486] | 647 | ! initial values equivalent to mugaz |
---|
[305] | 648 | DO l=1,nlayer |
---|
[366] | 649 | muvarrad(2*l) = mugaz |
---|
| 650 | muvarrad(2*l+1) = mugaz |
---|
| 651 | END DO |
---|
| 652 | |
---|
[486] | 653 | !do k=1,L_LEVELS |
---|
| 654 | ! qvar(k) = 0.0 |
---|
| 655 | !end do |
---|
| 656 | !print*,'ASSUMING qH2O=0 EVERYWHERE IN CALLCORRK!' |
---|
[366] | 657 | endif |
---|
| 658 | |
---|
| 659 | |
---|
| 660 | if(kastprof.and.(ngasmx.gt.1))then |
---|
| 661 | |
---|
| 662 | DO l=1,nlayer |
---|
[305] | 663 | muvarrad(2*l) = muvar(ig,nlayer+2-l) |
---|
| 664 | muvarrad(2*l+1) = (muvar(ig,nlayer+2-l) + & |
---|
| 665 | muvar(ig,max(nlayer+1-l,1)))/2 |
---|
| 666 | END DO |
---|
| 667 | |
---|
| 668 | muvarrad(1) = muvarrad(2) |
---|
| 669 | muvarrad(2*nlayermx+1)=muvar(ig,1) |
---|
| 670 | |
---|
| 671 | print*,'Recalculating qvar with VARIABLE epsi for kastprof' |
---|
[538] | 672 | print*,'Assumes that the variable gas is H2O!!!' |
---|
| 673 | print*,'Assumes that there is only one tracer' |
---|
| 674 | !i_var=igcm_h2o_vap |
---|
| 675 | i_var=1 |
---|
| 676 | if(nqmx.gt.1)then |
---|
| 677 | print*,'Need 1 tracer only to run kcm1d.e' |
---|
| 678 | stop |
---|
| 679 | endif |
---|
[305] | 680 | do l=1,nlayer |
---|
| 681 | vtmp(l)=pq(ig,l,i_var)*muvar(ig,l+1)/mH2O |
---|
| 682 | end do |
---|
| 683 | |
---|
| 684 | do l=1,nlayer |
---|
| 685 | qvar(2*l) = vtmp(nlayer+1-l) |
---|
| 686 | qvar(2*l+1) = ( vtmp(nlayer+1-l) + vtmp(max(nlayer-l,1)) )/2 |
---|
| 687 | end do |
---|
| 688 | qvar(1)=qvar(2) |
---|
| 689 | |
---|
[538] | 690 | print*,'Warning: reducing qvar in callcorrk.' |
---|
| 691 | print*,'Temperature profile no longer consistent ', & |
---|
| 692 | 'with saturated H2O.' |
---|
| 693 | do k=1,L_LEVELS |
---|
| 694 | qvar(k) = qvar(k)*satval |
---|
| 695 | end do |
---|
| 696 | |
---|
[305] | 697 | endif |
---|
| 698 | |
---|
[253] | 699 | ! Keep values inside limits for which we have radiative transfer coefficients |
---|
| 700 | if(L_REFVAR.gt.1)then ! there was a bug here! |
---|
| 701 | do k=1,L_LEVELS |
---|
| 702 | if(qvar(k).lt.wrefvar(1))then |
---|
| 703 | qvar(k)=wrefvar(1)+1.0e-8 |
---|
| 704 | elseif(qvar(k).gt.wrefvar(L_REFVAR))then |
---|
| 705 | qvar(k)=wrefvar(L_REFVAR)-1.0e-8 |
---|
| 706 | endif |
---|
| 707 | end do |
---|
| 708 | endif |
---|
| 709 | |
---|
| 710 | !----------------------------------------------------------------------- |
---|
| 711 | ! Pressure and temperature |
---|
| 712 | |
---|
| 713 | DO l=1,nlayer |
---|
| 714 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
---|
| 715 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
---|
| 716 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
---|
| 717 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 |
---|
| 718 | END DO |
---|
| 719 | |
---|
[600] | 720 | plevrad(1) = 0. |
---|
[253] | 721 | plevrad(2) = max(pgasmin,0.0001*plevrad(3)) |
---|
| 722 | |
---|
| 723 | tlevrad(1) = tlevrad(2) |
---|
| 724 | tlevrad(2*nlayermx+1)=tsurf(ig) |
---|
| 725 | |
---|
| 726 | tmid(1) = tlevrad(2) |
---|
| 727 | tmid(2) = tlevrad(2) |
---|
| 728 | pmid(1) = plevrad(2) |
---|
| 729 | pmid(2) = plevrad(2) |
---|
| 730 | |
---|
| 731 | DO l=1,L_NLAYRAD-1 |
---|
| 732 | tmid(2*l+1) = tlevrad(2*l+1) |
---|
| 733 | tmid(2*l+2) = tlevrad(2*l+1) |
---|
| 734 | pmid(2*l+1) = plevrad(2*l+1) |
---|
| 735 | pmid(2*l+2) = plevrad(2*l+1) |
---|
| 736 | END DO |
---|
| 737 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
---|
| 738 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
---|
| 739 | |
---|
| 740 | ! test for out-of-bounds pressure |
---|
| 741 | if(plevrad(3).lt.pgasmin)then |
---|
| 742 | print*,'Minimum pressure is outside the radiative' |
---|
| 743 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 744 | call abort |
---|
| 745 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
---|
| 746 | print*,'Maximum pressure is outside the radiative' |
---|
| 747 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 748 | call abort |
