source: trunk/LMDZ.GENERIC/libf/phystd/callcorrk.F90 @ 3581

Last change on this file since 3581 was 3259, checked in by gmilcareck, 10 months ago

Fix a bug with global1d. When using global1d, the latitude used when global1d=false was still taken into account at global1d=true in the conditions for the presence of solar flux.

  • Property svn:executable set to *
File size: 55.6 KB
RevLine 
[2032]1MODULE callcorrk_mod
2
3IMPLICIT NONE
4
5CONTAINS
6
[526]7      subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf,           &
[1482]8          albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt,    &
[858]9          tsurf,fract,dist_star,aerosol,muvar,                 &
[253]10          dtlw,dtsw,fluxsurf_lw,                               &
[1482]11          fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw,               &
12          fluxabs_sw,fluxtop_dn,                               &
[2537]13          OLR_nu,OSR_nu,GSR_nu,                                &
[2133]14          int_dtaui,int_dtauv,                                 &
[858]15          tau_col,cloudfrac,totcloudfrac,                      &
[3233]16          clearsky,p_var,frac_var,firstcall,lastcall)
[253]17
[1699]18      use mod_phys_lmdz_para, only : is_master
[2032]19      use radinc_h, only: L_NSPECTV, L_NSPECTI, naerkind, banddir, corrkdir,&
20                          L_LEVELS, L_NGAUSS, L_NLEVRAD, L_NLAYRAD, L_REFVAR
21      use radcommon_h, only: wrefvar, Cmk, fzeroi, fzerov, gasi, gasv, &
22                             glat_ig, gweight, pfgasref, pgasmax, pgasmin, &
23                             pgasref, tgasmax, tgasmin, tgasref, scalep, &
24                             ubari, wnoi, stellarf, glat, dwnv, dwni, tauray
25      use watercommon_h, only: psat_water, epsi
[374]26      use datafile_mod, only: datadir
[1521]27      use ioipsl_getin_p_mod, only: getin_p
[2032]28      use gases_h, only: ngasmx
[1026]29      use radii_mod, only : su_aer_radii,co2_reffrad,h2o_reffrad,dust_reffrad,h2so4_reffrad,back2lay_reffrad
[2831]30      use aerosol_mod, only : iaero_co2,iaero_h2o,iaero_dust,iaero_h2so4, &
31                              iaero_back2lay, iaero_aurora,               &
32                              iaero_venus1,iaero_venus2,iaero_venus2p,    &
33                              iaero_venus3,iaero_venusUV
[2899]34      use aeropacity_mod, only: aeropacity
35      use aeroptproperties_mod, only: aeroptproperties
36      use tracer_h, only: igcm_h2o_ice, igcm_h2o_vap, igcm_co2_ice
37      use tracer_h, only: constants_epsi_generic
[1384]38      use comcstfi_mod, only: pi, mugaz, cpp
[2831]39      use callkeys_mod, only: varactive,diurnal,tracer,water,varfixed,satval, &
40                              diagdtau,kastprof,strictboundcorrk,specOLR, &
41                              CLFvarying,tplanckmin,tplanckmax,global1d, &
[3233]42                              generic_condensation, aerovenus, nvarlayer, varspec
[2032]43      use optcv_mod, only: optcv
44      use optci_mod, only: optci
[2899]45      use sfluxi_mod, only: sfluxi
46      use sfluxv_mod, only: sfluxv
[2543]47      use recombin_corrk_mod, only: corrk_recombin, call_recombin
[3233]48      use pindex_mod, only: pindex
[2727]49      use generic_cloud_common_h, only: Psat_generic, epsi_generic
50      use generic_tracer_index_mod, only: generic_tracer_index
[2954]51      use planetwide_mod, only: planetwide_maxval, planetwide_minval
[253]52      implicit none
53
54!==================================================================
55!
56!     Purpose
57!     -------
58!     Solve the radiative transfer using the correlated-k method for
59!     the gaseous absorption and the Toon et al. (1989) method for
60!     scatttering due to aerosols.
61!
62!     Authors
63!     -------
64!     Emmanuel 01/2001, Forget 09/2001
65!     Robin Wordsworth (2009)
66!
67!==================================================================
68
69!-----------------------------------------------------------------------
70!     Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid
71!     Layer #1 is the layer near the ground.
[1308]72!     Layer #nlayer is the layer at the top.
[1483]73!-----------------------------------------------------------------------
[253]74
[1483]75
76      ! INPUT
77      INTEGER,INTENT(IN) :: ngrid                  ! Number of atmospheric columns.
78      INTEGER,INTENT(IN) :: nlayer                 ! Number of atmospheric layers.
79      REAL,INTENT(IN) :: pq(ngrid,nlayer,nq)       ! Tracers (kg/kg_of_air).
80      INTEGER,INTENT(IN) :: nq                     ! Number of tracers.
81      REAL,INTENT(IN) :: qsurf(ngrid,nq)           ! Tracers on surface (kg.m-2).
82      REAL,INTENT(IN) :: albedo(ngrid,L_NSPECTV)   ! Spectral Short Wavelengths Albedo. By MT2015
83      REAL,INTENT(IN) :: emis(ngrid)               ! Long Wave emissivity.
84      REAL,INTENT(IN) :: mu0(ngrid)                ! Cosine of sun incident angle.
85      REAL,INTENT(IN) :: pplev(ngrid,nlayer+1)     ! Inter-layer pressure (Pa).
86      REAL,INTENT(IN) :: pplay(ngrid,nlayer)       ! Mid-layer pressure (Pa).
87      REAL,INTENT(IN) :: pt(ngrid,nlayer)          ! Air temperature (K).
88      REAL,INTENT(IN) :: tsurf(ngrid)              ! Surface temperature (K).
89      REAL,INTENT(IN) :: fract(ngrid)              ! Fraction of day.
90      REAL,INTENT(IN) :: dist_star                 ! Distance star-planet (AU).
91      REAL,INTENT(IN) :: muvar(ngrid,nlayer+1)
92      REAL,INTENT(IN) :: cloudfrac(ngrid,nlayer)   ! Fraction of clouds (%).
[3233]93      REAL,INTENT(IN) :: frac_var(nvarlayer,ngasmx)! Variable molar fraction.
94      REAL,INTENT(IN) :: p_var(nvarlayer)          ! Pressure for frac_var interpolation (Pa)
[858]95      logical,intent(in) :: clearsky
[1483]96      logical,intent(in) :: firstcall              ! Signals first call to physics.
97      logical,intent(in) :: lastcall               ! Signals last call to physics.
98     
99      ! OUTPUT
[2297]100      REAL,INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! Aerosol tau at reference wavelenght.
[1483]101      REAL,INTENT(OUT) :: dtlw(ngrid,nlayer)             ! Heating rate (K/s) due to LW radiation.
102      REAL,INTENT(OUT) :: dtsw(ngrid,nlayer)             ! Heating rate (K/s) due to SW radiation.
103      REAL,INTENT(OUT) :: fluxsurf_lw(ngrid)             ! Incident LW flux to surf (W/m2).
104      REAL,INTENT(OUT) :: fluxsurf_sw(ngrid)             ! Incident SW flux to surf (W/m2)
105      REAL,INTENT(OUT) :: fluxsurfabs_sw(ngrid)          ! Absorbed SW flux by the surface (W/m2). By MT2015.
106      REAL,INTENT(OUT) :: fluxtop_lw(ngrid)              ! Outgoing LW flux to space (W/m2).
107      REAL,INTENT(OUT) :: fluxabs_sw(ngrid)              ! SW flux absorbed by the planet (W/m2).
108      REAL,INTENT(OUT) :: fluxtop_dn(ngrid)              ! Incident top of atmosphere SW flux (W/m2).
[2537]109      REAL,INTENT(OUT) :: OLR_nu(ngrid,L_NSPECTI)        ! Outgoing LW radiation in each band (Normalized to the band width (W/m2/cm-1).
110      REAL,INTENT(OUT) :: OSR_nu(ngrid,L_NSPECTV)        ! Outgoing SW radiation in each band (Normalized to the band width (W/m2/cm-1).
111      REAL,INTENT(OUT) :: GSR_nu(ngrid,L_NSPECTV)        ! Surface SW radiation in each band (Normalized to the band width (W/m2/cm-1).
