[2032] | 1 | MODULE callcorrk_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[526] | 7 | subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
[1482] | 8 | albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt, & |
---|
[858] | 9 | tsurf,fract,dist_star,aerosol,muvar, & |
---|
[253] | 10 | dtlw,dtsw,fluxsurf_lw, & |
---|
[1482] | 11 | fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw, & |
---|
| 12 | fluxabs_sw,fluxtop_dn, & |
---|
[2537] | 13 | OLR_nu,OSR_nu,GSR_nu, & |
---|
[2133] | 14 | int_dtaui,int_dtauv, & |
---|
[858] | 15 | tau_col,cloudfrac,totcloudfrac, & |
---|
[253] | 16 | clearsky,firstcall,lastcall) |
---|
| 17 | |
---|
[1699] | 18 | use mod_phys_lmdz_para, only : is_master |
---|
[2032] | 19 | use radinc_h, only: L_NSPECTV, L_NSPECTI, naerkind, banddir, corrkdir,& |
---|
| 20 | L_LEVELS, L_NGAUSS, L_NLEVRAD, L_NLAYRAD, L_REFVAR |
---|
| 21 | use radcommon_h, only: wrefvar, Cmk, fzeroi, fzerov, gasi, gasv, & |
---|
| 22 | glat_ig, gweight, pfgasref, pgasmax, pgasmin, & |
---|
| 23 | pgasref, tgasmax, tgasmin, tgasref, scalep, & |
---|
| 24 | ubari, wnoi, stellarf, glat, dwnv, dwni, tauray |
---|
| 25 | use watercommon_h, only: psat_water, epsi |
---|
[374] | 26 | use datafile_mod, only: datadir |
---|
[1521] | 27 | use ioipsl_getin_p_mod, only: getin_p |
---|
[2032] | 28 | use gases_h, only: ngasmx |
---|
[1026] | 29 | use radii_mod, only : su_aer_radii,co2_reffrad,h2o_reffrad,dust_reffrad,h2so4_reffrad,back2lay_reffrad |
---|
[2297] | 30 | use aerosol_mod, only : iaero_co2,iaero_h2o,iaero_dust,iaero_h2so4, iaero_back2lay, iaero_aurora |
---|
[2032] | 31 | use tracer_h, only: igcm_h2o_vap, igcm_h2o_ice, igcm_co2_ice |
---|
[1384] | 32 | use comcstfi_mod, only: pi, mugaz, cpp |
---|
[2134] | 33 | use callkeys_mod, only: varactive,diurnal,tracer,water,varfixed,satval,diagdtau, & |
---|
[2283] | 34 | kastprof,strictboundcorrk,specOLR,CLFvarying, & |
---|
[2470] | 35 | tplanckmin,tplanckmax,global1d |
---|
[2032] | 36 | use optcv_mod, only: optcv |
---|
| 37 | use optci_mod, only: optci |
---|
[2543] | 38 | use recombin_corrk_mod, only: corrk_recombin, call_recombin |
---|
[253] | 39 | implicit none |
---|
| 40 | |
---|
| 41 | !================================================================== |
---|
| 42 | ! |
---|
| 43 | ! Purpose |
---|
| 44 | ! ------- |
---|
| 45 | ! Solve the radiative transfer using the correlated-k method for |
---|
| 46 | ! the gaseous absorption and the Toon et al. (1989) method for |
---|
| 47 | ! scatttering due to aerosols. |
---|
| 48 | ! |
---|
| 49 | ! Authors |
---|
| 50 | ! ------- |
---|
| 51 | ! Emmanuel 01/2001, Forget 09/2001 |
---|
| 52 | ! Robin Wordsworth (2009) |
---|
| 53 | ! |
---|
| 54 | !================================================================== |
---|
| 55 | |
---|
| 56 | !----------------------------------------------------------------------- |
---|
| 57 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
---|
| 58 | ! Layer #1 is the layer near the ground. |
---|
[1308] | 59 | ! Layer #nlayer is the layer at the top. |
---|
[1483] | 60 | !----------------------------------------------------------------------- |
---|
[253] | 61 | |
---|
[1483] | 62 | |
---|
| 63 | ! INPUT |
---|
| 64 | INTEGER,INTENT(IN) :: ngrid ! Number of atmospheric columns. |
---|
| 65 | INTEGER,INTENT(IN) :: nlayer ! Number of atmospheric layers. |
---|
| 66 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! Tracers (kg/kg_of_air). |
---|
| 67 | INTEGER,INTENT(IN) :: nq ! Number of tracers. |
---|
| 68 | REAL,INTENT(IN) :: qsurf(ngrid,nq) ! Tracers on surface (kg.m-2). |
---|
| 69 | REAL,INTENT(IN) :: albedo(ngrid,L_NSPECTV) ! Spectral Short Wavelengths Albedo. By MT2015 |
---|
| 70 | REAL,INTENT(IN) :: emis(ngrid) ! Long Wave emissivity. |
---|
| 71 | REAL,INTENT(IN) :: mu0(ngrid) ! Cosine of sun incident angle. |
---|
| 72 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). |
---|
| 73 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). |
---|
| 74 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! Air temperature (K). |
---|
| 75 | REAL,INTENT(IN) :: tsurf(ngrid) ! Surface temperature (K). |
---|
| 76 | REAL,INTENT(IN) :: fract(ngrid) ! Fraction of day. |
---|
| 77 | REAL,INTENT(IN) :: dist_star ! Distance star-planet (AU). |
---|
| 78 | REAL,INTENT(IN) :: muvar(ngrid,nlayer+1) |
---|
| 79 | REAL,INTENT(IN) :: cloudfrac(ngrid,nlayer) ! Fraction of clouds (%). |
---|
[858] | 80 | logical,intent(in) :: clearsky |
---|
[1483] | 81 | logical,intent(in) :: firstcall ! Signals first call to physics. |
---|
| 82 | logical,intent(in) :: lastcall ! Signals last call to physics. |
---|
| 83 | |
---|
| 84 | ! OUTPUT |
---|
[2297] | 85 | REAL,INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! Aerosol tau at reference wavelenght. |
---|
[1483] | 86 | REAL,INTENT(OUT) :: dtlw(ngrid,nlayer) ! Heating rate (K/s) due to LW radiation. |
---|
| 87 | REAL,INTENT(OUT) :: dtsw(ngrid,nlayer) ! Heating rate (K/s) due to SW radiation. |
---|
| 88 | REAL,INTENT(OUT) :: fluxsurf_lw(ngrid) ! Incident LW flux to surf (W/m2). |
---|
| 89 | REAL,INTENT(OUT) :: fluxsurf_sw(ngrid) ! Incident SW flux to surf (W/m2) |
---|
| 90 | REAL,INTENT(OUT) :: fluxsurfabs_sw(ngrid) ! Absorbed SW flux by the surface (W/m2). By MT2015. |
---|
| 91 | REAL,INTENT(OUT) :: fluxtop_lw(ngrid) ! Outgoing LW flux to space (W/m2). |
---|
| 92 | REAL,INTENT(OUT) :: fluxabs_sw(ngrid) ! SW flux absorbed by the planet (W/m2). |
---|
| 93 | REAL,INTENT(OUT) :: fluxtop_dn(ngrid) ! Incident top of atmosphere SW flux (W/m2). |
---|
[2537] | 94 | REAL,INTENT(OUT) :: OLR_nu(ngrid,L_NSPECTI) ! Outgoing LW radiation in each band (Normalized to the band width (W/m2/cm-1). |
---|
| 95 | REAL,INTENT(OUT) :: OSR_nu(ngrid,L_NSPECTV) ! Outgoing SW radiation in each band (Normalized to the band width (W/m2/cm-1). |
---|
| 96 | REAL,INTENT(OUT) :: GSR_nu(ngrid,L_NSPECTV) ! Surface SW radiation in each band (Normalized to the band width (W/m2/cm-1). |
---|
[1483] | 97 | REAL,INTENT(OUT) :: tau_col(ngrid) ! Diagnostic from aeropacity. |
---|
| 98 | REAL,INTENT(OUT) :: albedo_equivalent(ngrid) ! Spectrally Integrated Albedo. For Diagnostic. By MT2015 |
---|
| 99 | REAL,INTENT(OUT) :: totcloudfrac(ngrid) ! Column Fraction of clouds (%). |
---|
[2133] | 100 | REAL,INTENT(OUT) :: int_dtaui(ngrid,nlayer,L_NSPECTI) ! VI optical thickness of layers within narrowbands for diags (). |
---|
| 101 | REAL,INTENT(OUT) :: int_dtauv(ngrid,nlayer,L_NSPECTV) ! IR optical thickness of layers within narrowbands for diags (). |
---|
[1483] | 102 | |
---|
| 103 | |
---|
| 104 | |
---|
| 105 | |
---|
[253] | 106 | |
---|
