[526] | 1 | subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf, & |
---|
[1482] | 2 | albedo,albedo_equivalent,emis,mu0,pplev,pplay,pt, & |
---|
[858] | 3 | tsurf,fract,dist_star,aerosol,muvar, & |
---|
[253] | 4 | dtlw,dtsw,fluxsurf_lw, & |
---|
[1482] | 5 | fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw, & |
---|
| 6 | fluxabs_sw,fluxtop_dn, & |
---|
[538] | 7 | OLR_nu,OSR_nu, & |
---|
[858] | 8 | tau_col,cloudfrac,totcloudfrac, & |
---|
[253] | 9 | clearsky,firstcall,lastcall) |
---|
| 10 | |
---|
[1699] | 11 | use mod_phys_lmdz_para, only : is_master |
---|
[253] | 12 | use radinc_h |
---|
| 13 | use radcommon_h |
---|
| 14 | use watercommon_h |
---|
[374] | 15 | use datafile_mod, only: datadir |
---|
[1521] | 16 | use ioipsl_getin_p_mod, only: getin_p |
---|
[471] | 17 | use gases_h |
---|
[1026] | 18 | use radii_mod, only : su_aer_radii,co2_reffrad,h2o_reffrad,dust_reffrad,h2so4_reffrad,back2lay_reffrad |
---|
[1677] | 19 | use aerosol_mod, only : iaero_co2,iaero_h2o,iaero_dust,iaero_h2so4, iaero_back2lay, iaero_nh3, iaero_aurora |
---|
[787] | 20 | USE tracer_h |
---|
[1384] | 21 | use comcstfi_mod, only: pi, mugaz, cpp |
---|
[1709] | 22 | use callkeys_mod, only: varactive,diurnal,tracer,water,varfixed,satval, & |
---|
[1529] | 23 | kastprof,strictboundcorrk,specOLR,CLFvarying |
---|
[787] | 24 | |
---|
[253] | 25 | implicit none |
---|
| 26 | |
---|
| 27 | !================================================================== |
---|
| 28 | ! |
---|
| 29 | ! Purpose |
---|
| 30 | ! ------- |
---|
| 31 | ! Solve the radiative transfer using the correlated-k method for |
---|
| 32 | ! the gaseous absorption and the Toon et al. (1989) method for |
---|
| 33 | ! scatttering due to aerosols. |
---|
| 34 | ! |
---|
| 35 | ! Authors |
---|
| 36 | ! ------- |
---|
| 37 | ! Emmanuel 01/2001, Forget 09/2001 |
---|
| 38 | ! Robin Wordsworth (2009) |
---|
| 39 | ! |
---|
| 40 | !================================================================== |
---|
| 41 | |
---|
| 42 | !----------------------------------------------------------------------- |
---|
| 43 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
---|
| 44 | ! Layer #1 is the layer near the ground. |
---|
[1308] | 45 | ! Layer #nlayer is the layer at the top. |
---|
[1483] | 46 | !----------------------------------------------------------------------- |
---|
[253] | 47 | |
---|
[1483] | 48 | |
---|
| 49 | ! INPUT |
---|
| 50 | INTEGER,INTENT(IN) :: ngrid ! Number of atmospheric columns. |
---|
| 51 | INTEGER,INTENT(IN) :: nlayer ! Number of atmospheric layers. |
---|
| 52 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! Tracers (kg/kg_of_air). |
---|
| 53 | INTEGER,INTENT(IN) :: nq ! Number of tracers. |
---|
| 54 | REAL,INTENT(IN) :: qsurf(ngrid,nq) ! Tracers on surface (kg.m-2). |
---|
| 55 | REAL,INTENT(IN) :: albedo(ngrid,L_NSPECTV) ! Spectral Short Wavelengths Albedo. By MT2015 |
---|
| 56 | REAL,INTENT(IN) :: emis(ngrid) ! Long Wave emissivity. |
---|
| 57 | REAL,INTENT(IN) :: mu0(ngrid) ! Cosine of sun incident angle. |
---|
| 58 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). |
---|
| 59 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). |
---|
| 60 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! Air temperature (K). |
---|
| 61 | REAL,INTENT(IN) :: tsurf(ngrid) ! Surface temperature (K). |
---|
| 62 | REAL,INTENT(IN) :: fract(ngrid) ! Fraction of day. |
---|
| 63 | REAL,INTENT(IN) :: dist_star ! Distance star-planet (AU). |
---|
| 64 | REAL,INTENT(IN) :: muvar(ngrid,nlayer+1) |
---|
| 65 | REAL,INTENT(IN) :: cloudfrac(ngrid,nlayer) ! Fraction of clouds (%). |
---|
[858] | 66 | logical,intent(in) :: clearsky |
---|
[1483] | 67 | logical,intent(in) :: firstcall ! Signals first call to physics. |
---|
| 68 | logical,intent(in) :: lastcall ! Signals last call to physics. |
---|
| 69 | |
---|
| 70 | ! OUTPUT |
---|
| 71 | REAL,INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! Aerosol tau (kg/kg). |
---|
| 72 | REAL,INTENT(OUT) :: dtlw(ngrid,nlayer) ! Heating rate (K/s) due to LW radiation. |
---|
| 73 | REAL,INTENT(OUT) :: dtsw(ngrid,nlayer) ! Heating rate (K/s) due to SW radiation. |
---|
| 74 | REAL,INTENT(OUT) :: fluxsurf_lw(ngrid) ! Incident LW flux to surf (W/m2). |
---|
| 75 | REAL,INTENT(OUT) :: fluxsurf_sw(ngrid) ! Incident SW flux to surf (W/m2) |
---|
| 76 | REAL,INTENT(OUT) :: fluxsurfabs_sw(ngrid) ! Absorbed SW flux by the surface (W/m2). By MT2015. |
---|
| 77 | REAL,INTENT(OUT) :: fluxtop_lw(ngrid) ! Outgoing LW flux to space (W/m2). |
---|
| 78 | REAL,INTENT(OUT) :: fluxabs_sw(ngrid) ! SW flux absorbed by the planet (W/m2). |
---|
| 79 | REAL,INTENT(OUT) :: fluxtop_dn(ngrid) ! Incident top of atmosphere SW flux (W/m2). |
---|
| 80 | REAL,INTENT(OUT) :: OLR_nu(ngrid,L_NSPECTI) ! Outgoing LW radition in each band (Normalized to the band width (W/m2/cm-1). |
---|
| 81 | REAL,INTENT(OUT) :: OSR_nu(ngrid,L_NSPECTV) ! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1). |
---|
| 82 | REAL,INTENT(OUT) :: tau_col(ngrid) ! Diagnostic from aeropacity. |
---|
| 83 | REAL,INTENT(OUT) :: albedo_equivalent(ngrid) ! Spectrally Integrated Albedo. For Diagnostic. By MT2015 |
---|
| 84 | REAL,INTENT(OUT) :: totcloudfrac(ngrid) ! Column Fraction of clouds (%). |
---|
| 85 | |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | |
---|
[253] | 89 | |
---|
[1483] | 90 | ! Globally varying aerosol optical properties on GCM grid ; not needed everywhere so not in radcommon_h. |
---|
[1308] | 91 | REAL :: QVISsQREF3d(ngrid,nlayer,L_NSPECTV,naerkind) |
---|
| 92 | REAL :: omegaVIS3d(ngrid,nlayer,L_NSPECTV,naerkind) |
---|
| 93 | REAL :: gVIS3d(ngrid,nlayer,L_NSPECTV,naerkind) |
---|
| 94 | REAL :: QIRsQREF3d(ngrid,nlayer,L_NSPECTI,naerkind) |
---|
| 95 | REAL :: omegaIR3d(ngrid,nlayer,L_NSPECTI,naerkind) |
---|
| 96 | REAL :: gIR3d(ngrid,nlayer,L_NSPECTI,naerkind) |
---|
[253] | 97 | |
---|
[1308] | 98 | ! REAL :: omegaREFvis3d(ngrid,nlayer,naerkind) |
---|