[1483]112      REAL,INTENT(OUT) :: tau_col(ngrid)                 ! Diagnostic from aeropacity.
113      REAL,INTENT(OUT) :: albedo_equivalent(ngrid)       ! Spectrally Integrated Albedo. For Diagnostic. By MT2015
114      REAL,INTENT(OUT) :: totcloudfrac(ngrid)            ! Column Fraction of clouds (%).
[2133]115      REAL,INTENT(OUT) :: int_dtaui(ngrid,nlayer,L_NSPECTI) ! VI optical thickness of layers within narrowbands for diags ().
116      REAL,INTENT(OUT) :: int_dtauv(ngrid,nlayer,L_NSPECTV) ! IR optical thickness of layers within narrowbands for diags ().
[1483]117     
118     
119     
120     
[253]121
[2972]122! Globally varying aerosol optical properties on GCM grid ; not needed everywhere so not in radcommon_h.   
123! made "save" variables so they are allocated once in for all, not because
124! the values need be saved from a time step to the next
125      REAL,SAVE,ALLOCATABLE :: QVISsQREF3d(:,:,:,:)
126      REAL,SAVE,ALLOCATABLE :: omegaVIS3d(:,:,:,:)
127      REAL,SAVE,ALLOCATABLE :: gVIS3d(:,:,:,:)
128!$OMP THREADPRIVATE(QVISsQREF3d,omegaVIS3d,gVIS3d)
129      REAL,SAVE,ALLOCATABLE :: QIRsQREF3d(:,:,:,:)
130      REAL,SAVE,ALLOCATABLE :: omegaIR3d(:,:,:,:)
131      REAL,SAVE,ALLOCATABLE :: gIR3d(:,:,:,:)
132!$OMP THREADPRIVATE(QIRsQREF3d,omegaIR3d,gIR3d)
[253]133
[1308]134!      REAL :: omegaREFvis3d(ngrid,nlayer,naerkind)
135!      REAL :: omegaREFir3d(ngrid,nlayer,naerkind) ! not sure of the point of these...
[253]136
[1483]137      REAL,ALLOCATABLE,SAVE :: reffrad(:,:,:)  ! aerosol effective radius (m)
[858]138      REAL,ALLOCATABLE,SAVE :: nueffrad(:,:,:) ! aerosol effective variance
[1315]139!$OMP THREADPRIVATE(reffrad,nueffrad)
[253]140
141!-----------------------------------------------------------------------
142!     Declaration of the variables required by correlated-k subroutines
[1483]143!     Numbered from top to bottom (unlike in the GCM)
144!-----------------------------------------------------------------------
[253]145
146      REAL*8 tmid(L_LEVELS),pmid(L_LEVELS)
147      REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS)
148
[1483]149      ! Optical values for the optci/cv subroutines
[253]150      REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV)
[2032]151      ! NB: Arrays below are "save" to avoid reallocating them at every call
152      ! not because their content needs be reused from call to the next
153      REAL*8,allocatable,save :: dtaui(:,:,:)
154      REAL*8,allocatable,save :: dtauv(:,:,:)
155      REAL*8,allocatable,save :: cosbv(:,:,:)
156      REAL*8,allocatable,save :: cosbi(:,:,:)
157      REAL*8,allocatable,save :: wbari(:,:,:)
158      REAL*8,allocatable,save :: wbarv(:,:,:)
[2269]159!$OMP THREADPRIVATE(dtaui,dtauv,cosbv,cosbi,wbari,wbarv)
[2032]160      REAL*8,allocatable,save :: tauv(:,:,:)
161      REAL*8,allocatable,save :: taucumv(:,:,:)
162      REAL*8,allocatable,save :: taucumi(:,:,:)
[2269]163!$OMP THREADPRIVATE(tauv,taucumv,taucumi)
[2972]164      REAL*8,allocatable,save :: tauaero(:,:)
165!$OMP THREADPRIVATE(tauaero)
[961]166      REAL*8 nfluxtopv,nfluxtopi,nfluxtop,fluxtopvdn
[1483]167      REAL*8 nfluxoutv_nu(L_NSPECTV)                 ! Outgoing band-resolved VI flux at TOA (W/m2).
168      REAL*8 nfluxtopi_nu(L_NSPECTI)                 ! Net band-resolved IR flux at TOA (W/m2).
169      REAL*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI)         ! For 1D diagnostic.
[253]170      REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD)
171      REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD)
172      REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD)
[1482]173      REAL*8 albi,acosz
[1483]174      REAL*8 albv(L_NSPECTV)                         ! Spectral Visible Albedo.
[253]175
[2727]176      INTEGER ig,l,k,nw,iaer,iq
[253]177
[2032]178      real*8,allocatable,save :: taugsurf(:,:)
179      real*8,allocatable,save :: taugsurfi(:,:)
[2269]180!$OMP THREADPRIVATE(taugsurf,taugsurfi)
[2727]181      real*8 qvar(L_LEVELS)   ! Mixing ratio of variable component (mol/mol). index 1 is the top of the atmosphere, index L_LEVELS is the bottom
[2032]182
[1483]183      ! Local aerosol optical properties for each column on RADIATIVE grid.
[2297]184      real*8,save,allocatable ::  QXVAER(:,:,:) ! Extinction coeff (QVISsQREF*QREFvis)
[1529]185      real*8,save,allocatable ::  QSVAER(:,:,:)
186      real*8,save,allocatable ::  GVAER(:,:,:)
[2297]187      real*8,save,allocatable ::  QXIAER(:,:,:) ! Extinction coeff (QIRsQREF*QREFir)
[1529]188      real*8,save,allocatable ::  QSIAER(:,:,:)
189      real*8,save,allocatable ::  GIAER(:,:,:)
[2269]190!$OMP THREADPRIVATE(QXVAER,QSVAER,GVAER,QXIAER,QSIAER,GIAER)
[787]191      real, dimension(:,:,:), save, allocatable :: QREFvis3d
192      real, dimension(:,:,:), save, allocatable :: QREFir3d
[2269]193!$OMP THREADPRIVATE(QREFvis3d,QREFir3d)
[787]194
[253]195
[1483]196      ! Miscellaneous :
[253]197      real*8  temp,temp1,temp2,pweight
198      character(len=10) :: tmp1
199      character(len=10) :: tmp2
[2269]200      character(len=100) :: message
201      character(len=10),parameter :: subname="callcorrk"
[253]202
[1483]203      ! For fixed water vapour profiles.
[253]204      integer i_var
205      real RH
206      real*8 pq_temp(nlayer)
[1483]207! real(KIND=r8) :: pq_temp(nlayer) ! better F90 way.. DOESNT PORT TO F77!!!
[1993]208      real psat,qsat
[253]209
210      logical OLRz
211      real*8 NFLUXGNDV_nu(L_NSPECTV)
212
[1483]213      ! Included by RW for runaway greenhouse 1D study.
[1308]214      real vtmp(nlayer)
[305]215      REAL*8 muvarrad(L_LEVELS)
[1482]216     
[1483]217      ! Included by MT for albedo calculations.     
[1482]218      REAL*8 albedo_temp(L_NSPECTV) ! For equivalent albedo calculation.
[1526]219      REAL*8 surface_stellar_flux   ! Stellar flux reaching the surface. Useful for equivalent albedo calculation.