[1483] | 107 | ! Globally varying aerosol optical properties on GCM grid ; not needed everywhere so not in radcommon_h. |
---|
[1308] | 108 | REAL :: QVISsQREF3d(ngrid,nlayer,L_NSPECTV,naerkind) |
---|
| 109 | REAL :: omegaVIS3d(ngrid,nlayer,L_NSPECTV,naerkind) |
---|
| 110 | REAL :: gVIS3d(ngrid,nlayer,L_NSPECTV,naerkind) |
---|
| 111 | REAL :: QIRsQREF3d(ngrid,nlayer,L_NSPECTI,naerkind) |
---|
| 112 | REAL :: omegaIR3d(ngrid,nlayer,L_NSPECTI,naerkind) |
---|
| 113 | REAL :: gIR3d(ngrid,nlayer,L_NSPECTI,naerkind) |
---|
[253] | 114 | |
---|
[1308] | 115 | ! REAL :: omegaREFvis3d(ngrid,nlayer,naerkind) |
---|
| 116 | ! REAL :: omegaREFir3d(ngrid,nlayer,naerkind) ! not sure of the point of these... |
---|
[253] | 117 | |
---|
[1483] | 118 | REAL,ALLOCATABLE,SAVE :: reffrad(:,:,:) ! aerosol effective radius (m) |
---|
[858] | 119 | REAL,ALLOCATABLE,SAVE :: nueffrad(:,:,:) ! aerosol effective variance |
---|
[1315] | 120 | !$OMP THREADPRIVATE(reffrad,nueffrad) |
---|
[253] | 121 | |
---|
| 122 | !----------------------------------------------------------------------- |
---|
| 123 | ! Declaration of the variables required by correlated-k subroutines |
---|
[1483] | 124 | ! Numbered from top to bottom (unlike in the GCM) |
---|
| 125 | !----------------------------------------------------------------------- |
---|
[253] | 126 | |
---|
| 127 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
---|
| 128 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
---|
| 129 | |
---|
[1483] | 130 | ! Optical values for the optci/cv subroutines |
---|
[253] | 131 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
---|
[2032] | 132 | ! NB: Arrays below are "save" to avoid reallocating them at every call |
---|
| 133 | ! not because their content needs be reused from call to the next |
---|
| 134 | REAL*8,allocatable,save :: dtaui(:,:,:) |
---|
| 135 | REAL*8,allocatable,save :: dtauv(:,:,:) |
---|
| 136 | REAL*8,allocatable,save :: cosbv(:,:,:) |
---|
| 137 | REAL*8,allocatable,save :: cosbi(:,:,:) |
---|
| 138 | REAL*8,allocatable,save :: wbari(:,:,:) |
---|
| 139 | REAL*8,allocatable,save :: wbarv(:,:,:) |
---|
[2269] | 140 | !$OMP THREADPRIVATE(dtaui,dtauv,cosbv,cosbi,wbari,wbarv) |
---|
[2032] | 141 | REAL*8,allocatable,save :: tauv(:,:,:) |
---|
| 142 | REAL*8,allocatable,save :: taucumv(:,:,:) |
---|
| 143 | REAL*8,allocatable,save :: taucumi(:,:,:) |
---|
[2269] | 144 | !$OMP THREADPRIVATE(tauv,taucumv,taucumi) |
---|
[1715] | 145 | REAL*8 tauaero(L_LEVELS,naerkind) |
---|
[961] | 146 | REAL*8 nfluxtopv,nfluxtopi,nfluxtop,fluxtopvdn |
---|
[1483] | 147 | REAL*8 nfluxoutv_nu(L_NSPECTV) ! Outgoing band-resolved VI flux at TOA (W/m2). |
---|
| 148 | REAL*8 nfluxtopi_nu(L_NSPECTI) ! Net band-resolved IR flux at TOA (W/m2). |
---|
| 149 | REAL*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! For 1D diagnostic. |
---|
[253] | 150 | REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) |
---|
| 151 | REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) |
---|
| 152 | REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) |
---|
[1482] | 153 | REAL*8 albi,acosz |
---|
[1483] | 154 | REAL*8 albv(L_NSPECTV) ! Spectral Visible Albedo. |
---|
[253] | 155 | |
---|
[1483] | 156 | INTEGER ig,l,k,nw,iaer |
---|
[253] | 157 | |
---|
[2032] | 158 | real*8,allocatable,save :: taugsurf(:,:) |
---|
| 159 | real*8,allocatable,save :: taugsurfi(:,:) |
---|
[2269] | 160 | !$OMP THREADPRIVATE(taugsurf,taugsurfi) |
---|
[2032] | 161 | real*8 qvar(L_LEVELS) ! Mixing ratio of variable component (mol/mol). |
---|
| 162 | |
---|
[1483] | 163 | ! Local aerosol optical properties for each column on RADIATIVE grid. |
---|
[2297] | 164 | real*8,save,allocatable :: QXVAER(:,:,:) ! Extinction coeff (QVISsQREF*QREFvis) |
---|
[1529] | 165 | real*8,save,allocatable :: QSVAER(:,:,:) |
---|
| 166 | real*8,save,allocatable :: GVAER(:,:,:) |
---|
[2297] | 167 | real*8,save,allocatable :: QXIAER(:,:,:) ! Extinction coeff (QIRsQREF*QREFir) |
---|
[1529] | 168 | real*8,save,allocatable :: QSIAER(:,:,:) |
---|
| 169 | real*8,save,allocatable :: GIAER(:,:,:) |
---|
[2269] | 170 | !$OMP THREADPRIVATE(QXVAER,QSVAER,GVAER,QXIAER,QSIAER,GIAER) |
---|
[787] | 171 | real, dimension(:,:,:), save, allocatable :: QREFvis3d |
---|
| 172 | real, dimension(:,:,:), save, allocatable :: QREFir3d |
---|
[2269] | 173 | !$OMP THREADPRIVATE(QREFvis3d,QREFir3d) |
---|
[787] | 174 | |
---|
[253] | 175 | |
---|
[1483] | 176 | ! Miscellaneous : |
---|
[253] | 177 | real*8 temp,temp1,temp2,pweight |
---|
| 178 | character(len=10) :: tmp1 |
---|
| 179 | character(len=10) :: tmp2 |
---|
[2269] | 180 | character(len=100) :: message |
---|
| 181 | character(len=10),parameter :: subname="callcorrk" |
---|
[253] | 182 | |
---|
[1483] | 183 | ! For fixed water vapour profiles. |
---|
[253] | 184 | integer i_var |
---|
| 185 | real RH |
---|
| 186 | real*8 pq_temp(nlayer) |
---|
[1483] | 187 | ! real(KIND=r8) :: pq_temp(nlayer) ! better F90 way.. DOESNT PORT TO F77!!! |
---|
[1993] | 188 | real psat,qsat |
---|
[253] | 189 | |
---|
| 190 | logical OLRz |
---|
| 191 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
---|
| 192 | |
---|
[1483] | 193 | ! Included by RW for runaway greenhouse 1D study. |
---|
[1308] | 194 | real vtmp(nlayer) |
---|
[305] | 195 | REAL*8 muvarrad(L_LEVELS) |
---|
[1482] | 196 | |
---|
[1483] | 197 | ! Included by MT for albedo calculations. |
---|
[1482] | 198 | REAL*8 albedo_temp(L_NSPECTV) ! For equivalent albedo calculation. |
---|
[1526] | 199 | REAL*8 surface_stellar_flux ! Stellar flux reaching the surface. Useful for equivalent albedo calculation. |
---|
[305] | 200 | |
---|
[1483] | 201 | |
---|
[726] | 202 | !=============================================================== |
---|
[1483] | 203 | ! I.a Initialization on first call |
---|
| 204 | !=============================================================== |
---|
[253] | 205 | |
---|
[1483] | 206 | |
---|
[1529] | 207 | if(firstcall) then |
---|
[253] | 208 | |
---|
[1529] | 209 | ! test on allocated necessary because of CLFvarying (two calls to callcorrk in physiq) |
---|
[1715] | 210 | if(.not.allocated(QXVAER)) allocate(QXVAER(L_LEVELS,L_NSPECTV,naerkind)) |
---|
| 211 | if(.not.allocated(QSVAER)) allocate(QSVAER(L_LEVELS,L_NSPECTV,naerkind)) |
---|
| 212 | if(.not.allocated(GVAER)) allocate(GVAER(L_LEVELS,L_NSPECTV,naerkind)) |
---|
| 213 | if(.not.allocated(QXIAER)) allocate(QXIAER(L_LEVELS,L_NSPECTI,naerkind)) |
---|
| 214 | if(.not.allocated(QSIAER)) allocate(QSIAER(L_LEVELS,L_NSPECTI,naerkind)) |
---|
| 215 | if(.not.allocated(GIAER)) allocate(GIAER(L_LEVELS,L_NSPECTI,naerkind)) |
---|
[253] | 216 | |
---|