---|
| 749 | endif |
---|
| 750 | |
---|
| 751 | ! test for out-of-bounds temperature |
---|
| 752 | do k=1,L_LEVELS |
---|
| 753 | if(tlevrad(k).lt.tgasmin)then |
---|
| 754 | print*,'Minimum temperature is outside the radiative' |
---|
| 755 | print*,'transfer kmatrix bounds, exiting.' |
---|
[486] | 756 | !print*,'WARNING, OVERRIDING FOR TEST' |
---|
| 757 | call abort |
---|
[253] | 758 | elseif(tlevrad(k).gt.tgasmax)then |
---|
| 759 | print*,'Maximum temperature is outside the radiative' |
---|
| 760 | print*,'transfer kmatrix bounds, exiting.' |
---|
[486] | 761 | !print*,'WARNING, OVERRIDING FOR TEST' |
---|
| 762 | call abort |
---|
[253] | 763 | endif |
---|
| 764 | enddo |
---|
| 765 | |
---|
| 766 | !======================================================================= |
---|
| 767 | ! Calling the main radiative transfer subroutines |
---|
| 768 | |
---|
| 769 | |
---|
| 770 | !----------------------------------------------------------------------- |
---|
| 771 | ! Shortwave |
---|
| 772 | |
---|
| 773 | if(fract(ig) .ge. 1.0e-4) then ! only during daylight! |
---|
| 774 | |
---|
| 775 | fluxtoplanet=0. |
---|
| 776 | |
---|
[590] | 777 | if((ngridmx.eq.1).and.(global1d))then |
---|
[253] | 778 | do nw=1,L_NSPECTV |
---|
| 779 | stel_fract(nw)= stel(nw) * 0.25 / acosz |
---|
| 780 | fluxtoplanet=fluxtoplanet + stel_fract(nw) |
---|
| 781 | ! globally averaged = divide by 4 |
---|
| 782 | ! but we correct for solar zenith angle |
---|
| 783 | end do |
---|
| 784 | else |
---|
| 785 | do nw=1,L_NSPECTV |
---|
| 786 | stel_fract(nw)= stel(nw) * fract(ig) |
---|
| 787 | fluxtoplanet=fluxtoplanet + stel_fract(nw) |
---|
| 788 | end do |
---|
| 789 | endif |
---|
| 790 | |
---|
| 791 | call optcv(dtauv,tauv,taucumv,plevrad, & |
---|
| 792 | qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, & |
---|
[305] | 793 | tmid,pmid,taugsurf,qvar,muvarrad) |
---|
[253] | 794 | |
---|
| 795 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & |
---|
[366] | 796 | acosz,stel_fract,gweight, & |
---|
| 797 | nfluxtopv,nfluxoutv_nu,nfluxgndv_nu, & |
---|
[253] | 798 | fmnetv,fluxupv,fluxdnv,fzerov,taugsurf) |
---|
| 799 | |
---|
| 800 | else ! during the night, fluxes = 0 |
---|
[366] | 801 | nfluxtopv = 0.0 |
---|
| 802 | nfluxoutv_nu(:) = 0.0 |
---|
| 803 | nfluxgndv_nu(:) = 0.0 |
---|
[253] | 804 | do l=1,L_NLAYRAD |
---|
| 805 | fmnetv(l)=0.0 |
---|
| 806 | fluxupv(l)=0.0 |
---|
| 807 | fluxdnv(l)=0.0 |
---|
| 808 | end do |
---|
| 809 | end if |
---|
| 810 | |
---|
| 811 | !----------------------------------------------------------------------- |
---|
| 812 | ! Longwave |
---|
| 813 | |
---|
| 814 | call optci(plevrad,tlevrad,dtaui,taucumi, & |
---|
| 815 | qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid, & |
---|
[305] | 816 | taugsurfi,qvar,muvarrad) |
---|
[538] | 817 | |
---|
[253] | 818 | call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, & |
---|
| 819 | wnoi,dwni,cosbi,wbari,gweight,nfluxtopi,nfluxtopi_nu, & |
---|
| 820 | fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) |
---|
| 821 | |
---|
| 822 | !----------------------------------------------------------------------- |
---|
| 823 | ! Transformation of the correlated-k code outputs |
---|
| 824 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
---|
| 825 | |
---|
| 826 | ! Flux incident at the top of the atmosphere |
---|
| 827 | fluxtop_dn(ig)=fluxdnv(1) |
---|
| 828 | |
---|
| 829 | fluxtop_lw(ig) = real(nfluxtopi) |
---|
| 830 | fluxabs_sw(ig) = real(-nfluxtopv) |
---|
| 831 | fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD)) |
---|
| 832 | fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) |
---|
| 833 | |
---|
| 834 | if(fluxtop_dn(ig).lt.0.0)then |
---|
| 835 | print*,'Achtung! fluxtop_dn has lost the plot!' |
---|
| 836 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
| 837 | print*,'acosz=',acosz |
---|
| 838 | print*,'aerosol=',aerosol(ig,:,:) |
---|
| 839 | print*,'temp= ',pt(ig,:) |
---|
| 840 | print*,'pplay= ',pplay(ig,:) |