[2631]220     
221      ! local variable
222      integer ok ! status (returned by NetCDF functions)
[305]223
[2727]224      integer igcm_generic_vap, igcm_generic_ice! index of the vap and ice of generic_tracer
225      logical call_ice_vap_generic ! to call only one time the ice/vap pair of a tracer
226      real, save :: metallicity ! metallicity of planet --- is not used here, but necessary to call function Psat_generic
227!$OMP THREADPRIVATE(metallicity)
228      REAL, SAVE :: qvap_deep   ! deep mixing ratio of water vapor when simulating bottom less planets
229!$OMP THREADPRIVATE(qvap_deep)
230
[2954]231      REAL :: maxvalue,minvalue
[3233]232     
233      real :: frac_vari(L_LEVELS)
234      real :: fracvari(ngasmx,L_LEVELS)
[2954]235
[726]236!===============================================================
[1483]237!           I.a Initialization on first call
238!===============================================================
[253]239
[1483]240
[1529]241      if(firstcall) then
[253]242
[1529]243        ! test on allocated necessary because of CLFvarying (two calls to callcorrk in physiq)
[2972]244        if(.not.allocated(QVISsQREF3d)) then
245          allocate(QVISsQREF3d(ngrid,nlayer,L_NSPECTV,naerkind))
246        endif
247        if(.not.allocated(omegaVIS3d)) then
248          allocate(omegaVIS3d(ngrid,nlayer,L_NSPECTV,naerkind))
249        endif
250        if(.not.allocated(gVIS3d)) then
251          allocate(gVIS3d(ngrid,nlayer,L_NSPECTV,naerkind))
252        endif
253        if (.not.allocated(QIRsQREF3d)) then
254          allocate(QIRsQREF3d(ngrid,nlayer,L_NSPECTI,naerkind))
255        endif
256        if (.not.allocated(omegaIR3d)) then
257          allocate(omegaIR3d(ngrid,nlayer,L_NSPECTI,naerkind))
258        endif
259        if (.not.allocated(gIR3d)) then
260          allocate(gIR3d(ngrid,nlayer,L_NSPECTI,naerkind))
261        endif
262        if (.not.allocated(tauaero)) then
263          allocate(tauaero(L_LEVELS,naerkind))
264        endif
265       
[2631]266        if(.not.allocated(QXVAER)) then
267          allocate(QXVAER(L_LEVELS,L_NSPECTV,naerkind), stat=ok)
268          if (ok /= 0) then
269             write(*,*) "memory allocation failed for QXVAER!"
[2972]270             call abort_physic(subname,'allocation failure for QXVAER',1)
[2631]271          endif
272        endif
273        if(.not.allocated(QSVAER)) then
274          allocate(QSVAER(L_LEVELS,L_NSPECTV,naerkind), stat=ok)
275          if (ok /= 0) then
276             write(*,*) "memory allocation failed for QSVAER!"
277             call abort_physic(subname,'allocation failure for QSVAER',1)
278          endif
279        endif
280        if(.not.allocated(GVAER)) then
281          allocate(GVAER(L_LEVELS,L_NSPECTV,naerkind), stat=ok)
282          if (ok /= 0) then
283             write(*,*) "memory allocation failed for GVAER!"
284             call abort_physic(subname,'allocation failure for GVAER',1)
285          endif
286        endif
287        if(.not.allocated(QXIAER)) then
288          allocate(QXIAER(L_LEVELS,L_NSPECTI,naerkind), stat=ok)
289          if (ok /= 0) then
290             write(*,*) "memory allocation failed for QXIAER!"
291             call abort_physic(subname,'allocation failure for QXIAER',1)
292          endif
293        endif
294        if(.not.allocated(QSIAER)) then
295          allocate(QSIAER(L_LEVELS,L_NSPECTI,naerkind), stat=ok)
296          if (ok /= 0) then
297             write(*,*) "memory allocation failed for QSIAER!"
298             call abort_physic(subname,'allocation failure for QSIAER',1)
299          endif
300        endif
301        if(.not.allocated(GIAER)) then
302          allocate(GIAER(L_LEVELS,L_NSPECTI,naerkind), stat=ok)
303          if (ok /= 0) then
304             write(*,*) "memory allocation failed for GIAER!"
305             call abort_physic(subname,'allocation failure for GIAER',1)
306          endif
307        endif
[253]308
[1483]309         !!! ALLOCATED instances are necessary because of CLFvarying (strategy to call callcorrk twice in physiq...)
[2631]310         IF(.not.ALLOCATED(QREFvis3d))THEN
311           ALLOCATE(QREFvis3d(ngrid,nlayer,naerkind), stat=ok)
312           IF (ok/=0) THEN
313              write(*,*) "memory allocation failed for QREFvis3d!"
314              call abort_physic(subname,'allocation failure for QREFvis3d',1)
315           ENDIF
316         ENDIF
317         IF(.not.ALLOCATED(QREFir3d)) THEN
318           ALLOCATE(QREFir3d(ngrid,nlayer,naerkind), stat=ok)
319           IF (ok/=0) THEN
320              write(*,*) "memory allocation failed for QREFir3d!"
321              call abort_physic(subname,'allocation failure for QREFir3d',1)
322           ENDIF
323         ENDIF
[861]324         ! Effective radius and variance of the aerosols
[2631]325         IF(.not.ALLOCATED(reffrad)) THEN
326           allocate(reffrad(ngrid,nlayer,naerkind), stat=ok)
327           IF (ok/=0) THEN
328              write(*,*) "memory allocation failed for reffrad!"
329              call abort_physic(subname,'allocation failure for reffrad',1)
330           ENDIF
331         ENDIF
332         IF(.not.ALLOCATED(nueffrad)) THEN
333           allocate(nueffrad(ngrid,nlayer,naerkind), stat=ok)
334           IF (ok/=0) THEN
335              write(*,*) "memory allocation failed for nueffrad!"
336              call abort_physic(subname,'allocation failure for nueffrad',1)
337           ENDIF
338         ENDIF
[787]339
[1829]340#ifndef MESOSCALE
[2831]341         if (is_master) call system('rm -f surf_vals_long.out')
[1829]342#endif
[253]343
[1308]344         call su_aer_radii(ngrid,nlayer,reffrad,nueffrad)
[1483]345         
[1529]346         
[728]347!--------------------------------------------------
[1483]348!             Set up correlated k
349!--------------------------------------------------
350
[2736]351      !this block is now done at firstcall of physiq_mod
352         ! print*, "callcorrk: Correlated-k data base folder:",trim(datadir)
353         ! call getin_p("corrkdir",corrkdir)
354         ! print*, "corrkdir = ",corrkdir
355         ! write( tmp1, '(i3)' ) L_NSPECTI
356         ! write( tmp2, '(i3)' ) L_NSPECTV
357         ! banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2))
358         ! banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir))
[1483]359
[2736]360         ! call setspi            ! Basic infrared properties.
361         ! call setspv            ! Basic visible properties.
362         ! call sugas_corrk       ! Set up gaseous absorption properties.
363         ! call suaer_corrk       ! Set up aerosol optical properties.
[1498]364       
[253]365
[2032]366         ! now that L_NGAUSS has been initialized (by sugas_corrk)
367         ! allocate related arrays
[2631]368         if(.not.allocated(dtaui)) then
369           ALLOCATE(dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS), stat=ok)
370           if (ok/=0) then
371              write(*,*) "memory allocation failed for dtaui!"
372              call abort_physic(subname,'allocation failure for dtaui',1)
373           endif
374         endif
375         if(.not.allocated(dtauv)) then
376           ALLOCATE(dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS), stat=ok)
377           if (ok/=0) then
378              write(*,*) "memory allocation failed for dtauv!"
379              call abort_physic(subname,'allocation failure for dtauv',1)
380           endif
381         endif
382         if(.not.allocated(cosbv)) then
383           ALLOCATE(cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS), stat=ok)
384           if (ok/=0) then
385              write(*,*) "memory allocation failed for cosbv!"
386              call abort_physic(subname,'allocation failure for cobsv',1)
387           endif
388         endif
389         if(.not.allocated(cosbi)) then
390           ALLOCATE(cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS), stat=ok)
391           if (ok/=0) then
392              write(*,*) "memory allocation failed for cosbi!"
393              call abort_physic(subname,'allocation failure for cobsi',1)
394           endif
395         endif
396         if(.not.allocated(wbari)) then
397           ALLOCATE(wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS), stat=ok)
398           if (ok/=0) then
399              write(*,*) "memory allocation failed for wbari!"
400              call abort_physic(subname,'allocation failure for wbari',1)
401           endif
402         endif
403         if(.not.allocated(wbarv)) then
404           ALLOCATE(wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS), stat=ok)
405           if (ok/=0) then
406              write(*,*) "memory allocation failed for wbarv!"
407              call abort_physic(subname,'allocation failure for wbarv',1)
408           endif
409         endif
410         if(.not.allocated(tauv)) then
411           ALLOCATE(tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS), stat=ok)
412           if (ok/=0) then
413              write(*,*) "memory allocation failed for tauv!"
414              call abort_physic(subname,'allocation failure for tauv',1)
415           endif
416         endif
417         if(.not.allocated(taucumv)) then
418           ALLOCATE(taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS), stat=ok)
419           if (ok/=0) then
420              write(*,*) "memory allocation failed for taucumv!"