| 99 | ! REAL :: omegaREFir3d(ngrid,nlayer,naerkind) ! not sure of the point of these... |
---|
[253] | 100 | |
---|
[1483] | 101 | REAL,ALLOCATABLE,SAVE :: reffrad(:,:,:) ! aerosol effective radius (m) |
---|
[858] | 102 | REAL,ALLOCATABLE,SAVE :: nueffrad(:,:,:) ! aerosol effective variance |
---|
[1315] | 103 | !$OMP THREADPRIVATE(reffrad,nueffrad) |
---|
[253] | 104 | |
---|
| 105 | !----------------------------------------------------------------------- |
---|
| 106 | ! Declaration of the variables required by correlated-k subroutines |
---|
[1483] | 107 | ! Numbered from top to bottom (unlike in the GCM) |
---|
| 108 | !----------------------------------------------------------------------- |
---|
[253] | 109 | |
---|
| 110 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
---|
| 111 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
---|
| 112 | |
---|
[1483] | 113 | ! Optical values for the optci/cv subroutines |
---|
[253] | 114 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
---|
| 115 | REAL*8 dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 116 | REAL*8 dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 117 | REAL*8 cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 118 | REAL*8 cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 119 | REAL*8 wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 120 | REAL*8 wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 121 | REAL*8 tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 122 | REAL*8 taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 123 | REAL*8 taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
| 124 | |
---|
[1715] | 125 | REAL*8 tauaero(L_LEVELS,naerkind) |
---|
[961] | 126 | REAL*8 nfluxtopv,nfluxtopi,nfluxtop,fluxtopvdn |
---|
[1483] | 127 | REAL*8 nfluxoutv_nu(L_NSPECTV) ! Outgoing band-resolved VI flux at TOA (W/m2). |
---|
| 128 | REAL*8 nfluxtopi_nu(L_NSPECTI) ! Net band-resolved IR flux at TOA (W/m2). |
---|
| 129 | REAL*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! For 1D diagnostic. |
---|
[253] | 130 | REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) |
---|
| 131 | REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) |
---|
| 132 | REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) |
---|
[1482] | 133 | REAL*8 albi,acosz |
---|
[1483] | 134 | REAL*8 albv(L_NSPECTV) ! Spectral Visible Albedo. |
---|
[253] | 135 | |
---|
[1483] | 136 | INTEGER ig,l,k,nw,iaer |
---|
[253] | 137 | |
---|
[590] | 138 | real szangle |
---|
| 139 | logical global1d |
---|
| 140 | save szangle,global1d |
---|
[1315] | 141 | !$OMP THREADPRIVATE(szangle,global1d) |
---|
[253] | 142 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
| 143 | real*8 taugsurfi(L_NSPECTI,L_NGAUSS-1) |
---|
[1483] | 144 | real*8 qvar(L_LEVELS) ! Mixing ratio of variable component (mol/mol). |
---|
[253] | 145 | |
---|
[1483] | 146 | ! Local aerosol optical properties for each column on RADIATIVE grid. |
---|
[1529] | 147 | real*8,save,allocatable :: QXVAER(:,:,:) |
---|
| 148 | real*8,save,allocatable :: QSVAER(:,:,:) |
---|
| 149 | real*8,save,allocatable :: GVAER(:,:,:) |
---|
| 150 | real*8,save,allocatable :: QXIAER(:,:,:) |
---|
| 151 | real*8,save,allocatable :: QSIAER(:,:,:) |
---|
| 152 | real*8,save,allocatable :: GIAER(:,:,:) |
---|
[253] | 153 | |
---|
[787] | 154 | real, dimension(:,:,:), save, allocatable :: QREFvis3d |
---|
| 155 | real, dimension(:,:,:), save, allocatable :: QREFir3d |
---|
[1315] | 156 | !$OMP THREADPRIVATE(QXVAER,QSVAER,GVAER,QXIAER,QSIAER,GIAER,QREFvis3d,QREFir3d) |
---|
[787] | 157 | |
---|
[253] | 158 | |
---|
[1483] | 159 | ! Miscellaneous : |
---|
[253] | 160 | real*8 temp,temp1,temp2,pweight |
---|
| 161 | character(len=10) :: tmp1 |
---|
| 162 | character(len=10) :: tmp2 |
---|
| 163 | |
---|
[1483] | 164 | ! For fixed water vapour profiles. |
---|
[253] | 165 | integer i_var |
---|
| 166 | real RH |
---|
| 167 | real*8 pq_temp(nlayer) |
---|
[1483] | 168 | ! real(KIND=r8) :: pq_temp(nlayer) ! better F90 way.. DOESNT PORT TO F77!!! |
---|
[253] | 169 | real ptemp, Ttemp, qsat |
---|
| 170 | |
---|
| 171 | logical OLRz |
---|
| 172 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
---|
| 173 | |
---|
[1483] | 174 | ! Included by RW for runaway greenhouse 1D study. |
---|
[1308] | 175 | real vtmp(nlayer) |
---|
[305] | 176 | REAL*8 muvarrad(L_LEVELS) |
---|
[1482] | 177 | |
---|
[1483] | 178 | ! Included by MT for albedo calculations. |
---|
[1482] | 179 | REAL*8 albedo_temp(L_NSPECTV) ! For equivalent albedo calculation. |
---|
[1526] | 180 | REAL*8 surface_stellar_flux ! Stellar flux reaching the surface. Useful for equivalent albedo calculation. |
---|
[305] | 181 | |
---|
[1483] | 182 | |
---|
[726] | 183 | !=============================================================== |
---|
[1483] | 184 | ! I.a Initialization on first call |
---|
| 185 | !=============================================================== |
---|
[253] | 186 | |
---|
[1483] | 187 | |
---|
[1529] | 188 | if(firstcall) then |
---|
[253] | 189 | |
---|
[1529] | 190 | ! test on allocated necessary because of CLFvarying (two calls to callcorrk in physiq) |
---|
[1715] | 191 | if(.not.allocated(QXVAER)) allocate(QXVAER(L_LEVELS,L_NSPECTV,naerkind)) |
---|
| 192 | if(.not.allocated(QSVAER)) allocate(QSVAER(L_LEVELS,L_NSPECTV,naerkind)) |
---|
| 193 | if(.not.allocated(GVAER)) allocate(GVAER(L_LEVELS,L_NSPECTV,naerkind)) |
---|
| 194 | if(.not.allocated(QXIAER)) allocate(QXIAER(L_LEVELS,L_NSPECTI,naerkind)) |
---|
| 195 | if(.not.allocated(QSIAER)) allocate(QSIAER(L_LEVELS,L_NSPECTI,naerkind)) |
---|
| 196 | if(.not.allocated(GIAER)) allocate(GIAER(L_LEVELS,L_NSPECTI,naerkind)) |
---|
[253] | 197 | |
---|
[1483] | 198 | !!! ALLOCATED instances are necessary because of CLFvarying (strategy to call callcorrk twice in physiq...) |
---|
[1308] | 199 | IF(.not.ALLOCATED(QREFvis3d)) ALLOCATE(QREFvis3d(ngrid,nlayer,naerkind)) |
---|