[1483] | 217 | !!! ALLOCATED instances are necessary because of CLFvarying (strategy to call callcorrk twice in physiq...) |
---|
[1308] | 218 | IF(.not.ALLOCATED(QREFvis3d)) ALLOCATE(QREFvis3d(ngrid,nlayer,naerkind)) |
---|
| 219 | IF(.not.ALLOCATED(QREFir3d)) ALLOCATE(QREFir3d(ngrid,nlayer,naerkind)) |
---|
[861] | 220 | ! Effective radius and variance of the aerosols |
---|
| 221 | IF(.not.ALLOCATED(reffrad)) allocate(reffrad(ngrid,nlayer,naerkind)) |
---|
| 222 | IF(.not.ALLOCATED(nueffrad)) allocate(nueffrad(ngrid,nlayer,naerkind)) |
---|
[787] | 223 | |
---|
[1829] | 224 | #ifndef MESOSCALE |
---|
[253] | 225 | call system('rm -f surf_vals_long.out') |
---|
[1829] | 226 | #endif |
---|
[253] | 227 | |
---|
[728] | 228 | if(naerkind.gt.4)then |
---|
[2269] | 229 | message='Code not general enough to deal with naerkind > 4 yet.' |
---|
| 230 | call abort_physic(subname,message,1) |
---|
[728] | 231 | endif |
---|
[1308] | 232 | call su_aer_radii(ngrid,nlayer,reffrad,nueffrad) |
---|
[1483] | 233 | |
---|
[1529] | 234 | |
---|
[728] | 235 | !-------------------------------------------------- |
---|
[1483] | 236 | ! Set up correlated k |
---|
| 237 | !-------------------------------------------------- |
---|
| 238 | |
---|
| 239 | |
---|
[374] | 240 | print*, "callcorrk: Correlated-k data base folder:",trim(datadir) |
---|
[1315] | 241 | call getin_p("corrkdir",corrkdir) |
---|
[253] | 242 | print*, "corrkdir = ",corrkdir |
---|
| 243 | write( tmp1, '(i3)' ) L_NSPECTI |
---|
| 244 | write( tmp2, '(i3)' ) L_NSPECTV |
---|
| 245 | banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
---|
| 246 | banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
---|
| 247 | |
---|
[1483] | 248 | call setspi ! Basic infrared properties. |
---|
| 249 | call setspv ! Basic visible properties. |
---|
| 250 | call sugas_corrk ! Set up gaseous absorption properties. |
---|
| 251 | call suaer_corrk ! Set up aerosol optical properties. |
---|
[1498] | 252 | |
---|
[253] | 253 | |
---|
[2032] | 254 | ! now that L_NGAUSS has been initialized (by sugas_corrk) |
---|
| 255 | ! allocate related arrays |
---|
[2051] | 256 | if(.not.allocated(dtaui)) ALLOCATE(dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS)) |
---|
| 257 | if(.not.allocated(dtauv)) ALLOCATE(dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS)) |
---|
| 258 | if(.not.allocated(cosbv)) ALLOCATE(cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS)) |
---|
| 259 | if(.not.allocated(cosbi)) ALLOCATE(cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS)) |
---|
| 260 | if(.not.allocated(wbari)) ALLOCATE(wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS)) |
---|
| 261 | if(.not.allocated(wbarv)) ALLOCATE(wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS)) |
---|
| 262 | if(.not.allocated(tauv)) ALLOCATE(tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS)) |
---|
| 263 | if(.not.allocated(taucumv)) ALLOCATE(taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS)) |
---|
| 264 | if(.not.allocated(taucumi)) ALLOCATE(taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS)) |
---|
| 265 | if(.not.allocated(taugsurf)) ALLOCATE(taugsurf(L_NSPECTV,L_NGAUSS-1)) |
---|
| 266 | if(.not.allocated(taugsurfi)) ALLOCATE(taugsurfi(L_NSPECTI,L_NGAUSS-1)) |
---|
[2032] | 267 | |
---|
[253] | 268 | if((igcm_h2o_vap.eq.0) .and. varactive)then |
---|
[2269] | 269 | message='varactive in callcorrk but no h2o_vap tracer.' |
---|
| 270 | call abort_physic(subname,message,1) |
---|
[253] | 271 | endif |
---|
| 272 | |
---|
[858] | 273 | end if ! of if (firstcall) |
---|
[253] | 274 | |
---|
| 275 | !======================================================================= |
---|
[1483] | 276 | ! I.b Initialization on every call |
---|
| 277 | !======================================================================= |
---|
| 278 | |
---|
[1529] | 279 | qxvaer(:,:,:)=0.0 |
---|
| 280 | qsvaer(:,:,:)=0.0 |
---|
| 281 | gvaer(:,:,:) =0.0 |
---|
| 282 | |
---|
| 283 | qxiaer(:,:,:)=0.0 |
---|
| 284 | qsiaer(:,:,:)=0.0 |
---|
| 285 | giaer(:,:,:) =0.0 |
---|
| 286 | |
---|
[2446] | 287 | OLR_nu(:,:) = 0. |
---|
| 288 | OSR_nu(:,:) = 0. |
---|
[2537] | 289 | GSR_nu(:,:) = 0. |
---|
[2446] | 290 | |
---|
[728] | 291 | !-------------------------------------------------- |
---|
| 292 | ! Effective radius and variance of the aerosols |
---|
[1483] | 293 | !-------------------------------------------------- |
---|
| 294 | |
---|
[726] | 295 | do iaer=1,naerkind |
---|
[650] | 296 | |
---|
[1483] | 297 | if ((iaer.eq.iaero_co2).and.tracer.and.(igcm_co2_ice.gt.0)) then ! Treat condensed co2 particles. |
---|
[1529] | 298 | call co2_reffrad(ngrid,nlayer,nq,pq,reffrad(1,1,iaero_co2)) |
---|
[1699] | 299 | if (is_master) then |
---|
| 300 | print*,'Max. CO2 ice particle size = ',maxval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um' |
---|
| 301 | print*,'Min. CO2 ice particle size = ',minval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um' |
---|
| 302 | end if |
---|
| 303 | end if |
---|
[1483] | 304 | |
---|
| 305 | if ((iaer.eq.iaero_h2o).and.water) then ! Treat condensed water particles. To be generalized for other aerosols ... |
---|
[1529] | 306 | call h2o_reffrad(ngrid,nlayer,pq(1,1,igcm_h2o_ice),pt, & |
---|
[858] | 307 | reffrad(1,1,iaero_h2o),nueffrad(1,1,iaero_h2o)) |
---|
[1699] | 308 | if (is_master) then |
---|
| 309 | print*,'Max. H2O cloud particle size = ',maxval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um' |
---|
| 310 | print*,'Min. H2O cloud particle size = ',minval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um' |
---|
| 311 | end if |
---|
[253] | 312 | endif |
---|
[1483] | 313 | |
---|
[726] | 314 | if(iaer.eq.iaero_dust)then |
---|
[1529] | 315 | call dust_reffrad(ngrid,nlayer,reffrad(1,1,iaero_dust)) |
---|
[1699] | 316 | if (is_master) then |
---|
| 317 | print*,'Dust particle size = ',reffrad(1,1,iaer)/1.e-6,' um' |
---|
| 318 | end if |
---|
[253] | 319 | endif |
---|
[1483] | 320 | |
---|
[726] | 321 | if(iaer.eq.iaero_h2so4)then |
---|
[1529] | 322 | call h2so4_reffrad(ngrid,nlayer,reffrad(1,1,iaero_h2so4)) |
---|
[1699] | 323 | if (is_master) then |
---|
| 324 | print*,'H2SO4 particle size =',reffrad(1,1,iaer)/1.e-6,' um' |
---|
| 325 | end if |
---|
[253] | 326 | endif |
---|
[1483] | 327 | |
---|
[1026] | 328 | if(iaer.eq.iaero_back2lay)then |
---|
[1529] | 329 | call back2lay_reffrad(ngrid,reffrad(1,1,iaero_back2lay),nlayer,pplev) |
---|
[1026] | 330 | endif |
---|
[2297] | 331 | |
---|
| 332 | ! For n-layer aerosol size set once for all at firstcall in su_aer_radii |
---|
| 333 | |
---|
[1677] | 334 | ! if(iaer.eq.iaero_aurora)then |
---|
| 335 | ! call aurora_reffrad(ngrid,nlayer,reffrad(1,1,iaero_aurora)) |