421              call abort_physic(subname,'allocation failure for taucumv',1)
422           endif
423         endif
424         if(.not.allocated(taucumi)) then
425           ALLOCATE(taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS), stat=ok)
426           if (ok/=0) then
427              write(*,*) "memory allocation failed for taucumi!"
428              call abort_physic(subname,'allocation failure for taucumi',1)
429           endif
430         endif
431         if(.not.allocated(taugsurf)) then
432           ALLOCATE(taugsurf(L_NSPECTV,L_NGAUSS-1), stat=ok)
433           if (ok/=0) then
434              write(*,*) "memory allocation failed for taugsurf!"
435              call abort_physic(subname,'allocation failure for taugsurf',1)
436           endif
437         endif
438         if(.not.allocated(taugsurfi)) then
439           ALLOCATE(taugsurfi(L_NSPECTI,L_NGAUSS-1), stat=ok)
440           if (ok/=0) then
441              write(*,*) "memory allocation failed for taugsurfi!"
442              call abort_physic(subname,'allocation failure for taugsurfi',1)
443           endif
444         endif
[2032]445
[2727]446         if((igcm_h2o_vap.eq.0) .and. varactive .and. water)then
[2269]447            message='varactive in callcorrk but no h2o_vap tracer.'
448            call abort_physic(subname,message,1)
[253]449         endif
450
[2727]451         if(varfixed .and. generic_condensation .and. .not. water)then
[3044]452            write(*,*) "Deep generic tracer vapor mixing ratio ? (no effect if negative) "
[2727]453            qvap_deep=-1. ! default value
454            call getin_p("qvap_deep",qvap_deep)
455            write(*,*) " qvap_deep = ",qvap_deep
456
457            metallicity=0.0 ! default value --- is not used here but necessary to call function Psat_generic
458            call getin_p("metallicity",metallicity) ! --- is not used here but necessary to call function Psat_generic
459         endif
460
[858]461      end if ! of if (firstcall)
[253]462
463!=======================================================================
[1483]464!          I.b  Initialization on every call   
465!=======================================================================
466 
[1529]467      qxvaer(:,:,:)=0.0
468      qsvaer(:,:,:)=0.0
469      gvaer(:,:,:) =0.0
470
471      qxiaer(:,:,:)=0.0
472      qsiaer(:,:,:)=0.0
473      giaer(:,:,:) =0.0
474
[2446]475      OLR_nu(:,:) = 0.
476      OSR_nu(:,:) = 0.
[2537]477      GSR_nu(:,:) = 0.
[2446]478
[728]479!--------------------------------------------------
480!     Effective radius and variance of the aerosols
[1483]481!--------------------------------------------------
482
[726]483      do iaer=1,naerkind
[650]484
[1483]485         if ((iaer.eq.iaero_co2).and.tracer.and.(igcm_co2_ice.gt.0)) then ! Treat condensed co2 particles.
[1529]486            call co2_reffrad(ngrid,nlayer,nq,pq,reffrad(1,1,iaero_co2))
[2954]487
488            call planetwide_maxval(reffrad(:,:,iaero_co2),maxvalue)
489            call planetwide_minval(reffrad(:,:,iaero_co2),minvalue)
[1699]490            if (is_master) then
[2954]491               print*,'Max. CO2 ice particle size = ',maxvalue/1.e-6,' um'
492               print*,'Min. CO2 ice particle size = ',minvalue/1.e-6,' um'
[1699]493            end if
494         end if
[1483]495         
496         if ((iaer.eq.iaero_h2o).and.water) then ! Treat condensed water particles. To be generalized for other aerosols ...
[1529]497            call h2o_reffrad(ngrid,nlayer,pq(1,1,igcm_h2o_ice),pt, &
[858]498                             reffrad(1,1,iaero_h2o),nueffrad(1,1,iaero_h2o))
[2954]499           
500            call planetwide_maxval(reffrad(:,:,iaero_h2o),maxvalue)
501            call planetwide_minval(reffrad(:,:,iaero_h2o),minvalue)
[1699]502            if (is_master) then
[2954]503               print*,'Max. H2O cloud particle size = ',maxvalue/1.e-6,' um'
504               print*,'Min. H2O cloud particle size = ',minvalue/1.e-6,' um'
[1699]505            end if
[2954]506
[2960]507! Currently the variance is constant everywhere (see h2o_reffrad),
508! so no need to compute and print min/max
509!            call planetwide_maxval(nueffrad(:,:,iaero_h2o),maxvalue)
510!            call planetwide_minval(nueffrad(:,:,iaero_h2o),minvalue)
511!            if (is_master) then
512!               print*,'Max. H2O cloud particle variance = ',maxvalue
513!               print*,'Min. H2O cloud particle variance = ',minvalue
514!            end if
[253]515         endif
[1483]516         
[726]517         if(iaer.eq.iaero_dust)then
[1529]518            call dust_reffrad(ngrid,nlayer,reffrad(1,1,iaero_dust))
[1699]519            if (is_master) then
520               print*,'Dust particle size = ',reffrad(1,1,iaer)/1.e-6,' um'
521            end if
[253]522         endif
[1483]523         
[726]524         if(iaer.eq.iaero_h2so4)then
[1529]525            call h2so4_reffrad(ngrid,nlayer,reffrad(1,1,iaero_h2so4))
[1699]526            if (is_master) then
527               print*,'H2SO4 particle size =',reffrad(1,1,iaer)/1.e-6,' um'
528            end if
[253]529         endif
[1483]530         
[1026]531          if(iaer.eq.iaero_back2lay)then
[1529]532            call back2lay_reffrad(ngrid,reffrad(1,1,iaero_back2lay),nlayer,pplev)
[1026]533         endif
[2297]534
535         !  For n-layer aerosol size set once for all at firstcall in su_aer_radii
536
[1677]537!         if(iaer.eq.iaero_aurora)then
538!           call aurora_reffrad(ngrid,nlayer,reffrad(1,1,iaero_aurora))
539!         endif
540       
[1483]541     end do !iaer=1,naerkind.
[253]542
[1715]543
[1483]544      ! How much light do we get ?
[253]545      do nw=1,L_NSPECTV
546         stel(nw)=stellarf(nw)/(dist_star**2)
547      end do
548
[1483]549      ! Get 3D aerosol optical properties.
[253]550      call aeroptproperties(ngrid,nlayer,reffrad,nueffrad,         &
551           QVISsQREF3d,omegaVIS3d,gVIS3d,                          &
552           QIRsQREF3d,omegaIR3d,gIR3d,                             &
[1483]553           QREFvis3d,QREFir3d)                                     
[253]554
[1483]555      ! Get aerosol optical depths.
[2831]556      call aeropacity(ngrid,nlayer,nq,pplay,pplev, pt,pq,aerosol,      &
557           reffrad,nueffrad,QREFvis3d,QREFir3d,                             &
[1483]558           tau_col,cloudfrac,totcloudfrac,clearsky)               
[2804]559 
[1483]560!-----------------------------------------------------------------------   
561      do ig=1,ngrid ! Starting Big Loop over every GCM column
[253]562!-----------------------------------------------------------------------
563
[1483]564
[253]565!=======================================================================
[1483]566!              II.  Transformation of the GCM variables
567!=======================================================================
[253]568
[1483]569
[253]570!-----------------------------------------------------------------------
[1483]571!    Aerosol optical properties Qext, Qscat and g.
572!    The transformation in the vertical is the same as for temperature.
573!-----------------------------------------------------------------------
[253]574           
[1483]575           
[253]576            do iaer=1,naerkind
[1483]577               ! Shortwave.
578               do nw=1,L_NSPECTV
579               
[1308]580                  do l=1,nlayer
[253]581
[1308]582                     temp1=QVISsQREF3d(ig,nlayer+1-l,nw,iaer)         &
583                         *QREFvis3d(ig,nlayer+1-l,iaer)
[253]584
[1308]585                     temp2=QVISsQREF3d(ig,max(nlayer-l,1),nw,iaer)    &
586                         *QREFvis3d(ig,max(nlayer-l,1),iaer)
[253]587
588                     qxvaer(2*l,nw,iaer)  = temp1
589                     qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2
590
[1308]591                     temp1=temp1*omegavis3d(ig,nlayer+1-l,nw,iaer)
592                     temp2=temp2*omegavis3d(ig,max(nlayer-l,1),nw,iaer)
[253]593
594                     qsvaer(2*l,nw,iaer)  = temp1
595                     qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2
596
[1308]597                     temp1=gvis3d(ig,nlayer+1-l,nw,iaer)
598                     temp2=gvis3d(ig,max(nlayer-l,1),nw,iaer)
[253]599
600                     gvaer(2*l,nw,iaer)  = temp1
601                     gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2
602
[1483]603                  end do ! nlayer
[253]604
605                  qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer)
[1308]606                  qxvaer(2*nlayer+1,nw,iaer)=0.
