1 | Subroutine aeropacity(ngrid,nlayer,nq,pplay,pplev,pq, & |
---|
2 | aerosol,reffrad,QREFvis3d,QREFir3d,tau_col,cloudfrac,totcloudfrac,clearsky) |
---|
3 | |
---|
4 | use radinc_h, only : L_TAUMAX,naerkind |
---|
5 | use aerosol_mod |
---|
6 | USE tracer_h, only: noms,rho_co2,rho_ice |
---|
7 | use comcstfi_mod, only: g, pi |
---|
8 | use geometry_mod, only: latitude |
---|
9 | use callkeys_mod, only: aerofixco2,aerofixh2o,kastprof,cloudlvl, & |
---|
10 | CLFvarying,CLFfixval,dusttau, & |
---|
11 | pres_bottom_tropo,pres_top_tropo,obs_tau_col_tropo, & |
---|
12 | pres_bottom_strato,pres_top_strato,obs_tau_col_strato, & |
---|
13 | tau_nh3_cloud, pres_nh3_cloud |
---|
14 | |
---|
15 | implicit none |
---|
16 | |
---|
17 | !================================================================== |
---|
18 | ! |
---|
19 | ! Purpose |
---|
20 | ! ------- |
---|
21 | ! Compute aerosol optical depth in each gridbox. |
---|
22 | ! |
---|
23 | ! Authors |
---|
24 | ! ------- |
---|
25 | ! F. Forget |
---|
26 | ! F. Montmessin (water ice scheme) |
---|
27 | ! update J.-B. Madeleine (2008) |
---|
28 | ! dust removal, simplification by Robin Wordsworth (2009) |
---|
29 | ! |
---|
30 | ! Input |
---|
31 | ! ----- |
---|
32 | ! ngrid Number of horizontal gridpoints |
---|
33 | ! nlayer Number of layers |
---|
34 | ! nq Number of tracers |
---|
35 | ! pplev Pressure (Pa) at each layer boundary |
---|
36 | ! pq Aerosol mixing ratio |
---|
37 | ! reffrad(ngrid,nlayer,naerkind) Aerosol effective radius |
---|
38 | ! QREFvis3d(ngrid,nlayer,naerkind) \ 3d extinction coefficients |
---|
39 | ! QREFir3d(ngrid,nlayer,naerkind) / at reference wavelengths |
---|
40 | ! |
---|
41 | ! Output |
---|
42 | ! ------ |
---|
43 | ! aerosol Aerosol optical depth in layer l, grid point ig |
---|
44 | ! tau_col Total column optical depth at grid point ig |
---|
45 | ! |
---|
46 | !======================================================================= |
---|
47 | |
---|
48 | INTEGER,INTENT(IN) :: ngrid ! number of atmospheric columns |
---|
49 | INTEGER,INTENT(IN) :: nlayer ! number of atmospheric layers |
---|
50 | INTEGER,INTENT(IN) :: nq ! number of tracers |
---|
51 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
---|
52 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
53 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! tracers (.../kg_of_air) |
---|
54 | REAL,INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! aerosol optical depth |
---|
55 | REAL,INTENT(IN) :: reffrad(ngrid,nlayer,naerkind) ! aerosol effective radius |
---|
56 | REAL,INTENT(IN) :: QREFvis3d(ngrid,nlayer,naerkind) ! extinction coefficient in the visible |
---|
57 | REAL,INTENT(IN) :: QREFir3d(ngrid,nlayer,naerkind) |
---|
58 | REAL,INTENT(OUT):: tau_col(ngrid) !column integrated visible optical depth |
---|
59 | ! BENJAMIN MODIFS |
---|
60 | real,intent(in) :: cloudfrac(ngrid,nlayer) ! cloud fraction |
---|
61 | real,intent(out) :: totcloudfrac(ngrid) ! total cloud fraction |
---|
62 | logical,intent(in) :: clearsky |
---|
63 | |
---|
64 | real aerosol0, obs_tau_col_aurora, pm, pente_cloud |
---|
65 | |
---|
66 | INTEGER l,ig,iq,iaer |
---|
67 | |
---|
68 | LOGICAL,SAVE :: firstcall=.true. |
---|
69 | !$OMP THREADPRIVATE(firstcall) |
---|
70 | REAL CBRT |
---|
71 | EXTERNAL CBRT |
---|
72 | |
---|
73 | INTEGER,SAVE :: i_co2ice=0 ! co2 ice |
---|
74 | INTEGER,SAVE :: i_h2oice=0 ! water ice |
---|
75 | !$OMP THREADPRIVATE(i_co2ice,i_h2oice) |
---|
76 | CHARACTER(LEN=20) :: tracername ! to temporarily store text |