---|
| 336 | ! endif |
---|
| 337 | |
---|
[1483] | 338 | end do !iaer=1,naerkind. |
---|
[253] | 339 | |
---|
[1715] | 340 | |
---|
[1483] | 341 | ! How much light do we get ? |
---|
[253] | 342 | do nw=1,L_NSPECTV |
---|
| 343 | stel(nw)=stellarf(nw)/(dist_star**2) |
---|
| 344 | end do |
---|
| 345 | |
---|
[1483] | 346 | ! Get 3D aerosol optical properties. |
---|
[253] | 347 | call aeroptproperties(ngrid,nlayer,reffrad,nueffrad, & |
---|
| 348 | QVISsQREF3d,omegaVIS3d,gVIS3d, & |
---|
| 349 | QIRsQREF3d,omegaIR3d,gIR3d, & |
---|
[1483] | 350 | QREFvis3d,QREFir3d) |
---|
[253] | 351 | |
---|
[1483] | 352 | ! Get aerosol optical depths. |
---|
[253] | 353 | call aeropacity(ngrid,nlayer,nq,pplay,pplev,pq,aerosol, & |
---|
| 354 | reffrad,QREFvis3d,QREFir3d, & |
---|
[1483] | 355 | tau_col,cloudfrac,totcloudfrac,clearsky) |
---|
[1529] | 356 | |
---|
[1483] | 357 | |
---|
| 358 | |
---|
| 359 | !----------------------------------------------------------------------- |
---|
| 360 | do ig=1,ngrid ! Starting Big Loop over every GCM column |
---|
[253] | 361 | !----------------------------------------------------------------------- |
---|
| 362 | |
---|
[1483] | 363 | |
---|
[253] | 364 | !======================================================================= |
---|
[1483] | 365 | ! II. Transformation of the GCM variables |
---|
| 366 | !======================================================================= |
---|
[253] | 367 | |
---|
[1483] | 368 | |
---|
[253] | 369 | !----------------------------------------------------------------------- |
---|
[1483] | 370 | ! Aerosol optical properties Qext, Qscat and g. |
---|
| 371 | ! The transformation in the vertical is the same as for temperature. |
---|
| 372 | !----------------------------------------------------------------------- |
---|
[253] | 373 | |
---|
[1483] | 374 | |
---|
[253] | 375 | do iaer=1,naerkind |
---|
[1483] | 376 | ! Shortwave. |
---|
| 377 | do nw=1,L_NSPECTV |
---|
| 378 | |
---|
[1308] | 379 | do l=1,nlayer |
---|
[253] | 380 | |
---|
[1308] | 381 | temp1=QVISsQREF3d(ig,nlayer+1-l,nw,iaer) & |
---|
| 382 | *QREFvis3d(ig,nlayer+1-l,iaer) |
---|
[253] | 383 | |
---|
[1308] | 384 | temp2=QVISsQREF3d(ig,max(nlayer-l,1),nw,iaer) & |
---|
| 385 | *QREFvis3d(ig,max(nlayer-l,1),iaer) |
---|
[253] | 386 | |
---|
| 387 | qxvaer(2*l,nw,iaer) = temp1 |
---|
| 388 | qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 389 | |
---|
[1308] | 390 | temp1=temp1*omegavis3d(ig,nlayer+1-l,nw,iaer) |
---|
| 391 | temp2=temp2*omegavis3d(ig,max(nlayer-l,1),nw,iaer) |
---|
[253] | 392 | |
---|
| 393 | qsvaer(2*l,nw,iaer) = temp1 |
---|
| 394 | qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 395 | |
---|
[1308] | 396 | temp1=gvis3d(ig,nlayer+1-l,nw,iaer) |
---|
| 397 | temp2=gvis3d(ig,max(nlayer-l,1),nw,iaer) |
---|
[253] | 398 | |
---|
| 399 | gvaer(2*l,nw,iaer) = temp1 |
---|
| 400 | gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 401 | |
---|
[1483] | 402 | end do ! nlayer |
---|
[253] | 403 | |
---|
| 404 | qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) |
---|
[1308] | 405 | qxvaer(2*nlayer+1,nw,iaer)=0. |
---|
[253] | 406 | |
---|
| 407 | qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) |
---|
[1308] | 408 | qsvaer(2*nlayer+1,nw,iaer)=0. |
---|
[253] | 409 | |
---|
| 410 | gvaer(1,nw,iaer)=gvaer(2,nw,iaer) |
---|
[1308] | 411 | gvaer(2*nlayer+1,nw,iaer)=0. |
---|
[253] | 412 | |
---|
[1483] | 413 | end do ! L_NSPECTV |
---|
| 414 | |
---|
| 415 | do nw=1,L_NSPECTI |
---|
| 416 | ! Longwave |
---|
[1308] | 417 | do l=1,nlayer |
---|
[253] | 418 | |
---|
[1308] | 419 | temp1=QIRsQREF3d(ig,nlayer+1-l,nw,iaer) & |
---|
| 420 | *QREFir3d(ig,nlayer+1-l,iaer) |
---|
[253] | 421 | |
---|
[1308] | 422 | temp2=QIRsQREF3d(ig,max(nlayer-l,1),nw,iaer) & |
---|
| 423 | *QREFir3d(ig,max(nlayer-l,1),iaer) |
---|
[253] | 424 | |
---|
| 425 | qxiaer(2*l,nw,iaer) = temp1 |
---|
| 426 | qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 427 | |
---|
[1308] | 428 | temp1=temp1*omegair3d(ig,nlayer+1-l,nw,iaer) |
---|
| 429 | temp2=temp2*omegair3d(ig,max(nlayer-l,1),nw,iaer) |
---|
[253] | 430 | |
---|
| 431 | qsiaer(2*l,nw,iaer) = temp1 |
---|
| 432 | qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 433 | |
---|
[1308] | 434 | temp1=gir3d(ig,nlayer+1-l,nw,iaer) |
---|
| 435 | temp2=gir3d(ig,max(nlayer-l,1),nw,iaer) |
---|
[253] | 436 | |
---|
| 437 | giaer(2*l,nw,iaer) = temp1 |
---|
| 438 | giaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 439 | |
---|
[1483] | 440 | end do ! nlayer |
---|
[253] | 441 | |
---|
| 442 | qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer) |
---|
[1308] | 443 | qxiaer(2*nlayer+1,nw,iaer)=0. |
---|
[253] | 444 | |
---|
| 445 | qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer) |
---|
[1308] | 446 | qsiaer(2*nlayer+1,nw,iaer)=0. |
---|
[253] | 447 | |
---|
| 448 | giaer(1,nw,iaer)=giaer(2,nw,iaer) |
---|
[1308] | 449 | giaer(2*nlayer+1,nw,iaer)=0. |
---|
[253] | 450 | |
---|
[1483] | 451 | end do ! L_NSPECTI |
---|
| 452 | |
---|
| 453 | end do ! naerkind |
---|
[253] | 454 | |
---|
[1483] | 455 | ! Test / Correct for freaky s. s. albedo values. |
---|
[253] | 456 | do iaer=1,naerkind |
---|
[1715] | 457 | do k=1,L_LEVELS |
---|
[253] | 458 | |
---|
| 459 | do nw=1,L_NSPECTV |
---|
| 460 | if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then |
---|
[2269] | 461 | message='Serious problems with qsvaer values' |
---|
| 462 | call abort_physic(subname,message,1) |
---|
[253] | 463 | endif |
---|
| 464 | if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then |
---|
| 465 | qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer) |
---|
| 466 | endif |
---|
| 467 | end do |
---|
| 468 | |
---|
| 469 | do nw=1,L_NSPECTI |
---|
| 470 | if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then |
---|
[2269] | 471 | message='Serious problems with qsvaer values' |
---|
| 472 | call abort_physic(subname,message,1) |
---|
[253] | 473 | endif |
---|
| 474 | if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then |
---|
| 475 | qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer) |
---|
| 476 | endif |
---|
| 477 | end do |
---|
| 478 | |
---|
[1483] | 479 | end do ! L_LEVELS |
---|
| 480 | end do ! naerkind |
---|
[253] | 481 | |
---|
| 482 | !----------------------------------------------------------------------- |
---|
| 483 | ! Aerosol optical depths |
---|
[1483] | 484 | !----------------------------------------------------------------------- |
---|
[253] | 485 | |
---|
| 486 | do iaer=1,naerkind ! a bug was here |
---|
| 487 | do k=0,nlayer-1 |
---|
| 488 | |
---|