[253]607
608                  qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer)
[1308]609                  qsvaer(2*nlayer+1,nw,iaer)=0.
[253]610
611                  gvaer(1,nw,iaer)=gvaer(2,nw,iaer)
[1308]612                  gvaer(2*nlayer+1,nw,iaer)=0.
[253]613
[1483]614               end do ! L_NSPECTV
615             
616               do nw=1,L_NSPECTI
617                  ! Longwave
[1308]618                  do l=1,nlayer
[253]619
[1308]620                     temp1=QIRsQREF3d(ig,nlayer+1-l,nw,iaer)         &
621                          *QREFir3d(ig,nlayer+1-l,iaer)
[253]622
[1308]623                     temp2=QIRsQREF3d(ig,max(nlayer-l,1),nw,iaer)    &
624                          *QREFir3d(ig,max(nlayer-l,1),iaer)
[253]625
626                     qxiaer(2*l,nw,iaer)  = temp1
627                     qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2
628
[1308]629                     temp1=temp1*omegair3d(ig,nlayer+1-l,nw,iaer)
630                     temp2=temp2*omegair3d(ig,max(nlayer-l,1),nw,iaer)
[253]631
632                     qsiaer(2*l,nw,iaer)  = temp1
633                     qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2
634
[1308]635                     temp1=gir3d(ig,nlayer+1-l,nw,iaer)
636                     temp2=gir3d(ig,max(nlayer-l,1),nw,iaer)
[253]637
638                     giaer(2*l,nw,iaer)  = temp1
639                     giaer(2*l+1,nw,iaer)=(temp1+temp2)/2
640
[1483]641                  end do ! nlayer
[253]642
643                  qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer)
[1308]644                  qxiaer(2*nlayer+1,nw,iaer)=0.
[253]645
646                  qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer)
[1308]647                  qsiaer(2*nlayer+1,nw,iaer)=0.
[253]648
649                  giaer(1,nw,iaer)=giaer(2,nw,iaer)
[1308]650                  giaer(2*nlayer+1,nw,iaer)=0.
[253]651
[1483]652               end do ! L_NSPECTI
653               
654            end do ! naerkind
[253]655
[1483]656            ! Test / Correct for freaky s. s. albedo values.
[253]657            do iaer=1,naerkind
[1715]658               do k=1,L_LEVELS
[253]659
660                  do nw=1,L_NSPECTV
661                     if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then
[2269]662                        message='Serious problems with qsvaer values'
663                        call abort_physic(subname,message,1)
[253]664                     endif
665                     if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then
666                        qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer)
667                     endif
668                  end do
669
670                  do nw=1,L_NSPECTI
671                     if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then
[2269]672                        message='Serious problems with qsvaer values'
673                        call abort_physic(subname,message,1)
[253]674                     endif
675                     if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then
676                        qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer)
677                     endif
678                  end do
679
[1483]680               end do ! L_LEVELS
681            end do ! naerkind
[253]682
683!-----------------------------------------------------------------------
684!     Aerosol optical depths
[1483]685!-----------------------------------------------------------------------
[253]686           
687         do iaer=1,naerkind     ! a bug was here           
688            do k=0,nlayer-1
689               
690               pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/   &
[1483]691                       (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))
[2297]692               ! As 'aerosol' is at reference (visible) wavelenght we scale it as
693               ! it will be multplied by qxi/v in optci/v
[253]694               temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer)
[588]695               tauaero(2*k+2,iaer)=max(temp*pweight,0.d0)
696               tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0)
[1483]697
[253]698            end do
699            ! boundary conditions
700            tauaero(1,iaer)          = tauaero(2,iaer)
701            !tauaero(1,iaer)          = 0.
[1988]702            !JL18 at time of testing, the two above conditions gave the same results bit for bit.
703           
[1483]704         end do ! naerkind
[253]705
[1483]706         ! Albedo and Emissivity.
707         albi=1-emis(ig)   ! Long Wave.
708         DO nw=1,L_NSPECTV ! Short Wave loop.
[1482]709            albv(nw)=albedo(ig,nw)
[1529]710         ENDDO
[253]711
[1483]712         acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude.
[253]713
[1483]714!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
715!!! Note by JL13 : In the following, some indices were changed in the interpolations,
716!!!                so that the model results are less dependent on the number of layers !
717!!!
718!!!           ---  The older versions are commented with the comment !JL13index  ---
719!!!
720!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[1016]721
722
[2727]723      !-----------------------------------------------------------------------
724      !     Water vapour (to be generalised for other gases eventually ...)
725      !-----------------------------------------------------------------------
726           
727      if (water) then
728         if(varactive)then
729
730            i_var=igcm_h2o_vap
731            do l=1,nlayer
732               qvar(2*l)   = pq(ig,nlayer+1-l,i_var)
733               qvar(2*l+1) = pq(ig,nlayer+1-l,i_var)   
734               !JL13index   qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig,max(nlayer-l,1),i_var))/2   
735               !JL13index   Average approximation as for temperature...
736            end do
737            qvar(1)=qvar(2)
738
739         elseif(varfixed)then
740
741            do l=1,nlayer ! Here we will assign fixed water vapour profiles globally.
742               RH = satval * ((pplay(ig,l)/pplev(ig,1) - 0.02) / 0.98)
743               if(RH.lt.0.0) RH=0.0
744               
745               call Psat_water(pt(ig,l),pplay(ig,l),psat,qsat)
746
747               !pq_temp(l) = qsat      ! fully saturated everywhere
748               pq_temp(l) = RH * qsat ! ~realistic profile (e.g. 80% saturation at ground)
749            end do
750           
751            do l=1,nlayer
752               qvar(2*l)   = pq_temp(nlayer+1-l)
753               qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp(max(nlayer-l,1)))/2
754            end do
755           
756            qvar(1)=qvar(2)
757
758            ! Lowest layer of atmosphere
759            RH = satval * (1 - 0.02) / 0.98
760            if(RH.lt.0.0) RH=0.0
761
762            qvar(2*nlayer+1)= RH * qsat ! ~realistic profile (e.g. 80% saturation at ground)
763   
764         else
765            do k=1,L_LEVELS
766               qvar(k) = 1.0D-7
767            end do
768         end if ! varactive/varfixed
[253]769     
[2727]770      endif ! if (water)
[253]771
[2727]772      !-----------------------------------------------------------------------
773      !  GCS (Generic Condensable Specie) Vapor
774      !  If you have GCS tracers and they are : variable & radiatively active
775      !
776      !  NC22
777      !-----------------------------------------------------------------------
[253]778
[2727]779      if (generic_condensation .and. .not. water ) then
[253]780
[2727]781         ! For now, only one GCS tracer can be both variable and radiatively active
782         ! If you set two GCS tracers, that are variable and radiatively active,
783         ! the last one in tracer.def will be chosen as the one that will be vadiatively active
784
785         do iq=1,nq
786
787            call generic_tracer_index(nq,iq,igcm_generic_vap,igcm_generic_ice,call_ice_vap_generic)
[253]788           
[2727]789            if (call_ice_vap_generic) then ! to call only one time the ice/vap pair of a tracer
[253]790
[2727]791               if(varactive)then
792
793                  i_var=igcm_generic_vap
794                  do l=1,nlayer
795                     qvar(2*l)   = pq(ig,nlayer+1-l,i_var)
796                     qvar(2*l+1) = pq(ig,nlayer+1-l,i_var)   
797                     !JL13index            qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig,max(nlayer-l,1),i_var))/2   
798                     !JL13index            ! Average approximation as for temperature...
799                  end do
800                  qvar(1)=qvar(2)
801
802               elseif(varfixed .and. (qvap_deep .ge. 0))then
803
804                  do l=1,nlayer ! Here we will assign fixed water vapour profiles globally.