---|
| 841 | call abort |
---|
| 842 | endif |
---|
| 843 | |
---|
| 844 | ! Spectral output, for exoplanet observational comparison |
---|
| 845 | if(specOLR)then |
---|
| 846 | do nw=1,L_NSPECTI |
---|
[526] | 847 | OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth |
---|
[253] | 848 | end do |
---|
| 849 | do nw=1,L_NSPECTV |
---|
[366] | 850 | !GSR_nu(ig,nw)=nfluxgndv_nu(nw) |
---|
[526] | 851 | OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth |
---|
[253] | 852 | end do |
---|
| 853 | endif |
---|
| 854 | |
---|
| 855 | ! Finally, the heating rates |
---|
| 856 | |
---|
[586] | 857 | DO l=2,L_NLAYRAD |
---|
| 858 | dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & |
---|
| 859 | *g/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
| 860 | dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) & |
---|
| 861 | *g/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
| 862 | END DO |
---|
[253] | 863 | |
---|
| 864 | ! These are values at top of atmosphere |
---|
[586] | 865 | dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & |
---|
| 866 | *g/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
| 867 | dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) & |
---|
| 868 | *g/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
[253] | 869 | |
---|
| 870 | ! --------------------------------------------------------------- |
---|
| 871 | end do ! end of big loop over every GCM column (ig = 1:ngrid) |
---|
| 872 | |
---|
| 873 | |
---|
| 874 | !----------------------------------------------------------------------- |
---|
| 875 | ! Additional diagnostics |
---|
| 876 | |
---|
| 877 | ! IR spectral output, for exoplanet observational comparison |
---|
| 878 | |
---|
| 879 | |
---|
[526] | 880 | if(lastcall.and.(ngrid.eq.1))then ! could disable the 1D output, they are in the diagfi and diagspec... JL12 |
---|
| 881 | |
---|
[305] | 882 | print*,'Saving scalar quantities in surf_vals.out...' |
---|
| 883 | print*,'psurf = ', pplev(1,1),' Pa' |
---|
[253] | 884 | open(116,file='surf_vals.out') |
---|
| 885 | write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1), & |
---|
| 886 | real(-nfluxtopv),real(nfluxtopi) |
---|
| 887 | close(116) |
---|
| 888 | |
---|
[538] | 889 | ! I am useful, please don`t remove me! |
---|
[526] | 890 | ! if(specOLR)then |
---|
| 891 | ! open(117,file='OLRnu.out') |
---|
| 892 | ! do nw=1,L_NSPECTI |
---|
| 893 | ! write(117,*) OLR_nu(1,nw) |
---|
| 894 | ! enddo |
---|
| 895 | ! close(117) |
---|
| 896 | ! |
---|
| 897 | ! open(127,file='OSRnu.out') |
---|
| 898 | ! do nw=1,L_NSPECTV |
---|
| 899 | ! write(127,*) OSR_nu(1,nw) |
---|
| 900 | ! enddo |
---|
| 901 | ! close(127) |
---|
| 902 | ! endif |
---|
[253] | 903 | |
---|
| 904 | ! OLR vs altitude: do it as a .txt file |
---|
| 905 | OLRz=.false. |
---|
| 906 | if(OLRz)then |
---|
| 907 | print*,'saving IR vertical flux for OLRz...' |
---|
| 908 | open(118,file='OLRz_plevs.out') |
---|
| 909 | open(119,file='OLRz.out') |
---|
| 910 | do l=1,L_NLAYRAD |
---|
| 911 | write(118,*) plevrad(2*l) |
---|
| 912 | do nw=1,L_NSPECTI |
---|
| 913 | write(119,*) fluxupi_nu(l,nw) |
---|
| 914 | enddo |
---|
| 915 | enddo |
---|
| 916 | close(118) |
---|
| 917 | close(119) |
---|
| 918 | endif |
---|
| 919 | |
---|
[305] | 920 | endif |
---|
[253] | 921 | |
---|
[486] | 922 | ! see physiq.F for explanations about CLFvarying. This is temporary. |
---|
[470] | 923 | if (lastcall .and. .not.CLFvarying) then |
---|
| 924 | IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi ) |
---|
| 925 | IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv ) |
---|
| 926 | IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref ) |
---|
| 927 | IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref ) |
---|
| 928 | IF( ALLOCATED( wrefvar ) ) DEALLOCATE( wrefvar ) |
---|
| 929 | IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref ) |
---|
| 930 | endif |
---|
| 931 | |
---|
[716] | 932 | |
---|
[253] | 933 | end subroutine callcorrk |
---|