| 489 | pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ & |
---|
[1483] | 490 | (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) |
---|
[2297] | 491 | ! As 'aerosol' is at reference (visible) wavelenght we scale it as |
---|
| 492 | ! it will be multplied by qxi/v in optci/v |
---|
[253] | 493 | temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer) |
---|
[588] | 494 | tauaero(2*k+2,iaer)=max(temp*pweight,0.d0) |
---|
| 495 | tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0) |
---|
[1483] | 496 | |
---|
[253] | 497 | end do |
---|
| 498 | ! boundary conditions |
---|
| 499 | tauaero(1,iaer) = tauaero(2,iaer) |
---|
| 500 | !tauaero(1,iaer) = 0. |
---|
[1988] | 501 | !JL18 at time of testing, the two above conditions gave the same results bit for bit. |
---|
| 502 | |
---|
[1483] | 503 | end do ! naerkind |
---|
[253] | 504 | |
---|
[1483] | 505 | ! Albedo and Emissivity. |
---|
| 506 | albi=1-emis(ig) ! Long Wave. |
---|
| 507 | DO nw=1,L_NSPECTV ! Short Wave loop. |
---|
[1482] | 508 | albv(nw)=albedo(ig,nw) |
---|
[1529] | 509 | ENDDO |
---|
[253] | 510 | |
---|
[1483] | 511 | acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude. |
---|
[253] | 512 | |
---|
[1483] | 513 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 514 | !!! Note by JL13 : In the following, some indices were changed in the interpolations, |
---|
| 515 | !!! so that the model results are less dependent on the number of layers ! |
---|
| 516 | !!! |
---|
| 517 | !!! --- The older versions are commented with the comment !JL13index --- |
---|
| 518 | !!! |
---|
| 519 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[1016] | 520 | |
---|
| 521 | |
---|
[253] | 522 | !----------------------------------------------------------------------- |
---|
[1483] | 523 | ! Water vapour (to be generalised for other gases eventually ...) |
---|
| 524 | !----------------------------------------------------------------------- |
---|
[253] | 525 | |
---|
[305] | 526 | if(varactive)then |
---|
[253] | 527 | |
---|
| 528 | i_var=igcm_h2o_vap |
---|
| 529 | do l=1,nlayer |
---|
| 530 | qvar(2*l) = pq(ig,nlayer+1-l,i_var) |
---|
[1016] | 531 | qvar(2*l+1) = pq(ig,nlayer+1-l,i_var) |
---|
| 532 | !JL13index qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig,max(nlayer-l,1),i_var))/2 |
---|
| 533 | !JL13index ! Average approximation as for temperature... |
---|
[253] | 534 | end do |
---|
| 535 | qvar(1)=qvar(2) |
---|
| 536 | |
---|
| 537 | elseif(varfixed)then |
---|
| 538 | |
---|
[1483] | 539 | do l=1,nlayer ! Here we will assign fixed water vapour profiles globally. |
---|
[253] | 540 | RH = satval * ((pplay(ig,l)/pplev(ig,1) - 0.02) / 0.98) |
---|
| 541 | if(RH.lt.0.0) RH=0.0 |
---|
| 542 | |
---|
[1993] | 543 | call Psat_water(pt(ig,l),pplay(ig,l),psat,qsat) |
---|
[253] | 544 | |
---|
| 545 | !pq_temp(l) = qsat ! fully saturated everywhere |
---|
| 546 | pq_temp(l) = RH * qsat ! ~realistic profile (e.g. 80% saturation at ground) |
---|
| 547 | end do |
---|
| 548 | |
---|
| 549 | do l=1,nlayer |
---|
| 550 | qvar(2*l) = pq_temp(nlayer+1-l) |
---|
| 551 | qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp(max(nlayer-l,1)))/2 |
---|
| 552 | end do |
---|
[1483] | 553 | |
---|
[253] | 554 | qvar(1)=qvar(2) |
---|
| 555 | |
---|
| 556 | ! Lowest layer of atmosphere |
---|
| 557 | RH = satval * (1 - 0.02) / 0.98 |
---|
| 558 | if(RH.lt.0.0) RH=0.0 |
---|
| 559 | |
---|
[1308] | 560 | qvar(2*nlayer+1)= RH * qsat ! ~realistic profile (e.g. 80% saturation at ground) |
---|
[1016] | 561 | |
---|
[253] | 562 | else |
---|
| 563 | do k=1,L_LEVELS |
---|
| 564 | qvar(k) = 1.0D-7 |
---|
| 565 | end do |
---|
[1483] | 566 | end if ! varactive/varfixed |
---|
[253] | 567 | |
---|
[538] | 568 | if(.not.kastprof)then |
---|
[1483] | 569 | ! IMPORTANT: Now convert from kg/kg to mol/mol. |
---|
[728] | 570 | do k=1,L_LEVELS |
---|
| 571 | qvar(k) = qvar(k)/(epsi+qvar(k)*(1.-epsi)) |
---|
| 572 | end do |
---|
[538] | 573 | end if |
---|
[253] | 574 | |
---|
[366] | 575 | !----------------------------------------------------------------------- |
---|
[1483] | 576 | ! kcm mode only ! |
---|
| 577 | !----------------------------------------------------------------------- |
---|
| 578 | |
---|
[305] | 579 | if(kastprof)then |
---|
[1716] | 580 | |
---|
| 581 | if(.not.global1d)then ! garde-fou/safeguard added by MT (to be removed in the future) |
---|
[2269] | 582 | message='You have to fix mu0, the cosinus of the solar angle' |
---|
| 583 | call abort_physic(subname,message,1) |
---|
[1716] | 584 | endif |
---|
| 585 | |
---|
[1483] | 586 | ! Initial values equivalent to mugaz. |
---|
[305] | 587 | DO l=1,nlayer |
---|
[366] | 588 | muvarrad(2*l) = mugaz |
---|
| 589 | muvarrad(2*l+1) = mugaz |
---|
| 590 | END DO |
---|
| 591 | |
---|
[1016] | 592 | if(ngasmx.gt.1)then |
---|
[366] | 593 | |
---|
[1016] | 594 | DO l=1,nlayer |
---|
[1483] | 595 | muvarrad(2*l) = muvar(ig,nlayer+2-l) |
---|
[1016] | 596 | muvarrad(2*l+1) = (muvar(ig,nlayer+2-l) + & |
---|
[1483] | 597 | muvar(ig,max(nlayer+1-l,1)))/2 |
---|
[1016] | 598 | END DO |
---|
| 599 | |
---|
| 600 | muvarrad(1) = muvarrad(2) |
---|
[1483] | 601 | muvarrad(2*nlayer+1) = muvar(ig,1) |
---|
[366] | 602 | |
---|
[1016] | 603 | print*,'Recalculating qvar with VARIABLE epsi for kastprof' |
---|
| 604 | print*,'Assumes that the variable gas is H2O!!!' |
---|
| 605 | print*,'Assumes that there is only one tracer' |
---|
[1483] | 606 | |
---|
[1016] | 607 | !i_var=igcm_h2o_vap |
---|
| 608 | i_var=1 |
---|
[1483] | 609 | |
---|
[1016] | 610 | if(nq.gt.1)then |
---|
[2269] | 611 | message='Need 1 tracer only to run kcm1d.e' |
---|
| 612 | call abort_physic(subname,message,1) |
---|
[1016] | 613 | endif |
---|
[1483] | 614 | |
---|
[1016] | 615 | do l=1,nlayer |
---|
| 616 | vtmp(l)=pq(ig,l,i_var)/(epsi+pq(ig,l,i_var)*(1.-epsi)) |
---|
| 617 | !vtmp(l)=pq(ig,l,i_var)*muvar(ig,l+1)/mH2O !JL to be changed |
---|
| 618 | end do |
---|
[366] | 619 | |
---|
[1016] | 620 | do l=1,nlayer |
---|
| 621 | qvar(2*l) = vtmp(nlayer+1-l) |
---|
| 622 | qvar(2*l+1) = vtmp(nlayer+1-l) |
---|
| 623 | ! qvar(2*l+1) = ( vtmp(nlayer+1-l) + vtmp(max(nlayer-l,1)) )/2 |
---|
| 624 | end do |
---|
| 625 | qvar(1)=qvar(2) |
---|
| 626 | |
---|
[2269] | 627 | write(*,*)trim(subname),' :Warning: reducing qvar in callcorrk.' |
---|
| 628 | write(*,*)trim(subname),' :Temperature profile no longer consistent ', & |
---|
[1483] | 629 | 'with saturated H2O. qsat=',satval |
---|
| 630 | |
---|
[1016] | 631 | do k=1,L_LEVELS |
---|
| 632 | qvar(k) = qvar(k)*satval |
---|
| 633 | end do |
---|
| 634 | |
---|
| 635 | endif |
---|
| 636 | else ! if kastprof |