805                                         
806                     call Psat_generic(pt(ig,l),pplay(ig,l),metallicity,psat,qsat)
807
808                     if (qsat .lt. qvap_deep) then
809                        pq_temp(l) = qsat      ! fully saturated everywhere
810                     else
811                        pq_temp(l) = qvap_deep
812                     end if
813
814                  end do
815                 
816                  do l=1,nlayer
817                     qvar(2*l)   = pq_temp(nlayer+1-l)
818                     qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp(max(nlayer-l,1)))/2
819                  end do
820                 
821                  qvar(1)=qvar(2)
[253]822         
[2727]823               else
824                  do k=1,L_LEVELS
825                     qvar(k) = 1.0D-7
826                  end do
827               end if ! varactive/varfixed
[253]828
[2727]829            endif
[253]830
[2727]831         end do ! do iq=1,nq loop on tracers
832
833      end if ! if (generic_condensation .and. .not. water )
834
835      !-----------------------------------------------------------------------
836      !  No Water vapor and No GCS (Generic Condensable Specie) vapor
837      !-----------------------------------------------------------------------
838
839      if (.not. generic_condensation .and. .not. water ) then
[253]840         do k=1,L_LEVELS
841            qvar(k) = 1.0D-7
842         end do
[2727]843      end if ! if (.not. generic_condensation .and. .not. water )
[253]844
[2727]845
[538]846      if(.not.kastprof)then
[1483]847         ! IMPORTANT: Now convert from kg/kg to mol/mol.
[728]848         do k=1,L_LEVELS
[2727]849            if (water) then
850               qvar(k) = qvar(k)/(epsi+qvar(k)*(1.-epsi))
851            endif
852            if (generic_condensation .and. .not. water) then
[2728]853               do iq=1,nq
854                  call generic_tracer_index(nq,iq,igcm_generic_vap,igcm_generic_ice,call_ice_vap_generic)
855                  if (call_ice_vap_generic) then ! to call only one time the ice/vap pair of a tracer
856
857                     epsi_generic=constants_epsi_generic(iq)
858
859                     qvar(k) = qvar(k)/(epsi_generic+qvar(k)*(1.-epsi_generic))
860
861                  endif
862               end do ! do iq=1,nq loop on tracers
[2727]863            endif
[728]864         end do
[538]865      end if
[253]866
[366]867!-----------------------------------------------------------------------
[1483]868!     kcm mode only !
869!-----------------------------------------------------------------------
870
[305]871      if(kastprof)then
[1716]872     
873         if(.not.global1d)then ! garde-fou/safeguard added by MT (to be removed in the future)
[2269]874           message='You have to fix mu0, the cosinus of the solar angle'
875           call abort_physic(subname,message,1)
[1716]876         endif
877         
[1483]878         ! Initial values equivalent to mugaz.
[305]879         DO l=1,nlayer
[366]880            muvarrad(2*l)   = mugaz
881            muvarrad(2*l+1) = mugaz
882         END DO
883
[1016]884         if(ngasmx.gt.1)then
[366]885
[1016]886            DO l=1,nlayer
[1483]887               muvarrad(2*l)   =  muvar(ig,nlayer+2-l)
[1016]888               muvarrad(2*l+1) = (muvar(ig,nlayer+2-l) + &
[1483]889                                  muvar(ig,max(nlayer+1-l,1)))/2
[1016]890            END DO
891     
892            muvarrad(1) = muvarrad(2)
[1483]893            muvarrad(2*nlayer+1) = muvar(ig,1)
[366]894
[1016]895            print*,'Recalculating qvar with VARIABLE epsi for kastprof'
896            print*,'Assumes that the variable gas is H2O!!!'
897            print*,'Assumes that there is only one tracer'
[1483]898           
[1016]899            !i_var=igcm_h2o_vap
900            i_var=1
[1483]901           
[1016]902            if(nq.gt.1)then
[2269]903               message='Need 1 tracer only to run kcm1d.e'
904               call abort_physic(subname,message,1)
[1016]905            endif
[1483]906           
[1016]907            do l=1,nlayer
908               vtmp(l)=pq(ig,l,i_var)/(epsi+pq(ig,l,i_var)*(1.-epsi))
909               !vtmp(l)=pq(ig,l,i_var)*muvar(ig,l+1)/mH2O !JL to be changed
910            end do
[366]911
[1016]912            do l=1,nlayer
913               qvar(2*l)   = vtmp(nlayer+1-l)
914               qvar(2*l+1) = vtmp(nlayer+1-l)
915!               qvar(2*l+1) = ( vtmp(nlayer+1-l) + vtmp(max(nlayer-l,1)) )/2
916            end do
917            qvar(1)=qvar(2)
918
[2269]919            write(*,*)trim(subname),' :Warning: reducing qvar in callcorrk.'
920            write(*,*)trim(subname),' :Temperature profile no longer consistent ', &
[1483]921                   'with saturated H2O. qsat=',satval
922                   
[1016]923            do k=1,L_LEVELS
924               qvar(k) = qvar(k)*satval
925            end do
926
927         endif
928      else ! if kastprof
[366]929         DO l=1,nlayer
[305]930            muvarrad(2*l)   = muvar(ig,nlayer+2-l)
[1016]931            muvarrad(2*l+1) = (muvar(ig,nlayer+2-l)+muvar(ig,max(nlayer+1-l,1)))/2
[305]932         END DO
933     
934         muvarrad(1) = muvarrad(2)
[1308]935         muvarrad(2*nlayer+1)=muvar(ig,1)         
[1483]936      endif ! if kastprof
[1016]937     
[1483]938      ! Keep values inside limits for which we have radiative transfer coefficients !!!
939      if(L_REFVAR.gt.1)then ! (there was a bug here)
[253]940         do k=1,L_LEVELS
941            if(qvar(k).lt.wrefvar(1))then
942               qvar(k)=wrefvar(1)+1.0e-8
943            elseif(qvar(k).gt.wrefvar(L_REFVAR))then
944               qvar(k)=wrefvar(L_REFVAR)-1.0e-8
945            endif
946         end do
947      endif
948
949!-----------------------------------------------------------------------
950!     Pressure and temperature
[1483]951!-----------------------------------------------------------------------
[253]952
953      DO l=1,nlayer
954         plevrad(2*l)   = pplay(ig,nlayer+1-l)/scalep
955         plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep
956         tlevrad(2*l)   = pt(ig,nlayer+1-l)
957         tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2
958      END DO
959     
[600]960      plevrad(1) = 0.
[1988]961!      plevrad(2) = 0.   !! JL18 enabling this line puts the radiative top at p=0 which was the idea before, but does not seem to perform best after all.
[2831]962      if (aerovenus) then
963!!  GG19 modified below after SL routines
964        plevrad(2) = 0.
965      endif
[253]966
967      tlevrad(1) = tlevrad(2)
[1308]968      tlevrad(2*nlayer+1)=tsurf(ig)
[253]969     
[2831]970      pmid(1) = pplay(ig,nlayer)/scalep   
971      if (aerovenus) then
972!! GG19 modified below after SL routines
973        pmid(1) = max(pgasmin,0.0001*plevrad(3))
974      endif
[1423]975      pmid(2) =  pmid(1)
976
[253]977      tmid(1) = tlevrad(2)
[1423]978      tmid(2) = tmid(1)
979   
980      DO l=1,L_NLAYRAD-1
981         tmid(2*l+1) = tlevrad(2*l+1)
982         tmid(2*l+2) = tlevrad(2*l+1)
983         pmid(2*l+1) = plevrad(2*l+1)
984         pmid(2*l+2) = plevrad(2*l+1)
[253]985      END DO
[1423]986      pmid(L_LEVELS) = plevrad(L_LEVELS)
987      tmid(L_LEVELS) = tlevrad(L_LEVELS)
[253]988
[1423]989!!Alternative interpolation:
990!         pmid(3) = pmid(1)
991!         pmid(4) = pmid(1)
992!         tmid(3) = tmid(1)
993!         tmid(4) = tmid(1)
994!      DO l=2,L_NLAYRAD-1
995!         tmid(2*l+1) = tlevrad(2*l)
996!         tmid(2*l+2) = tlevrad(2*l)
997!         pmid(2*l+1) = plevrad(2*l)
998!         pmid(2*l+2) = plevrad(2*l)
999!      END DO
1000!      pmid(L_LEVELS) = plevrad(L_LEVELS-1)
1001!      tmid(L_LEVELS) = tlevrad(L_LEVELS-1)
1002
[1483]1003      ! Test for out-of-bounds pressure.