| 200 | IF(.not.ALLOCATED(QREFir3d)) ALLOCATE(QREFir3d(ngrid,nlayer,naerkind)) |
---|
[861] | 201 | ! Effective radius and variance of the aerosols |
---|
| 202 | IF(.not.ALLOCATED(reffrad)) allocate(reffrad(ngrid,nlayer,naerkind)) |
---|
| 203 | IF(.not.ALLOCATED(nueffrad)) allocate(nueffrad(ngrid,nlayer,naerkind)) |
---|
[787] | 204 | |
---|
[1829] | 205 | #ifndef MESOSCALE |
---|
[253] | 206 | call system('rm -f surf_vals_long.out') |
---|
[1829] | 207 | #endif |
---|
[253] | 208 | |
---|
[728] | 209 | if(naerkind.gt.4)then |
---|
| 210 | print*,'Code not general enough to deal with naerkind > 4 yet.' |
---|
| 211 | call abort |
---|
| 212 | endif |
---|
[1308] | 213 | call su_aer_radii(ngrid,nlayer,reffrad,nueffrad) |
---|
[1483] | 214 | |
---|
[1529] | 215 | |
---|
[728] | 216 | !-------------------------------------------------- |
---|
[1483] | 217 | ! Set up correlated k |
---|
| 218 | !-------------------------------------------------- |
---|
| 219 | |
---|
| 220 | |
---|
[374] | 221 | print*, "callcorrk: Correlated-k data base folder:",trim(datadir) |
---|
[1315] | 222 | call getin_p("corrkdir",corrkdir) |
---|
[253] | 223 | print*, "corrkdir = ",corrkdir |
---|
| 224 | write( tmp1, '(i3)' ) L_NSPECTI |
---|
| 225 | write( tmp2, '(i3)' ) L_NSPECTV |
---|
| 226 | banddir=trim(adjustl(tmp1))//'x'//trim(adjustl(tmp2)) |
---|
| 227 | banddir=trim(adjustl(corrkdir))//'/'//trim(adjustl(banddir)) |
---|
| 228 | |
---|
[1483] | 229 | call setspi ! Basic infrared properties. |
---|
| 230 | call setspv ! Basic visible properties. |
---|
| 231 | call sugas_corrk ! Set up gaseous absorption properties. |
---|
| 232 | call suaer_corrk ! Set up aerosol optical properties. |
---|
[1498] | 233 | |
---|
[253] | 234 | |
---|
| 235 | if((igcm_h2o_vap.eq.0) .and. varactive)then |
---|
| 236 | print*,'varactive in callcorrk but no h2o_vap tracer.' |
---|
| 237 | stop |
---|
| 238 | endif |
---|
| 239 | |
---|
[716] | 240 | OLR_nu(:,:) = 0. |
---|
| 241 | OSR_nu(:,:) = 0. |
---|
[538] | 242 | |
---|
[787] | 243 | if (ngrid.eq.1) then |
---|
[1483] | 244 | PRINT*, 'Simulate global averaged conditions ?' |
---|
| 245 | global1d = .false. ! default value |
---|
| 246 | call getin_p("global1d",global1d) |
---|
| 247 | write(*,*) "global1d = ",global1d |
---|
| 248 | |
---|
| 249 | ! Test of incompatibility : if global1d is true, there should not be any diurnal cycle. |
---|
| 250 | if (global1d.and.diurnal) then |
---|
| 251 | print*,'if global1d is true, diurnal must be set to false' |
---|
| 252 | stop |
---|
| 253 | endif |
---|
[622] | 254 | |
---|
[1483] | 255 | if (global1d) then |
---|
| 256 | PRINT *,'Solar Zenith angle (deg.) ?' |
---|
| 257 | PRINT *,'(assumed for averaged solar flux S/4)' |
---|
| 258 | szangle=60.0 ! default value |
---|
| 259 | call getin_p("szangle",szangle) |
---|
| 260 | write(*,*) "szangle = ",szangle |
---|
| 261 | endif |
---|
[590] | 262 | endif |
---|
| 263 | |
---|
[858] | 264 | end if ! of if (firstcall) |
---|
[253] | 265 | |
---|
| 266 | !======================================================================= |
---|
[1483] | 267 | ! I.b Initialization on every call |
---|
| 268 | !======================================================================= |
---|
| 269 | |
---|
[1529] | 270 | qxvaer(:,:,:)=0.0 |
---|
| 271 | qsvaer(:,:,:)=0.0 |
---|
| 272 | gvaer(:,:,:) =0.0 |
---|
| 273 | |
---|
| 274 | qxiaer(:,:,:)=0.0 |
---|
| 275 | qsiaer(:,:,:)=0.0 |
---|
| 276 | giaer(:,:,:) =0.0 |
---|
| 277 | |
---|
[728] | 278 | !-------------------------------------------------- |
---|
| 279 | ! Effective radius and variance of the aerosols |
---|
[1483] | 280 | !-------------------------------------------------- |
---|
| 281 | |
---|
[726] | 282 | do iaer=1,naerkind |
---|
[650] | 283 | |
---|
[1483] | 284 | if ((iaer.eq.iaero_co2).and.tracer.and.(igcm_co2_ice.gt.0)) then ! Treat condensed co2 particles. |
---|
[1529] | 285 | call co2_reffrad(ngrid,nlayer,nq,pq,reffrad(1,1,iaero_co2)) |
---|
[1699] | 286 | if (is_master) then |
---|
| 287 | print*,'Max. CO2 ice particle size = ',maxval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um' |
---|
| 288 | print*,'Min. CO2 ice particle size = ',minval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um' |
---|
| 289 | end if |
---|
| 290 | end if |
---|
[1483] | 291 | |
---|
| 292 | if ((iaer.eq.iaero_h2o).and.water) then ! Treat condensed water particles. To be generalized for other aerosols ... |
---|
[1529] | 293 | call h2o_reffrad(ngrid,nlayer,pq(1,1,igcm_h2o_ice),pt, & |
---|
[858] | 294 | reffrad(1,1,iaero_h2o),nueffrad(1,1,iaero_h2o)) |
---|
[1699] | 295 | if (is_master) then |
---|
| 296 | print*,'Max. H2O cloud particle size = ',maxval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um' |
---|
| 297 | print*,'Min. H2O cloud particle size = ',minval(reffrad(1:ngrid,1:nlayer,iaer))/1.e-6,' um' |
---|
| 298 | end if |
---|
[253] | 299 | endif |
---|
[1483] | 300 | |
---|
[726] | 301 | if(iaer.eq.iaero_dust)then |
---|
[1529] | 302 | call dust_reffrad(ngrid,nlayer,reffrad(1,1,iaero_dust)) |
---|
[1699] | 303 | if (is_master) then |
---|
| 304 | print*,'Dust particle size = ',reffrad(1,1,iaer)/1.e-6,' um' |
---|
| 305 | end if |
---|
[253] | 306 | endif |
---|
[1483] | 307 | |
---|
[726] | 308 | if(iaer.eq.iaero_h2so4)then |
---|
[1529] | 309 | call h2so4_reffrad(ngrid,nlayer,reffrad(1,1,iaero_h2so4)) |
---|
[1699] | 310 | if (is_master) then |
---|
| 311 | print*,'H2SO4 particle size =',reffrad(1,1,iaer)/1.e-6,' um' |
---|
| 312 | end if |
---|
[253] | 313 | endif |
---|
[1483] | 314 | |
---|
[1026] | 315 | if(iaer.eq.iaero_back2lay)then |
---|
[1529] | 316 | call back2lay_reffrad(ngrid,reffrad(1,1,iaero_back2lay),nlayer,pplev) |
---|
[1026] | 317 | endif |
---|
[1677] | 318 | ! if(iaer.eq.iaero_nh3)then |
---|
| 319 | ! call nh3_reffrad(ngrid,nlayer,reffrad(1,1,iaero_nh3)) |
---|
| 320 | ! endif |
---|
| 321 | ! if(iaer.eq.iaero_aurora)then |
---|
| 322 | ! call aurora_reffrad(ngrid,nlayer,reffrad(1,1,iaero_aurora)) |