---|
[366] | 637 | DO l=1,nlayer |
---|
[305] | 638 | muvarrad(2*l) = muvar(ig,nlayer+2-l) |
---|
[1016] | 639 | muvarrad(2*l+1) = (muvar(ig,nlayer+2-l)+muvar(ig,max(nlayer+1-l,1)))/2 |
---|
[305] | 640 | END DO |
---|
| 641 | |
---|
| 642 | muvarrad(1) = muvarrad(2) |
---|
[1308] | 643 | muvarrad(2*nlayer+1)=muvar(ig,1) |
---|
[1483] | 644 | endif ! if kastprof |
---|
[1016] | 645 | |
---|
[1483] | 646 | ! Keep values inside limits for which we have radiative transfer coefficients !!! |
---|
| 647 | if(L_REFVAR.gt.1)then ! (there was a bug here) |
---|
[253] | 648 | do k=1,L_LEVELS |
---|
| 649 | if(qvar(k).lt.wrefvar(1))then |
---|
| 650 | qvar(k)=wrefvar(1)+1.0e-8 |
---|
| 651 | elseif(qvar(k).gt.wrefvar(L_REFVAR))then |
---|
| 652 | qvar(k)=wrefvar(L_REFVAR)-1.0e-8 |
---|
| 653 | endif |
---|
| 654 | end do |
---|
| 655 | endif |
---|
| 656 | |
---|
| 657 | !----------------------------------------------------------------------- |
---|
| 658 | ! Pressure and temperature |
---|
[1483] | 659 | !----------------------------------------------------------------------- |
---|
[253] | 660 | |
---|
| 661 | DO l=1,nlayer |
---|
| 662 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
---|
| 663 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
---|
| 664 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
---|
| 665 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 |
---|
| 666 | END DO |
---|
| 667 | |
---|
[600] | 668 | plevrad(1) = 0. |
---|
[1988] | 669 | ! plevrad(2) = 0. !! JL18 enabling this line puts the radiative top at p=0 which was the idea before, but does not seem to perform best after all. |
---|
[253] | 670 | |
---|
| 671 | tlevrad(1) = tlevrad(2) |
---|
[1308] | 672 | tlevrad(2*nlayer+1)=tsurf(ig) |
---|
[253] | 673 | |
---|
[1988] | 674 | pmid(1) = pplay(ig,nlayer)/scalep |
---|
[1423] | 675 | pmid(2) = pmid(1) |
---|
| 676 | |
---|
[253] | 677 | tmid(1) = tlevrad(2) |
---|
[1423] | 678 | tmid(2) = tmid(1) |
---|
| 679 | |
---|
| 680 | DO l=1,L_NLAYRAD-1 |
---|
| 681 | tmid(2*l+1) = tlevrad(2*l+1) |
---|
| 682 | tmid(2*l+2) = tlevrad(2*l+1) |
---|
| 683 | pmid(2*l+1) = plevrad(2*l+1) |
---|
| 684 | pmid(2*l+2) = plevrad(2*l+1) |
---|
[253] | 685 | END DO |
---|
[1423] | 686 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
---|
| 687 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
---|
[253] | 688 | |
---|
[1423] | 689 | !!Alternative interpolation: |
---|
| 690 | ! pmid(3) = pmid(1) |
---|
| 691 | ! pmid(4) = pmid(1) |
---|
| 692 | ! tmid(3) = tmid(1) |
---|
| 693 | ! tmid(4) = tmid(1) |
---|
| 694 | ! DO l=2,L_NLAYRAD-1 |
---|
| 695 | ! tmid(2*l+1) = tlevrad(2*l) |
---|
| 696 | ! tmid(2*l+2) = tlevrad(2*l) |
---|
| 697 | ! pmid(2*l+1) = plevrad(2*l) |
---|
| 698 | ! pmid(2*l+2) = plevrad(2*l) |
---|
| 699 | ! END DO |
---|
| 700 | ! pmid(L_LEVELS) = plevrad(L_LEVELS-1) |
---|
| 701 | ! tmid(L_LEVELS) = tlevrad(L_LEVELS-1) |
---|
| 702 | |
---|
[1483] | 703 | ! Test for out-of-bounds pressure. |
---|
[253] | 704 | if(plevrad(3).lt.pgasmin)then |
---|
| 705 | print*,'Minimum pressure is outside the radiative' |
---|
| 706 | print*,'transfer kmatrix bounds, exiting.' |
---|
[2269] | 707 | message="Minimum pressure outside of kmatrix bounds" |
---|
| 708 | call abort_physic(subname,message,1) |
---|
[253] | 709 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
---|
| 710 | print*,'Maximum pressure is outside the radiative' |
---|
| 711 | print*,'transfer kmatrix bounds, exiting.' |
---|
[2269] | 712 | message="Minimum pressure outside of kmatrix bounds" |
---|
| 713 | call abort_physic(subname,message,1) |
---|
[253] | 714 | endif |
---|
| 715 | |
---|
[1483] | 716 | ! Test for out-of-bounds temperature. |
---|
[2283] | 717 | ! -- JVO 20 : Also add a sanity test checking that tlevrad is |
---|
| 718 | ! within Planck function temperature boundaries, |
---|
| 719 | ! which would cause gfluxi/sfluxi to crash. |
---|
[253] | 720 | do k=1,L_LEVELS |
---|
[2283] | 721 | |
---|
[253] | 722 | if(tlevrad(k).lt.tgasmin)then |
---|
| 723 | print*,'Minimum temperature is outside the radiative' |
---|
[1145] | 724 | print*,'transfer kmatrix bounds' |
---|
[858] | 725 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
| 726 | print*,"tgasmin=",tgasmin |
---|
[1145] | 727 | if (strictboundcorrk) then |
---|
[2269] | 728 | message="Minimum temperature outside of kmatrix bounds" |
---|
| 729 | call abort_physic(subname,message,1) |
---|
[1145] | 730 | else |
---|
| 731 | print*,'***********************************************' |
---|
[1940] | 732 | print*,'we allow model to continue with tlevrad<tgasmin' |
---|
[1145] | 733 | print*,' ... we assume we know what you are doing ... ' |
---|
| 734 | print*,' ... but do not let this happen too often ... ' |
---|
| 735 | print*,'***********************************************' |
---|
[1940] | 736 | !tlevrad(k)=tgasmin ! Used in the source function ! |
---|
[1145] | 737 | endif |
---|
[253] | 738 | elseif(tlevrad(k).gt.tgasmax)then |
---|
| 739 | print*,'Maximum temperature is outside the radiative' |
---|
| 740 | print*,'transfer kmatrix bounds, exiting.' |
---|
[1145] | 741 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
| 742 | print*,"tgasmax=",tgasmax |
---|
| 743 | if (strictboundcorrk) then |
---|
[2269] | 744 | message="Maximum temperature outside of kmatrix bounds" |
---|
| 745 | call abort_physic(subname,message,1) |
---|
[1145] | 746 | else |
---|
| 747 | print*,'***********************************************' |
---|
[2244] | 748 | print*,'we allow model to continue with tlevrad>tgasmax' |
---|
[1145] | 749 | print*,' ... we assume we know what you are doing ... ' |
---|
| 750 | print*,' ... but do not let this happen too often ... ' |
---|
| 751 | print*,'***********************************************' |
---|
[1940] | 752 | !tlevrad(k)=tgasmax ! Used in the source function ! |
---|
[1145] | 753 | endif |
---|
[253] | 754 | endif |
---|
[2283] | 755 | |
---|
| 756 | if (tlevrad(k).lt.tplanckmin) then |
---|
| 757 | print*,'Minimum temperature is outside the boundaries for' |
---|
| 758 | print*,'Planck function integration set in callphys.def, aborting.' |
---|
| 759 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
| 760 | print*,"tplanckmin=",tplanckmin |
---|
| 761 | message="Minimum temperature outside Planck function bounds - Change tplanckmin in callphys.def" |
---|
| 762 | call abort_physic(subname,message,1) |
---|
| 763 | else if (tlevrad(k).gt.tplanckmax) then |
---|
| 764 | print*,'Maximum temperature is outside the boundaries for' |
---|
| 765 | print*,'Planck function integration set in callphys.def, aborting.' |
---|