[253]1004      if(plevrad(3).lt.pgasmin)then
1005         print*,'Minimum pressure is outside the radiative'
1006         print*,'transfer kmatrix bounds, exiting.'
[2269]1007         message="Minimum pressure outside of kmatrix bounds"
1008         call abort_physic(subname,message,1)
[253]1009      elseif(plevrad(L_LEVELS).gt.pgasmax)then
1010         print*,'Maximum pressure is outside the radiative'
1011         print*,'transfer kmatrix bounds, exiting.'
[2269]1012         message="Minimum pressure outside of kmatrix bounds"
1013         call abort_physic(subname,message,1)
[253]1014      endif
1015
[1483]1016      ! Test for out-of-bounds temperature.
[2283]1017      ! -- JVO 20 : Also add a sanity test checking that tlevrad is
1018      !             within Planck function temperature boundaries,
1019      !             which would cause gfluxi/sfluxi to crash.
[253]1020      do k=1,L_LEVELS
[2283]1021
[253]1022         if(tlevrad(k).lt.tgasmin)then
1023            print*,'Minimum temperature is outside the radiative'
[1145]1024            print*,'transfer kmatrix bounds'
[858]1025            print*,"k=",k," tlevrad(k)=",tlevrad(k)
1026            print*,"tgasmin=",tgasmin
[1145]1027            if (strictboundcorrk) then
[2269]1028              message="Minimum temperature outside of kmatrix bounds"
1029              call abort_physic(subname,message,1)
[1145]1030            else
1031              print*,'***********************************************'
[1940]1032              print*,'we allow model to continue with tlevrad<tgasmin'
[1145]1033              print*,'  ... we assume we know what you are doing ... '
1034              print*,'  ... but do not let this happen too often ... '
1035              print*,'***********************************************'
[1940]1036              !tlevrad(k)=tgasmin ! Used in the source function !
[1145]1037            endif
[253]1038         elseif(tlevrad(k).gt.tgasmax)then
1039            print*,'Maximum temperature is outside the radiative'
1040            print*,'transfer kmatrix bounds, exiting.'
[1145]1041            print*,"k=",k," tlevrad(k)=",tlevrad(k)
1042            print*,"tgasmax=",tgasmax
1043            if (strictboundcorrk) then
[2269]1044              message="Maximum temperature outside of kmatrix bounds"
1045              call abort_physic(subname,message,1)
[1145]1046            else
1047              print*,'***********************************************'
[2244]1048              print*,'we allow model to continue with tlevrad>tgasmax' 
[1145]1049              print*,'  ... we assume we know what you are doing ... '
1050              print*,'  ... but do not let this happen too often ... '
1051              print*,'***********************************************'
[1940]1052              !tlevrad(k)=tgasmax ! Used in the source function !
[1145]1053            endif
[253]1054         endif
[2283]1055
1056         if (tlevrad(k).lt.tplanckmin) then
1057            print*,'Minimum temperature is outside the boundaries for'
1058            print*,'Planck function integration set in callphys.def, aborting.'
1059            print*,"k=",k," tlevrad(k)=",tlevrad(k)
1060            print*,"tplanckmin=",tplanckmin
1061            message="Minimum temperature outside Planck function bounds - Change tplanckmin in callphys.def"
1062            call abort_physic(subname,message,1)
1063          else if (tlevrad(k).gt.tplanckmax) then
1064            print*,'Maximum temperature is outside the boundaries for'
1065            print*,'Planck function integration set in callphys.def, aborting.'
1066            print*,"k=",k," tlevrad(k)=",tlevrad(k)
1067            print*,"tplanckmax=",tplanckmax
1068            message="Maximum temperature outside Planck function bounds - Change tplanckmax in callphys.def"
1069            call abort_physic(subname,message,1)
1070          endif
1071
[253]1072      enddo
[2283]1073
[1016]1074      do k=1,L_NLAYRAD+1
1075         if(tmid(k).lt.tgasmin)then
1076            print*,'Minimum temperature is outside the radiative'
1077            print*,'transfer kmatrix bounds, exiting.'
[1145]1078            print*,"k=",k," tmid(k)=",tmid(k)
[1016]1079            print*,"tgasmin=",tgasmin
[1145]1080            if (strictboundcorrk) then
[2269]1081              message="Minimum temperature outside of kmatrix bounds"
1082              call abort_physic(subname,message,1)
[1145]1083            else
1084              print*,'***********************************************'
[1940]1085              print*,'we allow model to continue but with tmid=tgasmin'
[1145]1086              print*,'  ... we assume we know what you are doing ... '
1087              print*,'  ... but do not let this happen too often ... '
1088              print*,'***********************************************'
1089              tmid(k)=tgasmin
1090            endif
[1016]1091         elseif(tmid(k).gt.tgasmax)then
1092            print*,'Maximum temperature is outside the radiative'
1093            print*,'transfer kmatrix bounds, exiting.'
[1145]1094            print*,"k=",k," tmid(k)=",tmid(k)
1095            print*,"tgasmax=",tgasmax
1096            if (strictboundcorrk) then
[2269]1097              message="Maximum temperature outside of kmatrix bounds"
1098              call abort_physic(subname,message,1)
[1145]1099            else
1100              print*,'***********************************************'
[2244]1101              print*,'we allow model to continue but with tmid=tgasmax'
[1145]1102              print*,'  ... we assume we know what you are doing ... '
1103              print*,'  ... but do not let this happen too often ... '
1104              print*,'***********************************************'
1105              tmid(k)=tgasmax
1106            endif
[1016]1107         endif
1108      enddo
[3233]1109     
1110!-----------------------------------------------------------------------
1111!     Variation of molar fraction for CIAs
1112!-----------------------------------------------------------------------
[253]1113
[3233]1114      if (varspec) then
1115        do k=1,ngasmx
1116          call pindex(p_var,frac_var(:,k),plevrad(:),nvarlayer,L_LEVELS,frac_vari)
1117          fracvari(k,:) = frac_vari
1118        enddo
1119      endif
1120
[253]1121!=======================================================================
[1483]1122!          III. Calling the main radiative transfer subroutines
1123!=======================================================================
[253]1124
[2543]1125! ----------------------------------------------------------------
1126! Recombine reference corrk tables if needed - Added by JVO, 2020.
1127         if (corrk_recombin) then
1128           call call_recombin(ig,nlayer,pq(ig,:,:),pplay(ig,:),pt(ig,:),qvar(:),tmid(:),pmid(:))
1129         endif
1130! ----------------------------------------------------------------
[253]1131
[1483]1132         Cmk= 0.01 * 1.0 / (glat(ig) * mugaz * 1.672621e-27) ! q_main=1.0 assumed.
[1529]1133         glat_ig=glat(ig)
[1194]1134
[253]1135!-----------------------------------------------------------------------
[1483]1136!        Short Wave Part
1137!-----------------------------------------------------------------------
[253]1138
[3259]1139         if((fract(ig) .ge. 1.0e-4).or.(global1d)) then ! Only during daylight.
[787]1140            if((ngrid.eq.1).and.(global1d))then
[253]1141               do nw=1,L_NSPECTV
[1483]1142                  stel_fract(nw)= stel(nw)* 0.25 / acosz ! globally averaged = divide by 4, and we correct for solar zenith angle
[253]1143               end do
1144            else
1145               do nw=1,L_NSPECTV
[1161]1146                  stel_fract(nw)= stel(nw) * fract(ig)
[253]1147               end do
[1483]1148            endif
[2032]1149
[253]1150            call optcv(dtauv,tauv,taucumv,plevrad,                 &
1151                 qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero,   &
[3233]1152                 tmid,pmid,taugsurf,qvar,muvarrad,fracvari)
[253]1153
1154            call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv,  &
[1781]1155                 acosz,stel_fract,                                 &
1156                 nfluxtopv,fluxtopvdn,nfluxoutv_nu,nfluxgndv_nu,   &
[253]1157                 fmnetv,fluxupv,fluxdnv,fzerov,taugsurf)
1158
[1483]1159         else ! During the night, fluxes = 0.