---|
| 323 | ! endif |
---|
| 324 | |
---|
[1483] | 325 | end do !iaer=1,naerkind. |
---|
[253] | 326 | |
---|
[1715] | 327 | |
---|
[1483] | 328 | ! How much light do we get ? |
---|
[253] | 329 | do nw=1,L_NSPECTV |
---|
| 330 | stel(nw)=stellarf(nw)/(dist_star**2) |
---|
| 331 | end do |
---|
| 332 | |
---|
[1483] | 333 | ! Get 3D aerosol optical properties. |
---|
[253] | 334 | call aeroptproperties(ngrid,nlayer,reffrad,nueffrad, & |
---|
| 335 | QVISsQREF3d,omegaVIS3d,gVIS3d, & |
---|
| 336 | QIRsQREF3d,omegaIR3d,gIR3d, & |
---|
[1483] | 337 | QREFvis3d,QREFir3d) |
---|
[253] | 338 | |
---|
[1483] | 339 | ! Get aerosol optical depths. |
---|
[253] | 340 | call aeropacity(ngrid,nlayer,nq,pplay,pplev,pq,aerosol, & |
---|
| 341 | reffrad,QREFvis3d,QREFir3d, & |
---|
[1483] | 342 | tau_col,cloudfrac,totcloudfrac,clearsky) |
---|
[1529] | 343 | |
---|
[1483] | 344 | |
---|
| 345 | |
---|
| 346 | !----------------------------------------------------------------------- |
---|
| 347 | do ig=1,ngrid ! Starting Big Loop over every GCM column |
---|
[253] | 348 | !----------------------------------------------------------------------- |
---|
| 349 | |
---|
[1483] | 350 | |
---|
[253] | 351 | !======================================================================= |
---|
[1483] | 352 | ! II. Transformation of the GCM variables |
---|
| 353 | !======================================================================= |
---|
[253] | 354 | |
---|
[1483] | 355 | |
---|
[253] | 356 | !----------------------------------------------------------------------- |
---|
[1483] | 357 | ! Aerosol optical properties Qext, Qscat and g. |
---|
| 358 | ! The transformation in the vertical is the same as for temperature. |
---|
| 359 | !----------------------------------------------------------------------- |
---|
[253] | 360 | |
---|
[1483] | 361 | |
---|
[253] | 362 | do iaer=1,naerkind |
---|
[1483] | 363 | ! Shortwave. |
---|
| 364 | do nw=1,L_NSPECTV |
---|
| 365 | |
---|
[1308] | 366 | do l=1,nlayer |
---|
[253] | 367 | |
---|
[1308] | 368 | temp1=QVISsQREF3d(ig,nlayer+1-l,nw,iaer) & |
---|
| 369 | *QREFvis3d(ig,nlayer+1-l,iaer) |
---|
[253] | 370 | |
---|
[1308] | 371 | temp2=QVISsQREF3d(ig,max(nlayer-l,1),nw,iaer) & |
---|
| 372 | *QREFvis3d(ig,max(nlayer-l,1),iaer) |
---|
[253] | 373 | |
---|
| 374 | qxvaer(2*l,nw,iaer) = temp1 |
---|
| 375 | qxvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 376 | |
---|
[1308] | 377 | temp1=temp1*omegavis3d(ig,nlayer+1-l,nw,iaer) |
---|
| 378 | temp2=temp2*omegavis3d(ig,max(nlayer-l,1),nw,iaer) |
---|
[253] | 379 | |
---|
| 380 | qsvaer(2*l,nw,iaer) = temp1 |
---|
| 381 | qsvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 382 | |
---|
[1308] | 383 | temp1=gvis3d(ig,nlayer+1-l,nw,iaer) |
---|
| 384 | temp2=gvis3d(ig,max(nlayer-l,1),nw,iaer) |
---|
[253] | 385 | |
---|
| 386 | gvaer(2*l,nw,iaer) = temp1 |
---|
| 387 | gvaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 388 | |
---|
[1483] | 389 | end do ! nlayer |
---|
[253] | 390 | |
---|
| 391 | qxvaer(1,nw,iaer)=qxvaer(2,nw,iaer) |
---|
[1308] | 392 | qxvaer(2*nlayer+1,nw,iaer)=0. |
---|
[253] | 393 | |
---|
| 394 | qsvaer(1,nw,iaer)=qsvaer(2,nw,iaer) |
---|
[1308] | 395 | qsvaer(2*nlayer+1,nw,iaer)=0. |
---|
[253] | 396 | |
---|
| 397 | gvaer(1,nw,iaer)=gvaer(2,nw,iaer) |
---|
[1308] | 398 | gvaer(2*nlayer+1,nw,iaer)=0. |
---|
[253] | 399 | |
---|
[1483] | 400 | end do ! L_NSPECTV |
---|
| 401 | |
---|
| 402 | do nw=1,L_NSPECTI |
---|
| 403 | ! Longwave |
---|
[1308] | 404 | do l=1,nlayer |
---|
[253] | 405 | |
---|
[1308] | 406 | temp1=QIRsQREF3d(ig,nlayer+1-l,nw,iaer) & |
---|
| 407 | *QREFir3d(ig,nlayer+1-l,iaer) |
---|
[253] | 408 | |
---|
[1308] | 409 | temp2=QIRsQREF3d(ig,max(nlayer-l,1),nw,iaer) & |
---|
| 410 | *QREFir3d(ig,max(nlayer-l,1),iaer) |
---|
[253] | 411 | |
---|
| 412 | qxiaer(2*l,nw,iaer) = temp1 |
---|
| 413 | qxiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 414 | |
---|
[1308] | 415 | temp1=temp1*omegair3d(ig,nlayer+1-l,nw,iaer) |
---|
| 416 | temp2=temp2*omegair3d(ig,max(nlayer-l,1),nw,iaer) |
---|
[253] | 417 | |
---|
| 418 | qsiaer(2*l,nw,iaer) = temp1 |
---|
| 419 | qsiaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 420 | |
---|
[1308] | 421 | temp1=gir3d(ig,nlayer+1-l,nw,iaer) |
---|
| 422 | temp2=gir3d(ig,max(nlayer-l,1),nw,iaer) |
---|
[253] | 423 | |
---|
| 424 | giaer(2*l,nw,iaer) = temp1 |
---|
| 425 | giaer(2*l+1,nw,iaer)=(temp1+temp2)/2 |
---|
| 426 | |
---|
[1483] | 427 | end do ! nlayer |
---|
[253] | 428 | |
---|
| 429 | qxiaer(1,nw,iaer)=qxiaer(2,nw,iaer) |
---|
[1308] | 430 | qxiaer(2*nlayer+1,nw,iaer)=0. |
---|
[253] | 431 | |
---|
| 432 | qsiaer(1,nw,iaer)=qsiaer(2,nw,iaer) |
---|
[1308] | 433 | qsiaer(2*nlayer+1,nw,iaer)=0. |
---|
[253] | 434 | |
---|
| 435 | giaer(1,nw,iaer)=giaer(2,nw,iaer) |
---|
[1308] | 436 | giaer(2*nlayer+1,nw,iaer)=0. |
---|
[253] | 437 | |
---|
[1483] | 438 | end do ! L_NSPECTI |
---|
| 439 | |
---|
| 440 | end do ! naerkind |
---|
[253] | 441 | |
---|
[1483] | 442 | ! Test / Correct for freaky s. s. albedo values. |
---|
[253] | 443 | do iaer=1,naerkind |
---|
[1715] | 444 | do k=1,L_LEVELS |
---|
[253] | 445 | |
---|
| 446 | do nw=1,L_NSPECTV |
---|
| 447 | if(qsvaer(k,nw,iaer).gt.1.05*qxvaer(k,nw,iaer))then |
---|
[726] | 448 | print*,'Serious problems with qsvaer values' |
---|
| 449 | print*,'in callcorrk' |
---|
[253] | 450 | call abort |
---|
| 451 | endif |
---|
| 452 | if(qsvaer(k,nw,iaer).gt.qxvaer(k,nw,iaer))then |
---|
| 453 | qsvaer(k,nw,iaer)=qxvaer(k,nw,iaer) |
---|
| 454 | endif |
---|
| 455 | end do |
---|
| 456 | |
---|
| 457 | do nw=1,L_NSPECTI |
---|
| 458 | if(qsiaer(k,nw,iaer).gt.1.05*qxiaer(k,nw,iaer))then |
---|
[726] | 459 | print*,'Serious problems with qsiaer values' |
---|
| 460 | print*,'in callcorrk' |
---|
[253] | 461 | call abort |
---|
| 462 | endif |
---|
| 463 | if(qsiaer(k,nw,iaer).gt.qxiaer(k,nw,iaer))then |
---|