| 766 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
| 767 | print*,"tplanckmax=",tplanckmax |
---|
| 768 | message="Maximum temperature outside Planck function bounds - Change tplanckmax in callphys.def" |
---|
| 769 | call abort_physic(subname,message,1) |
---|
| 770 | endif |
---|
| 771 | |
---|
[253] | 772 | enddo |
---|
[2283] | 773 | |
---|
[1016] | 774 | do k=1,L_NLAYRAD+1 |
---|
| 775 | if(tmid(k).lt.tgasmin)then |
---|
| 776 | print*,'Minimum temperature is outside the radiative' |
---|
| 777 | print*,'transfer kmatrix bounds, exiting.' |
---|
[1145] | 778 | print*,"k=",k," tmid(k)=",tmid(k) |
---|
[1016] | 779 | print*,"tgasmin=",tgasmin |
---|
[1145] | 780 | if (strictboundcorrk) then |
---|
[2269] | 781 | message="Minimum temperature outside of kmatrix bounds" |
---|
| 782 | call abort_physic(subname,message,1) |
---|
[1145] | 783 | else |
---|
| 784 | print*,'***********************************************' |
---|
[1940] | 785 | print*,'we allow model to continue but with tmid=tgasmin' |
---|
[1145] | 786 | print*,' ... we assume we know what you are doing ... ' |
---|
| 787 | print*,' ... but do not let this happen too often ... ' |
---|
| 788 | print*,'***********************************************' |
---|
| 789 | tmid(k)=tgasmin |
---|
| 790 | endif |
---|
[1016] | 791 | elseif(tmid(k).gt.tgasmax)then |
---|
| 792 | print*,'Maximum temperature is outside the radiative' |
---|
| 793 | print*,'transfer kmatrix bounds, exiting.' |
---|
[1145] | 794 | print*,"k=",k," tmid(k)=",tmid(k) |
---|
| 795 | print*,"tgasmax=",tgasmax |
---|
| 796 | if (strictboundcorrk) then |
---|
[2269] | 797 | message="Maximum temperature outside of kmatrix bounds" |
---|
| 798 | call abort_physic(subname,message,1) |
---|
[1145] | 799 | else |
---|
| 800 | print*,'***********************************************' |
---|
[2244] | 801 | print*,'we allow model to continue but with tmid=tgasmax' |
---|
[1145] | 802 | print*,' ... we assume we know what you are doing ... ' |
---|
| 803 | print*,' ... but do not let this happen too often ... ' |
---|
| 804 | print*,'***********************************************' |
---|
| 805 | tmid(k)=tgasmax |
---|
| 806 | endif |
---|
[1016] | 807 | endif |
---|
| 808 | enddo |
---|
[253] | 809 | |
---|
| 810 | !======================================================================= |
---|
[1483] | 811 | ! III. Calling the main radiative transfer subroutines |
---|
| 812 | !======================================================================= |
---|
[253] | 813 | |
---|
[2543] | 814 | ! ---------------------------------------------------------------- |
---|
| 815 | ! Recombine reference corrk tables if needed - Added by JVO, 2020. |
---|
| 816 | if (corrk_recombin) then |
---|
| 817 | call call_recombin(ig,nlayer,pq(ig,:,:),pplay(ig,:),pt(ig,:),qvar(:),tmid(:),pmid(:)) |
---|
| 818 | endif |
---|
| 819 | ! ---------------------------------------------------------------- |
---|
[253] | 820 | |
---|
[1483] | 821 | Cmk= 0.01 * 1.0 / (glat(ig) * mugaz * 1.672621e-27) ! q_main=1.0 assumed. |
---|
[1529] | 822 | glat_ig=glat(ig) |
---|
[1194] | 823 | |
---|
[253] | 824 | !----------------------------------------------------------------------- |
---|
[1483] | 825 | ! Short Wave Part |
---|
| 826 | !----------------------------------------------------------------------- |
---|
[253] | 827 | |
---|
[1483] | 828 | if(fract(ig) .ge. 1.0e-4) then ! Only during daylight. |
---|
[787] | 829 | if((ngrid.eq.1).and.(global1d))then |
---|
[253] | 830 | do nw=1,L_NSPECTV |
---|
[1483] | 831 | stel_fract(nw)= stel(nw)* 0.25 / acosz ! globally averaged = divide by 4, and we correct for solar zenith angle |
---|
[253] | 832 | end do |
---|
| 833 | else |
---|
| 834 | do nw=1,L_NSPECTV |
---|
[1161] | 835 | stel_fract(nw)= stel(nw) * fract(ig) |
---|
[253] | 836 | end do |
---|
[1483] | 837 | endif |
---|
[2032] | 838 | |
---|
[253] | 839 | call optcv(dtauv,tauv,taucumv,plevrad, & |
---|
| 840 | qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, & |
---|
[305] | 841 | tmid,pmid,taugsurf,qvar,muvarrad) |
---|
[253] | 842 | |
---|
| 843 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & |
---|
[1781] | 844 | acosz,stel_fract, & |
---|
| 845 | nfluxtopv,fluxtopvdn,nfluxoutv_nu,nfluxgndv_nu, & |
---|
[253] | 846 | fmnetv,fluxupv,fluxdnv,fzerov,taugsurf) |
---|
| 847 | |
---|
[1483] | 848 | else ! During the night, fluxes = 0. |
---|
[962] | 849 | nfluxtopv = 0.0d0 |
---|
[1529] | 850 | fluxtopvdn = 0.0d0 |
---|
[962] | 851 | nfluxoutv_nu(:) = 0.0d0 |
---|
| 852 | nfluxgndv_nu(:) = 0.0d0 |
---|
[253] | 853 | do l=1,L_NLAYRAD |
---|
[962] | 854 | fmnetv(l)=0.0d0 |
---|
| 855 | fluxupv(l)=0.0d0 |
---|
| 856 | fluxdnv(l)=0.0d0 |
---|
[253] | 857 | end do |
---|
| 858 | end if |
---|
| 859 | |
---|
[1482] | 860 | |
---|
[1526] | 861 | ! Equivalent Albedo Calculation (for OUTPUT). MT2015 |
---|
| 862 | if(fract(ig) .ge. 1.0e-4) then ! equivalent albedo makes sense only during daylight. |
---|
| 863 | surface_stellar_flux=sum(nfluxgndv_nu(1:L_NSPECTV)) |
---|
| 864 | if(surface_stellar_flux .gt. 1.0e-3) then ! equivalent albedo makes sense only if the stellar flux received by the surface is positive. |
---|
[1529] | 865 | DO nw=1,L_NSPECTV |
---|
| 866 | albedo_temp(nw)=albedo(ig,nw)*nfluxgndv_nu(nw) |
---|
[1526] | 867 | ENDDO |
---|
[1529] | 868 | albedo_temp(1:L_NSPECTV)=albedo_temp(1:L_NSPECTV)/surface_stellar_flux |
---|
[1526] | 869 | albedo_equivalent(ig)=sum(albedo_temp(1:L_NSPECTV)) |
---|
| 870 | else |
---|
| 871 | albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. |
---|
| 872 | endif |
---|
[1529] | 873 | else |
---|
| 874 | albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. |
---|
| 875 | endif |
---|
[1482] | 876 | |
---|
| 877 | |
---|
[253] | 878 | !----------------------------------------------------------------------- |
---|
[1483] | 879 | ! Long Wave Part |
---|
| 880 | !----------------------------------------------------------------------- |
---|
[253] | 881 | |
---|
| 882 | call optci(plevrad,tlevrad,dtaui,taucumi, & |
---|
| 883 | qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid, & |
---|
[305] | 884 | taugsurfi,qvar,muvarrad) |
---|
[538] | 885 | |
---|
[253] | 886 | call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, & |
---|
[1781] | 887 | wnoi,dwni,cosbi,wbari,nfluxtopi,nfluxtopi_nu, & |
---|
[253] | 888 | fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) |
---|
| 889 | |
---|
| 890 | !----------------------------------------------------------------------- |
---|
| 891 | ! Transformation of the correlated-k code outputs |
---|
| 892 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
---|
| 893 | |