[962]1160            nfluxtopv       = 0.0d0
[1529]1161            fluxtopvdn      = 0.0d0
[962]1162            nfluxoutv_nu(:) = 0.0d0
1163            nfluxgndv_nu(:) = 0.0d0
[253]1164            do l=1,L_NLAYRAD
[962]1165               fmnetv(l)=0.0d0
1166               fluxupv(l)=0.0d0
1167               fluxdnv(l)=0.0d0
[253]1168            end do
1169         end if
1170
[1482]1171
[1526]1172         ! Equivalent Albedo Calculation (for OUTPUT). MT2015
[3259]1173         if((fract(ig) .ge. 1.0e-4).or.(global1d)) then ! equivalent albedo makes sense only during daylight.       
[1526]1174            surface_stellar_flux=sum(nfluxgndv_nu(1:L_NSPECTV))     
1175            if(surface_stellar_flux .gt. 1.0e-3) then ! equivalent albedo makes sense only if the stellar flux received by the surface is positive.
[1529]1176               DO nw=1,L_NSPECTV                 
1177                  albedo_temp(nw)=albedo(ig,nw)*nfluxgndv_nu(nw)
[1526]1178               ENDDO
[1529]1179               albedo_temp(1:L_NSPECTV)=albedo_temp(1:L_NSPECTV)/surface_stellar_flux
[1526]1180               albedo_equivalent(ig)=sum(albedo_temp(1:L_NSPECTV))
1181            else
1182               albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0.
1183            endif
[1529]1184         else
1185            albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0.
1186         endif
[1482]1187
1188
[253]1189!-----------------------------------------------------------------------
[1483]1190!        Long Wave Part
1191!-----------------------------------------------------------------------
[253]1192
1193         call optci(plevrad,tlevrad,dtaui,taucumi,                  &
1194              qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid,    &
[3233]1195              taugsurfi,qvar,muvarrad,fracvari)
[538]1196
[253]1197         call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi,      &
[1781]1198              wnoi,dwni,cosbi,wbari,nfluxtopi,nfluxtopi_nu,         &
[253]1199              fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi)
1200
1201!-----------------------------------------------------------------------
1202!     Transformation of the correlated-k code outputs
1203!     (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw)
1204
1205!     Flux incident at the top of the atmosphere
[961]1206         fluxtop_dn(ig)=fluxtopvdn
[253]1207
1208         fluxtop_lw(ig)  = real(nfluxtopi)
1209         fluxabs_sw(ig)  = real(-nfluxtopv)
1210         fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD))
1211         fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD))
[1482]1212         
1213!        Flux absorbed by the surface. By MT2015.         
1214         fluxsurfabs_sw(ig) = fluxsurf_sw(ig)*(1.-albedo_equivalent(ig))
[253]1215
1216         if(fluxtop_dn(ig).lt.0.0)then
1217            print*,'Achtung! fluxtop_dn has lost the plot!'
1218            print*,'fluxtop_dn=',fluxtop_dn(ig)
1219            print*,'acosz=',acosz
1220            print*,'aerosol=',aerosol(ig,:,:)
1221            print*,'temp=   ',pt(ig,:)
1222            print*,'pplay=  ',pplay(ig,:)
[2269]1223            message="Achtung! fluxtop_dn has lost the plot!"
1224            call abort_physic(subname,message,1)
[253]1225         endif
1226
1227!     Spectral output, for exoplanet observational comparison
1228         if(specOLR)then
1229            do nw=1,L_NSPECTI
[526]1230               OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth
[253]1231            end do
1232            do nw=1,L_NSPECTV
[2537]1233               GSR_nu(ig,nw)=nfluxgndv_nu(nw)/DWNV(nw)
[526]1234               OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth
[253]1235            end do
1236         endif
1237
1238!     Finally, the heating rates
1239
[586]1240         DO l=2,L_NLAYRAD
1241            dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1))  &
[1194]1242                *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1)))
[586]1243            dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1))  &
[1194]1244                *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1)))
[586]1245         END DO     
[253]1246
1247!     These are values at top of atmosphere
[586]1248         dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv)           &
[1988]1249             *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2)))
[586]1250         dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi)           &
[1988]1251             *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2)))
[253]1252
[2133]1253      !  Optical thickness diagnostics (added by JVO)
1254      if (diagdtau) then
1255        do l=1,L_NLAYRAD
1256          do nw=1,L_NSPECTV
1257            int_dtauv(ig,l,nw) = 0.0d0
1258             DO k=1,L_NGAUSS
[2138]1259              ! Output exp(-tau) because gweight ponderates exp and not tau itself
1260              int_dtauv(ig,l,nw)= int_dtauv(ig,l,nw) + exp(-dtauv(l,nw,k))*gweight(k)
[2133]1261             ENDDO
1262          enddo
1263          do nw=1,L_NSPECTI
1264           int_dtaui(ig,l,nw) = 0.0d0
1265             DO k=1,L_NGAUSS
[2138]1266              ! Output exp(-tau) because gweight ponderates exp and not tau itself
1267              int_dtaui(ig,l,nw)= int_dtaui(ig,l,nw) + exp(-dtaui(l,nw,k))*gweight(k)
[2133]1268             ENDDO
1269          enddo
1270        enddo
1271      endif       
[253]1272
[2133]1273
[1483]1274!-----------------------------------------------------------------------   
1275      end do ! End of big loop over every GCM column.
1276!-----------------------------------------------------------------------
[253]1277
[1483]1278
1279
[253]1280!-----------------------------------------------------------------------
1281!     Additional diagnostics
[1483]1282!-----------------------------------------------------------------------
[253]1283
[1483]1284      ! IR spectral output, for exoplanet observational comparison
1285      if(lastcall.and.(ngrid.eq.1))then  ! could disable the 1D output, they are in the diagfi and diagspec... JL12
[253]1286
[1483]1287         print*,'Saving scalar quantities in surf_vals.out...'
1288         print*,'psurf = ', pplev(1,1),' Pa'
1289         open(116,file='surf_vals.out')
1290         write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1),         &
1291                      real(-nfluxtopv),real(nfluxtopi)
1292         close(116)
[253]1293
[526]1294
[1483]1295!          USEFUL COMMENT - Do Not Remove.
1296!
[526]1297!           if(specOLR)then
1298!               open(117,file='OLRnu.out')
1299!               do nw=1,L_NSPECTI
1300!                  write(117,*) OLR_nu(1,nw)
1301!               enddo
1302!               close(117)
1303!
1304!               open(127,file='OSRnu.out')
1305!               do nw=1,L_NSPECTV
1306!                  write(127,*) OSR_nu(1,nw)
1307!               enddo
1308!               close(127)
1309!           endif
[253]1310
[1483]1311           ! OLR vs altitude: do it as a .txt file.
1312         OLRz=.false.
1313         if(OLRz)then
1314            print*,'saving IR vertical flux for OLRz...'
1315            open(118,file='OLRz_plevs.out')
1316            open(119,file='OLRz.out')
1317            do l=1,L_NLAYRAD
1318               write(118,*) plevrad(2*l)
1319               do nw=1,L_NSPECTI
1320                  write(119,*) fluxupi_nu(l,nw)
1321               enddo
1322            enddo
1323            close(118)
1324            close(119)
1325         endif
[253]1326
[305]1327      endif
[253]1328
[1483]1329      ! See physiq.F for explanations about CLFvarying. This is temporary.
[470]1330      if (lastcall .and. .not.CLFvarying) then
1331        IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi )
1332        IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv )
[1315]1333!$OMP BARRIER
1334!$OMP MASTER
[470]1335        IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref )
1336        IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref )
1337        IF( ALLOCATED( wrefvar ) ) DEALLOCATE( wrefvar )
1338        IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref )
[2026]1339        IF( ALLOCATED( gweight ) ) DEALLOCATE( gweight )
[1315]1340!$OMP END MASTER
[1529]1341!$OMP BARRIER
[861]1342        IF ( ALLOCATED(reffrad)) DEALLOCATE(reffrad)
1343        IF ( ALLOCATED(nueffrad)) DEALLOCATE(nueffrad)
[470]1344      endif
1345
[716]1346
[253]1347    end subroutine callcorrk
[2032]1348
1349END MODULE callcorrk_mod
Note: See TracBrowser for help on using the repository browser.