| 464 | qsiaer(k,nw,iaer)=qxiaer(k,nw,iaer) |
---|
| 465 | endif |
---|
| 466 | end do |
---|
| 467 | |
---|
[1483] | 468 | end do ! L_LEVELS |
---|
| 469 | end do ! naerkind |
---|
[253] | 470 | |
---|
| 471 | !----------------------------------------------------------------------- |
---|
| 472 | ! Aerosol optical depths |
---|
[1483] | 473 | !----------------------------------------------------------------------- |
---|
[253] | 474 | |
---|
| 475 | do iaer=1,naerkind ! a bug was here |
---|
| 476 | do k=0,nlayer-1 |
---|
| 477 | |
---|
| 478 | pweight=(pplay(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1))/ & |
---|
[1483] | 479 | (pplev(ig,L_NLAYRAD-k)-pplev(ig,L_NLAYRAD-k+1)) |
---|
[253] | 480 | temp=aerosol(ig,L_NLAYRAD-k,iaer)/QREFvis3d(ig,L_NLAYRAD-k,iaer) |
---|
[588] | 481 | tauaero(2*k+2,iaer)=max(temp*pweight,0.d0) |
---|
| 482 | tauaero(2*k+3,iaer)=max(temp-tauaero(2*k+2,iaer),0.d0) |
---|
[1483] | 483 | |
---|
[253] | 484 | end do |
---|
| 485 | ! boundary conditions |
---|
| 486 | tauaero(1,iaer) = tauaero(2,iaer) |
---|
| 487 | !tauaero(1,iaer) = 0. |
---|
[1988] | 488 | !JL18 at time of testing, the two above conditions gave the same results bit for bit. |
---|
| 489 | |
---|
[1483] | 490 | end do ! naerkind |
---|
[253] | 491 | |
---|
[1483] | 492 | ! Albedo and Emissivity. |
---|
| 493 | albi=1-emis(ig) ! Long Wave. |
---|
| 494 | DO nw=1,L_NSPECTV ! Short Wave loop. |
---|
[1482] | 495 | albv(nw)=albedo(ig,nw) |
---|
[1529] | 496 | ENDDO |
---|
[253] | 497 | |
---|
[1483] | 498 | if ((ngrid.eq.1).and.(global1d)) then ! Fixed zenith angle 'szangle' in 1D simulations w/ globally-averaged sunlight. |
---|
[253] | 499 | acosz = cos(pi*szangle/180.0) |
---|
| 500 | print*,'acosz=',acosz,', szangle=',szangle |
---|
| 501 | else |
---|
[1483] | 502 | acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude. |
---|
[253] | 503 | endif |
---|
| 504 | |
---|
[1483] | 505 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 506 | !!! Note by JL13 : In the following, some indices were changed in the interpolations, |
---|
| 507 | !!! so that the model results are less dependent on the number of layers ! |
---|
| 508 | !!! |
---|
| 509 | !!! --- The older versions are commented with the comment !JL13index --- |
---|
| 510 | !!! |
---|
| 511 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[1016] | 512 | |
---|
| 513 | |
---|
[253] | 514 | !----------------------------------------------------------------------- |
---|
[1483] | 515 | ! Water vapour (to be generalised for other gases eventually ...) |
---|
| 516 | !----------------------------------------------------------------------- |
---|
[253] | 517 | |
---|
[305] | 518 | if(varactive)then |
---|
[253] | 519 | |
---|
| 520 | i_var=igcm_h2o_vap |
---|
| 521 | do l=1,nlayer |
---|
| 522 | qvar(2*l) = pq(ig,nlayer+1-l,i_var) |
---|
[1016] | 523 | qvar(2*l+1) = pq(ig,nlayer+1-l,i_var) |
---|
| 524 | !JL13index qvar(2*l+1) = (pq(ig,nlayer+1-l,i_var)+pq(ig,max(nlayer-l,1),i_var))/2 |
---|
| 525 | !JL13index ! Average approximation as for temperature... |
---|
[253] | 526 | end do |
---|
| 527 | qvar(1)=qvar(2) |
---|
| 528 | |
---|
| 529 | elseif(varfixed)then |
---|
| 530 | |
---|
[1483] | 531 | do l=1,nlayer ! Here we will assign fixed water vapour profiles globally. |
---|
[253] | 532 | RH = satval * ((pplay(ig,l)/pplev(ig,1) - 0.02) / 0.98) |
---|
| 533 | if(RH.lt.0.0) RH=0.0 |
---|
| 534 | |
---|
| 535 | ptemp=pplay(ig,l) |
---|
| 536 | Ttemp=pt(ig,l) |
---|
| 537 | call watersat(Ttemp,ptemp,qsat) |
---|
| 538 | |
---|
| 539 | !pq_temp(l) = qsat ! fully saturated everywhere |
---|
| 540 | pq_temp(l) = RH * qsat ! ~realistic profile (e.g. 80% saturation at ground) |
---|
| 541 | end do |
---|
| 542 | |
---|
| 543 | do l=1,nlayer |
---|
| 544 | qvar(2*l) = pq_temp(nlayer+1-l) |
---|
| 545 | qvar(2*l+1) = (pq_temp(nlayer+1-l)+pq_temp(max(nlayer-l,1)))/2 |
---|
| 546 | end do |
---|
[1483] | 547 | |
---|
[253] | 548 | qvar(1)=qvar(2) |
---|
| 549 | |
---|
| 550 | ! Lowest layer of atmosphere |
---|
| 551 | RH = satval * (1 - 0.02) / 0.98 |
---|
| 552 | if(RH.lt.0.0) RH=0.0 |
---|
| 553 | |
---|
[1016] | 554 | ! ptemp = pplev(ig,1) |
---|
| 555 | ! Ttemp = tsurf(ig) |
---|
| 556 | ! call watersat(Ttemp,ptemp,qsat) |
---|
[253] | 557 | |
---|
[1308] | 558 | qvar(2*nlayer+1)= RH * qsat ! ~realistic profile (e.g. 80% saturation at ground) |
---|
[1016] | 559 | |
---|
[253] | 560 | else |
---|
| 561 | do k=1,L_LEVELS |
---|
| 562 | qvar(k) = 1.0D-7 |
---|
| 563 | end do |
---|
[1483] | 564 | end if ! varactive/varfixed |
---|
[253] | 565 | |
---|
[538] | 566 | if(.not.kastprof)then |
---|
[1483] | 567 | ! IMPORTANT: Now convert from kg/kg to mol/mol. |
---|
[728] | 568 | do k=1,L_LEVELS |
---|
| 569 | qvar(k) = qvar(k)/(epsi+qvar(k)*(1.-epsi)) |
---|
| 570 | end do |
---|
[538] | 571 | end if |
---|
[253] | 572 | |
---|
[366] | 573 | !----------------------------------------------------------------------- |
---|
[1483] | 574 | ! kcm mode only ! |
---|
| 575 | !----------------------------------------------------------------------- |
---|
| 576 | |
---|
[305] | 577 | if(kastprof)then |
---|
[1716] | 578 | |
---|
| 579 | if(.not.global1d)then ! garde-fou/safeguard added by MT (to be removed in the future) |
---|
| 580 | write(*,*) 'You have to fix mu0, ' |
---|
| 581 | write(*,*) 'the cosinus of the solar angle' |
---|
| 582 | stop |
---|
| 583 | endif |
---|
| 584 | |
---|
[1483] | 585 | ! Initial values equivalent to mugaz. |
---|
[305] | 586 | DO l=1,nlayer |
---|
[366] | 587 | muvarrad(2*l) = mugaz |
---|
| 588 | muvarrad(2*l+1) = mugaz |
---|
| 589 | END DO |
---|
| 590 | |
---|
[1016] | 591 | if(ngasmx.gt.1)then |
---|
[366] | 592 | |
---|
[1016] | 593 | DO l=1,nlayer |
---|
[1483] | 594 | muvarrad(2*l) = muvar(ig,nlayer+2-l) |
---|
[1016] | 595 | muvarrad(2*l+1) = (muvar(ig,nlayer+2-l) + & |
---|
[1483] | 596 | muvar(ig,max(nlayer+1-l,1)))/2 |
---|
[1016] | 597 | END DO |
---|
| 598 | |
---|
| 599 | muvarrad(1) = muvarrad(2) |