---|
| 894 | ! Flux incident at the top of the atmosphere |
---|
[961] | 895 | fluxtop_dn(ig)=fluxtopvdn |
---|
[253] | 896 | |
---|
| 897 | fluxtop_lw(ig) = real(nfluxtopi) |
---|
| 898 | fluxabs_sw(ig) = real(-nfluxtopv) |
---|
| 899 | fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD)) |
---|
| 900 | fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) |
---|
[1482] | 901 | |
---|
| 902 | ! Flux absorbed by the surface. By MT2015. |
---|
| 903 | fluxsurfabs_sw(ig) = fluxsurf_sw(ig)*(1.-albedo_equivalent(ig)) |
---|
[253] | 904 | |
---|
| 905 | if(fluxtop_dn(ig).lt.0.0)then |
---|
| 906 | print*,'Achtung! fluxtop_dn has lost the plot!' |
---|
| 907 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
| 908 | print*,'acosz=',acosz |
---|
| 909 | print*,'aerosol=',aerosol(ig,:,:) |
---|
| 910 | print*,'temp= ',pt(ig,:) |
---|
| 911 | print*,'pplay= ',pplay(ig,:) |
---|
[2269] | 912 | message="Achtung! fluxtop_dn has lost the plot!" |
---|
| 913 | call abort_physic(subname,message,1) |
---|
[253] | 914 | endif |
---|
| 915 | |
---|
| 916 | ! Spectral output, for exoplanet observational comparison |
---|
| 917 | if(specOLR)then |
---|
| 918 | do nw=1,L_NSPECTI |
---|
[526] | 919 | OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth |
---|
[253] | 920 | end do |
---|
| 921 | do nw=1,L_NSPECTV |
---|
[2537] | 922 | GSR_nu(ig,nw)=nfluxgndv_nu(nw)/DWNV(nw) |
---|
[526] | 923 | OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth |
---|
[253] | 924 | end do |
---|
| 925 | endif |
---|
| 926 | |
---|
| 927 | ! Finally, the heating rates |
---|
| 928 | |
---|
[586] | 929 | DO l=2,L_NLAYRAD |
---|
| 930 | dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & |
---|
[1194] | 931 | *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
[586] | 932 | dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) & |
---|
[1194] | 933 | *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
[586] | 934 | END DO |
---|
[253] | 935 | |
---|
| 936 | ! These are values at top of atmosphere |
---|
[586] | 937 | dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & |
---|
[1988] | 938 | *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2))) |
---|
[586] | 939 | dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) & |
---|
[1988] | 940 | *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2))) |
---|
[253] | 941 | |
---|
[2133] | 942 | ! Optical thickness diagnostics (added by JVO) |
---|
| 943 | if (diagdtau) then |
---|
| 944 | do l=1,L_NLAYRAD |
---|
| 945 | do nw=1,L_NSPECTV |
---|
| 946 | int_dtauv(ig,l,nw) = 0.0d0 |
---|
| 947 | DO k=1,L_NGAUSS |
---|
[2138] | 948 | ! Output exp(-tau) because gweight ponderates exp and not tau itself |
---|
| 949 | int_dtauv(ig,l,nw)= int_dtauv(ig,l,nw) + exp(-dtauv(l,nw,k))*gweight(k) |
---|
[2133] | 950 | ENDDO |
---|
| 951 | enddo |
---|
| 952 | do nw=1,L_NSPECTI |
---|
| 953 | int_dtaui(ig,l,nw) = 0.0d0 |
---|
| 954 | DO k=1,L_NGAUSS |
---|
[2138] | 955 | ! Output exp(-tau) because gweight ponderates exp and not tau itself |
---|
| 956 | int_dtaui(ig,l,nw)= int_dtaui(ig,l,nw) + exp(-dtaui(l,nw,k))*gweight(k) |
---|
[2133] | 957 | ENDDO |
---|
| 958 | enddo |
---|
| 959 | enddo |
---|
| 960 | endif |
---|
[253] | 961 | |
---|
[2133] | 962 | |
---|
[1483] | 963 | !----------------------------------------------------------------------- |
---|
| 964 | end do ! End of big loop over every GCM column. |
---|
| 965 | !----------------------------------------------------------------------- |
---|
[253] | 966 | |
---|
[1483] | 967 | |
---|
| 968 | |
---|
[253] | 969 | !----------------------------------------------------------------------- |
---|
| 970 | ! Additional diagnostics |
---|
[1483] | 971 | !----------------------------------------------------------------------- |
---|
[253] | 972 | |
---|
[1483] | 973 | ! IR spectral output, for exoplanet observational comparison |
---|
| 974 | if(lastcall.and.(ngrid.eq.1))then ! could disable the 1D output, they are in the diagfi and diagspec... JL12 |
---|
[253] | 975 | |
---|
[1483] | 976 | print*,'Saving scalar quantities in surf_vals.out...' |
---|
| 977 | print*,'psurf = ', pplev(1,1),' Pa' |
---|
| 978 | open(116,file='surf_vals.out') |
---|
| 979 | write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1), & |
---|
| 980 | real(-nfluxtopv),real(nfluxtopi) |
---|
| 981 | close(116) |
---|
[253] | 982 | |
---|
[526] | 983 | |
---|
[1483] | 984 | ! USEFUL COMMENT - Do Not Remove. |
---|
| 985 | ! |
---|
[526] | 986 | ! if(specOLR)then |
---|
| 987 | ! open(117,file='OLRnu.out') |
---|
| 988 | ! do nw=1,L_NSPECTI |
---|
| 989 | ! write(117,*) OLR_nu(1,nw) |
---|
| 990 | ! enddo |
---|
| 991 | ! close(117) |
---|
| 992 | ! |
---|
| 993 | ! open(127,file='OSRnu.out') |
---|
| 994 | ! do nw=1,L_NSPECTV |
---|
| 995 | ! write(127,*) OSR_nu(1,nw) |
---|
| 996 | ! enddo |
---|
| 997 | ! close(127) |
---|
| 998 | ! endif |
---|
[253] | 999 | |
---|
[1483] | 1000 | ! OLR vs altitude: do it as a .txt file. |
---|
| 1001 | OLRz=.false. |
---|
| 1002 | if(OLRz)then |
---|
| 1003 | print*,'saving IR vertical flux for OLRz...' |
---|
| 1004 | open(118,file='OLRz_plevs.out') |
---|
| 1005 | open(119,file='OLRz.out') |
---|
| 1006 | do l=1,L_NLAYRAD |
---|
| 1007 | write(118,*) plevrad(2*l) |
---|
| 1008 | do nw=1,L_NSPECTI |
---|
| 1009 | write(119,*) fluxupi_nu(l,nw) |
---|
| 1010 | enddo |
---|
| 1011 | enddo |
---|
| 1012 | close(118) |
---|
| 1013 | close(119) |
---|
| 1014 | endif |
---|
[253] | 1015 | |
---|
[305] | 1016 | endif |
---|
[253] | 1017 | |
---|
[1483] | 1018 | ! See physiq.F for explanations about CLFvarying. This is temporary. |
---|
[470] | 1019 | if (lastcall .and. .not.CLFvarying) then |
---|
| 1020 | IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi ) |
---|
| 1021 | IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv ) |
---|
[1315] | 1022 | !$OMP BARRIER |
---|
| 1023 | !$OMP MASTER |
---|
[470] | 1024 | IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref ) |
---|
| 1025 | IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref ) |
---|
| 1026 | IF( ALLOCATED( wrefvar ) ) DEALLOCATE( wrefvar ) |
---|
| 1027 | IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref ) |
---|
[2026] | 1028 | IF( ALLOCATED( gweight ) ) DEALLOCATE( gweight ) |
---|
[1315] | 1029 | !$OMP END MASTER |
---|
[1529] | 1030 | !$OMP BARRIER |
---|
[861] | 1031 | IF ( ALLOCATED(reffrad)) DEALLOCATE(reffrad) |
---|
| 1032 | IF ( ALLOCATED(nueffrad)) DEALLOCATE(nueffrad) |
---|
[470] | 1033 | endif |
---|
| 1034 | |
---|
[716] | 1035 | |
---|
[253] | 1036 | end subroutine callcorrk |
---|
[2032] | 1037 | |
---|
| 1038 | END MODULE callcorrk_mod |
---|