---|
[1483] | 600 | muvarrad(2*nlayer+1) = muvar(ig,1) |
---|
[366] | 601 | |
---|
[1016] | 602 | print*,'Recalculating qvar with VARIABLE epsi for kastprof' |
---|
| 603 | print*,'Assumes that the variable gas is H2O!!!' |
---|
| 604 | print*,'Assumes that there is only one tracer' |
---|
[1483] | 605 | |
---|
[1016] | 606 | !i_var=igcm_h2o_vap |
---|
| 607 | i_var=1 |
---|
[1483] | 608 | |
---|
[1016] | 609 | if(nq.gt.1)then |
---|
| 610 | print*,'Need 1 tracer only to run kcm1d.e' |
---|
| 611 | stop |
---|
| 612 | endif |
---|
[1483] | 613 | |
---|
[1016] | 614 | do l=1,nlayer |
---|
| 615 | vtmp(l)=pq(ig,l,i_var)/(epsi+pq(ig,l,i_var)*(1.-epsi)) |
---|
| 616 | !vtmp(l)=pq(ig,l,i_var)*muvar(ig,l+1)/mH2O !JL to be changed |
---|
| 617 | end do |
---|
[366] | 618 | |
---|
[1016] | 619 | do l=1,nlayer |
---|
| 620 | qvar(2*l) = vtmp(nlayer+1-l) |
---|
| 621 | qvar(2*l+1) = vtmp(nlayer+1-l) |
---|
| 622 | ! qvar(2*l+1) = ( vtmp(nlayer+1-l) + vtmp(max(nlayer-l,1)) )/2 |
---|
| 623 | end do |
---|
| 624 | qvar(1)=qvar(2) |
---|
| 625 | |
---|
| 626 | print*,'Warning: reducing qvar in callcorrk.' |
---|
| 627 | print*,'Temperature profile no longer consistent ', & |
---|
[1483] | 628 | 'with saturated H2O. qsat=',satval |
---|
| 629 | |
---|
[1016] | 630 | do k=1,L_LEVELS |
---|
| 631 | qvar(k) = qvar(k)*satval |
---|
| 632 | end do |
---|
| 633 | |
---|
| 634 | endif |
---|
| 635 | else ! if kastprof |
---|
[366] | 636 | DO l=1,nlayer |
---|
[305] | 637 | muvarrad(2*l) = muvar(ig,nlayer+2-l) |
---|
[1016] | 638 | muvarrad(2*l+1) = (muvar(ig,nlayer+2-l)+muvar(ig,max(nlayer+1-l,1)))/2 |
---|
[305] | 639 | END DO |
---|
| 640 | |
---|
| 641 | muvarrad(1) = muvarrad(2) |
---|
[1308] | 642 | muvarrad(2*nlayer+1)=muvar(ig,1) |
---|
[1483] | 643 | endif ! if kastprof |
---|
[1016] | 644 | |
---|
[1483] | 645 | ! Keep values inside limits for which we have radiative transfer coefficients !!! |
---|
| 646 | if(L_REFVAR.gt.1)then ! (there was a bug here) |
---|
[253] | 647 | do k=1,L_LEVELS |
---|
| 648 | if(qvar(k).lt.wrefvar(1))then |
---|
| 649 | qvar(k)=wrefvar(1)+1.0e-8 |
---|
| 650 | elseif(qvar(k).gt.wrefvar(L_REFVAR))then |
---|
| 651 | qvar(k)=wrefvar(L_REFVAR)-1.0e-8 |
---|
| 652 | endif |
---|
| 653 | end do |
---|
| 654 | endif |
---|
| 655 | |
---|
| 656 | !----------------------------------------------------------------------- |
---|
| 657 | ! Pressure and temperature |
---|
[1483] | 658 | !----------------------------------------------------------------------- |
---|
[253] | 659 | |
---|
| 660 | DO l=1,nlayer |
---|
| 661 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
---|
| 662 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
---|
| 663 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
---|
| 664 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 |
---|
| 665 | END DO |
---|
| 666 | |
---|
[600] | 667 | plevrad(1) = 0. |
---|
[1988] | 668 | ! plevrad(2) = 0. !! JL18 enabling this line puts the radiative top at p=0 which was the idea before, but does not seem to perform best after all. |
---|
[253] | 669 | |
---|
| 670 | tlevrad(1) = tlevrad(2) |
---|
[1308] | 671 | tlevrad(2*nlayer+1)=tsurf(ig) |
---|
[253] | 672 | |
---|
[1988] | 673 | pmid(1) = pplay(ig,nlayer)/scalep |
---|
[1423] | 674 | pmid(2) = pmid(1) |
---|
| 675 | |
---|
[253] | 676 | tmid(1) = tlevrad(2) |
---|
[1423] | 677 | tmid(2) = tmid(1) |
---|
| 678 | |
---|
| 679 | DO l=1,L_NLAYRAD-1 |
---|
| 680 | tmid(2*l+1) = tlevrad(2*l+1) |
---|
| 681 | tmid(2*l+2) = tlevrad(2*l+1) |
---|
| 682 | pmid(2*l+1) = plevrad(2*l+1) |
---|
| 683 | pmid(2*l+2) = plevrad(2*l+1) |
---|
[253] | 684 | END DO |
---|
[1423] | 685 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
---|
| 686 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
---|
[253] | 687 | |
---|
[1423] | 688 | !!Alternative interpolation: |
---|
| 689 | ! pmid(3) = pmid(1) |
---|
| 690 | ! pmid(4) = pmid(1) |
---|
| 691 | ! tmid(3) = tmid(1) |
---|
| 692 | ! tmid(4) = tmid(1) |
---|
| 693 | ! DO l=2,L_NLAYRAD-1 |
---|
| 694 | ! tmid(2*l+1) = tlevrad(2*l) |
---|
| 695 | ! tmid(2*l+2) = tlevrad(2*l) |
---|
| 696 | ! pmid(2*l+1) = plevrad(2*l) |
---|
| 697 | ! pmid(2*l+2) = plevrad(2*l) |
---|
| 698 | ! END DO |
---|
| 699 | ! pmid(L_LEVELS) = plevrad(L_LEVELS-1) |
---|
| 700 | ! tmid(L_LEVELS) = tlevrad(L_LEVELS-1) |
---|
| 701 | |
---|
[1483] | 702 | ! Test for out-of-bounds pressure. |
---|
[253] | 703 | if(plevrad(3).lt.pgasmin)then |
---|
| 704 | print*,'Minimum pressure is outside the radiative' |
---|
| 705 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 706 | call abort |
---|
| 707 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
---|
| 708 | print*,'Maximum pressure is outside the radiative' |
---|
| 709 | print*,'transfer kmatrix bounds, exiting.' |
---|
| 710 | call abort |
---|
| 711 | endif |
---|
| 712 | |
---|
[1483] | 713 | ! Test for out-of-bounds temperature. |
---|
[253] | 714 | do k=1,L_LEVELS |
---|
| 715 | if(tlevrad(k).lt.tgasmin)then |
---|
| 716 | print*,'Minimum temperature is outside the radiative' |
---|
[1145] | 717 | print*,'transfer kmatrix bounds' |
---|
[858] | 718 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
| 719 | print*,"tgasmin=",tgasmin |
---|
[1145] | 720 | if (strictboundcorrk) then |
---|
| 721 | call abort |
---|
| 722 | else |
---|
| 723 | print*,'***********************************************' |
---|
[1940] | 724 | print*,'we allow model to continue with tlevrad<tgasmin' |
---|
[1145] | 725 | print*,' ... we assume we know what you are doing ... ' |
---|
| 726 | print*,' ... but do not let this happen too often ... ' |
---|
| 727 | print*,'***********************************************' |
---|
[1940] | 728 | !tlevrad(k)=tgasmin ! Used in the source function ! |
---|
[1145] | 729 | endif |
---|
[253] | 730 | elseif(tlevrad(k).gt.tgasmax)then |
---|
| 731 | print*,'Maximum temperature is outside the radiative' |
---|
| 732 | print*,'transfer kmatrix bounds, exiting.' |
---|
[1145] | 733 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
| 734 | print*,"tgasmax=",tgasmax |
---|
| 735 | if (strictboundcorrk) then |
---|
| 736 | call abort |
---|
| 737 | else |
---|
| 738 | print*,'***********************************************' |
---|
[1940] | 739 | print*,'we allow model to continue with tlevrad<tgasmax' |
---|
[1145] | 740 | print*,' ... we assume we know what you are doing ... ' |
---|
| 741 | print*,' ... but do not let this happen too often ... ' |
---|
| 742 | print*,'***********************************************' |
---|
[1940] | 743 | !tlevrad(k)=tgasmax ! Used in the source function ! |
---|
[1145] | 744 | endif |
---|
[253] | 745 | endif |
---|
| 746 | enddo |
---|
[1016] | 747 | do k=1,L_NLAYRAD+1 |
---|
| 748 | if(tmid(k).lt.tgasmin)then |
---|
| 749 | print*,'Minimum temperature is outside the radiative' |
---|
| 750 | print*,'transfer kmatrix bounds, exiting.' |
---|
[1145] | 751 | print*,"k=",k," tmid(k)=",tmid(k) |
---|
[1016] | 752 | print*,"tgasmin=",tgasmin |
---|
[1145] | 753 | if (strictboundcorrk) then |
---|
| 754 | call abort |
---|
| 755 | else |
---|
| 756 | print*,'***********************************************' |
---|
[1940] | 757 | print*,'we allow model to continue but with tmid=tgasmin' |
---|
[1145] | 758 | print*,' ... we assume we know what you are doing ... ' |
---|
| 759 | print*,' ... but do not let this happen too often ... ' |
---|
| 760 | print*,'***********************************************' |
---|
| 761 | tmid(k)=tgasmin |
---|
| 762 | endif |
---|
[1016] | 763 | elseif(tmid(k).gt.tgasmax)then |
---|
| 764 | print*,'Maximum temperature is outside the radiative' |
---|
| 765 | print*,'transfer kmatrix bounds, exiting.' |
---|
[1145] | 766 | print*,"k=",k," tmid(k)=",tmid(k) |
---|
| 767 | print*,"tgasmax=",tgasmax |
---|
| 768 | if (strictboundcorrk) then |
---|
| 769 | call abort |
---|
| 770 | else |
---|
| 771 | print*,'***********************************************' |
---|
[1940] | 772 | print*,'we allow model to continue but with tmid=tgasmin' |
---|
[1145] | 773 | print*,' ... we assume we know what you are doing ... ' |
---|
| 774 | print*,' ... but do not let this happen too often ... ' |
---|
| 775 | print*,'***********************************************' |
---|
| 776 | tmid(k)=tgasmax |
---|
| 777 | endif |
---|
[1016] | 778 | endif |
---|
| 779 | enddo |
---|
[253] | 780 | |
---|
| 781 | !======================================================================= |
---|
[1483] | 782 | ! III. Calling the main radiative transfer subroutines |
---|
| 783 | !======================================================================= |
---|
[253] | 784 | |
---|
| 785 | |
---|
[1483] | 786 | Cmk= 0.01 * 1.0 / (glat(ig) * mugaz * 1.672621e-27) ! q_main=1.0 assumed. |
---|
[1529] | 787 | glat_ig=glat(ig) |
---|
[1194] | 788 | |
---|
[253] | 789 | !----------------------------------------------------------------------- |
---|
[1483] | 790 | ! Short Wave Part |
---|
| 791 | !----------------------------------------------------------------------- |
---|
[253] | 792 | |
---|
[1483] | 793 | if(fract(ig) .ge. 1.0e-4) then ! Only during daylight. |
---|
[787] | 794 | if((ngrid.eq.1).and.(global1d))then |
---|
[253] | 795 | do nw=1,L_NSPECTV |
---|
[1483] | 796 | stel_fract(nw)= stel(nw)* 0.25 / acosz ! globally averaged = divide by 4, and we correct for solar zenith angle |
---|
[253] | 797 | end do |
---|
| 798 | else |
---|
| 799 | do nw=1,L_NSPECTV |
---|
[1161] | 800 | stel_fract(nw)= stel(nw) * fract(ig) |
---|
[253] | 801 | end do |
---|
[1483] | 802 | endif |
---|
| 803 | |
---|
[253] | 804 | call optcv(dtauv,tauv,taucumv,plevrad, & |
---|
| 805 | qxvaer,qsvaer,gvaer,wbarv,cosbv,tauray,tauaero, & |
---|
[305] | 806 | tmid,pmid,taugsurf,qvar,muvarrad) |
---|
[253] | 807 | |
---|
| 808 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & |
---|
[1781] | 809 | acosz,stel_fract, & |
---|
| 810 | nfluxtopv,fluxtopvdn,nfluxoutv_nu,nfluxgndv_nu, & |
---|
[253] | 811 | fmnetv,fluxupv,fluxdnv,fzerov,taugsurf) |
---|
| 812 | |
---|
[1483] | 813 | else ! During the night, fluxes = 0. |
---|
[962] | 814 | nfluxtopv = 0.0d0 |
---|
[1529] | 815 | fluxtopvdn = 0.0d0 |
---|
[962] | 816 | nfluxoutv_nu(:) = 0.0d0 |
---|
| 817 | nfluxgndv_nu(:) = 0.0d0 |
---|
[253] | 818 | do l=1,L_NLAYRAD |
---|
[962] | 819 | fmnetv(l)=0.0d0 |
---|
| 820 | fluxupv(l)=0.0d0 |
---|
| 821 | fluxdnv(l)=0.0d0 |
---|
[253] | 822 | end do |
---|
| 823 | end if |
---|
| 824 | |
---|
[1482] | 825 | |
---|
[1526] | 826 | ! Equivalent Albedo Calculation (for OUTPUT). MT2015 |
---|
| 827 | if(fract(ig) .ge. 1.0e-4) then ! equivalent albedo makes sense only during daylight. |
---|
| 828 | surface_stellar_flux=sum(nfluxgndv_nu(1:L_NSPECTV)) |
---|
| 829 | if(surface_stellar_flux .gt. 1.0e-3) then ! equivalent albedo makes sense only if the stellar flux received by the surface is positive. |
---|
[1529] | 830 | DO nw=1,L_NSPECTV |
---|
| 831 | albedo_temp(nw)=albedo(ig,nw)*nfluxgndv_nu(nw) |
---|
[1526] | 832 | ENDDO |
---|
[1529] | 833 | albedo_temp(1:L_NSPECTV)=albedo_temp(1:L_NSPECTV)/surface_stellar_flux |
---|
[1526] | 834 | albedo_equivalent(ig)=sum(albedo_temp(1:L_NSPECTV)) |
---|
| 835 | else |
---|
| 836 | albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. |
---|
| 837 | endif |
---|
[1529] | 838 | else |
---|
| 839 | albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. |
---|
| 840 | endif |
---|
[1482] | 841 | |
---|
| 842 | |
---|
[253] | 843 | !----------------------------------------------------------------------- |
---|
[1483] | 844 | ! Long Wave Part |
---|
| 845 | !----------------------------------------------------------------------- |
---|
[253] | 846 | |
---|
| 847 | call optci(plevrad,tlevrad,dtaui,taucumi, & |
---|
| 848 | qxiaer,qsiaer,giaer,cosbi,wbari,tauaero,tmid,pmid, & |
---|
[305] | 849 | taugsurfi,qvar,muvarrad) |
---|
[538] | 850 | |
---|
[253] | 851 | call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, & |
---|
[1781] | 852 | wnoi,dwni,cosbi,wbari,nfluxtopi,nfluxtopi_nu, & |
---|
[253] | 853 | fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) |
---|
| 854 | |
---|
| 855 | !----------------------------------------------------------------------- |
---|
| 856 | ! Transformation of the correlated-k code outputs |
---|
| 857 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
---|
| 858 | |
---|
| 859 | ! Flux incident at the top of the atmosphere |
---|
[961] | 860 | fluxtop_dn(ig)=fluxtopvdn |
---|
[253] | 861 | |
---|
| 862 | fluxtop_lw(ig) = real(nfluxtopi) |
---|
| 863 | fluxabs_sw(ig) = real(-nfluxtopv) |
---|
| 864 | fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD)) |
---|
| 865 | fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) |
---|
[1482] | 866 | |
---|
| 867 | ! Flux absorbed by the surface. By MT2015. |
---|
| 868 | fluxsurfabs_sw(ig) = fluxsurf_sw(ig)*(1.-albedo_equivalent(ig)) |
---|
[253] | 869 | |
---|
| 870 | if(fluxtop_dn(ig).lt.0.0)then |
---|
| 871 | print*,'Achtung! fluxtop_dn has lost the plot!' |
---|
| 872 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
| 873 | print*,'acosz=',acosz |
---|
| 874 | print*,'aerosol=',aerosol(ig,:,:) |
---|
| 875 | print*,'temp= ',pt(ig,:) |
---|
| 876 | print*,'pplay= ',pplay(ig,:) |
---|
| 877 | call abort |
---|
| 878 | endif |
---|
| 879 | |
---|
| 880 | ! Spectral output, for exoplanet observational comparison |
---|
| 881 | if(specOLR)then |
---|
| 882 | do nw=1,L_NSPECTI |
---|
[526] | 883 | OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth |
---|
[253] | 884 | end do |
---|
| 885 | do nw=1,L_NSPECTV |
---|
[366] | 886 | !GSR_nu(ig,nw)=nfluxgndv_nu(nw) |
---|
[526] | 887 | OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth |
---|
[253] | 888 | end do |
---|
| 889 | endif |
---|
| 890 | |
---|
| 891 | ! Finally, the heating rates |
---|
| 892 | |
---|
[586] | 893 | DO l=2,L_NLAYRAD |
---|
| 894 | dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & |
---|
[1194] | 895 | *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
[586] | 896 | dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) & |
---|
[1194] | 897 | *glat(ig)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
[586] | 898 | END DO |
---|
[253] | 899 | |
---|
| 900 | ! These are values at top of atmosphere |
---|
[586] | 901 | dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & |
---|
[1988] | 902 | *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2))) |
---|
[586] | 903 | dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) & |
---|
[1988] | 904 | *glat(ig)/(cpp*scalep*(plevrad(3)-plevrad(2))) |
---|
[253] | 905 | |
---|
| 906 | |
---|
[1483] | 907 | !----------------------------------------------------------------------- |
---|
| 908 | end do ! End of big loop over every GCM column. |
---|
| 909 | !----------------------------------------------------------------------- |
---|
[253] | 910 | |
---|
[1483] | 911 | |
---|
| 912 | |
---|
[253] | 913 | !----------------------------------------------------------------------- |
---|
| 914 | ! Additional diagnostics |
---|
[1483] | 915 | !----------------------------------------------------------------------- |
---|
[253] | 916 | |
---|
[1483] | 917 | ! IR spectral output, for exoplanet observational comparison |
---|
| 918 | if(lastcall.and.(ngrid.eq.1))then ! could disable the 1D output, they are in the diagfi and diagspec... JL12 |
---|
[253] | 919 | |
---|
[1483] | 920 | print*,'Saving scalar quantities in surf_vals.out...' |
---|
| 921 | print*,'psurf = ', pplev(1,1),' Pa' |
---|
| 922 | open(116,file='surf_vals.out') |
---|
| 923 | write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1), & |
---|
| 924 | real(-nfluxtopv),real(nfluxtopi) |
---|
| 925 | close(116) |
---|
[253] | 926 | |
---|
[526] | 927 | |
---|
[1483] | 928 | ! USEFUL COMMENT - Do Not Remove. |
---|
| 929 | ! |
---|
[526] | 930 | ! if(specOLR)then |
---|
| 931 | ! open(117,file='OLRnu.out') |
---|
| 932 | ! do nw=1,L_NSPECTI |
---|
| 933 | ! write(117,*) OLR_nu(1,nw) |
---|
| 934 | ! enddo |
---|
| 935 | ! close(117) |
---|
| 936 | ! |
---|
| 937 | ! open(127,file='OSRnu.out') |
---|
| 938 | ! do nw=1,L_NSPECTV |
---|
| 939 | ! write(127,*) OSR_nu(1,nw) |
---|
| 940 | ! enddo |
---|
| 941 | ! close(127) |
---|
| 942 | ! endif |
---|
[253] | 943 | |
---|
[1483] | 944 | ! OLR vs altitude: do it as a .txt file. |
---|
| 945 | OLRz=.false. |
---|
| 946 | if(OLRz)then |
---|
| 947 | print*,'saving IR vertical flux for OLRz...' |
---|
| 948 | open(118,file='OLRz_plevs.out') |
---|
| 949 | open(119,file='OLRz.out') |
---|
| 950 | do l=1,L_NLAYRAD |
---|
| 951 | write(118,*) plevrad(2*l) |
---|
| 952 | do nw=1,L_NSPECTI |
---|
| 953 | write(119,*) fluxupi_nu(l,nw) |
---|
| 954 | enddo |
---|
| 955 | enddo |
---|
| 956 | close(118) |
---|
| 957 | close(119) |
---|
| 958 | endif |
---|
[253] | 959 | |
---|
[305] | 960 | endif |
---|
[253] | 961 | |
---|
[1483] | 962 | ! See physiq.F for explanations about CLFvarying. This is temporary. |
---|
[470] | 963 | if (lastcall .and. .not.CLFvarying) then |
---|
| 964 | IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi ) |
---|
| 965 | IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv ) |
---|
[1315] | 966 | !$OMP BARRIER |
---|
| 967 | !$OMP MASTER |
---|
[470] | 968 | IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref ) |
---|
| 969 | IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref ) |
---|
| 970 | IF( ALLOCATED( wrefvar ) ) DEALLOCATE( wrefvar ) |
---|
| 971 | IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref ) |
---|
[1315] | 972 | !$OMP END MASTER |
---|
[1529] | 973 | !$OMP BARRIER |
---|
[861] | 974 | IF ( ALLOCATED(reffrad)) DEALLOCATE(reffrad) |
---|
| 975 | IF ( ALLOCATED(nueffrad)) DEALLOCATE(nueffrad) |
---|
[470] | 976 | endif |
---|
| 977 | |
---|
[716] | 978 | |
---|
[253] | 979 | end subroutine callcorrk |
---|