---|
77 | |
---|
78 | ! for fixed dust profiles |
---|
79 | real topdust, expfactor, zp |
---|
80 | REAL taudusttmp(ngrid) ! Temporary dust opacity used before scaling |
---|
81 | REAL tauh2so4tmp(ngrid) ! Temporary h2so4 opacity used before scaling |
---|
82 | |
---|
83 | real CLFtot |
---|
84 | |
---|
85 | ! identify tracers |
---|
86 | IF (firstcall) THEN |
---|
87 | |
---|
88 | write(*,*) "Tracers found in aeropacity:" |
---|
89 | do iq=1,nq |
---|
90 | tracername=noms(iq) |
---|
91 | if (tracername.eq."co2_ice") then |
---|
92 | i_co2ice=iq |
---|
93 | write(*,*) "i_co2ice=",i_co2ice |
---|
94 | |
---|
95 | endif |
---|
96 | if (tracername.eq."h2o_ice") then |
---|
97 | i_h2oice=iq |
---|
98 | write(*,*) "i_h2oice=",i_h2oice |
---|
99 | endif |
---|
100 | enddo |
---|
101 | |
---|
102 | if (noaero) then |
---|
103 | print*, "No active aerosols found in aeropacity" |
---|
104 | else |
---|
105 | print*, "If you would like to use aerosols, make sure any old" |
---|
106 | print*, "start files are updated in newstart using the option" |
---|
107 | print*, "q=0" |
---|
108 | write(*,*) "Active aerosols found in aeropacity:" |
---|
109 | endif |
---|
110 | |
---|
111 | if ((iaero_co2.ne.0).and.(.not.noaero)) then |
---|
112 | print*, 'iaero_co2= ',iaero_co2 |
---|
113 | endif |
---|
114 | if (iaero_h2o.ne.0) then |
---|
115 | print*,'iaero_h2o= ',iaero_h2o |
---|
116 | endif |
---|
117 | if (iaero_dust.ne.0) then |
---|
118 | print*,'iaero_dust= ',iaero_dust |
---|
119 | endif |
---|
120 | if (iaero_h2so4.ne.0) then |
---|
121 | print*,'iaero_h2so4= ',iaero_h2so4 |
---|
122 | endif |
---|
123 | if (iaero_back2lay.ne.0) then |
---|
124 | print*,'iaero_back2lay= ',iaero_back2lay |
---|
125 | endif |
---|
126 | if (iaero_nh3.ne.0) then |
---|
127 | print*,'iaero_nh3= ',iaero_nh3 |
---|
128 | endif |
---|
129 | if (iaero_aurora.ne.0) then |
---|
130 | print*,'iaero_aurora= ',iaero_aurora |
---|
131 | endif |
---|
132 | |
---|
133 | firstcall=.false. |
---|
134 | ENDIF ! of IF (firstcall) |
---|
135 | |
---|
136 | |
---|
137 | ! --------------------------------------------------------- |
---|
138 | !================================================================== |
---|
139 | ! CO2 ice aerosols |
---|
140 | !================================================================== |
---|
141 | |
---|
142 | if (iaero_co2.ne.0) then |
---|
143 | iaer=iaero_co2 |
---|
144 | ! 1. Initialization |
---|
145 | aerosol(1:ngrid,1:nlayer,iaer)=0.0 |
---|
146 | ! 2. Opacity calculation |
---|
147 | if (noaero) then ! aerosol set to zero |
---|
148 | aerosol(1:ngrid,1:nlayer,iaer)=0.0 |
---|
149 | elseif (aerofixco2.or.(i_co2ice.eq.0)) then ! CO2 ice cloud prescribed |
---|
150 | aerosol(1:ngrid,1:nlayer,iaer)=1.e-9 |
---|
151 | !aerosol(1:ngrid,12,iaer)=4.0 ! single cloud layer option |
---|
152 | else |
---|
153 | DO ig=1, ngrid |
---|
154 | DO l=1,nlayer-1 ! to stop the rad tran bug |
---|
155 | |
---|
156 | aerosol0 = & |
---|
157 | ( 0.75 * QREFvis3d(ig,l,iaer) / & |
---|
158 | ( rho_co2 * reffrad(ig,l,iaer) ) ) * & |
---|
159 | ( pq(ig,l,i_co2ice) + 1.E-9 ) * & |
---|
160 | ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
161 | aerosol0 = max(aerosol0,1.e-9) |
---|
162 | aerosol0 = min(aerosol0,L_TAUMAX) |
---|
163 | aerosol(ig,l,iaer) = aerosol0 |
---|
164 | ! aerosol(ig,l,iaer) = 0.0 |
---|
165 | ! print*, aerosol(ig,l,iaer) |
---|
166 | ! using cloud fraction |
---|
167 | ! aerosol(ig,l,iaer) = -log(1 - CLF + CLF*exp(-aerosol0/CLF)) |
---|
168 | ! aerosol(ig,l,iaer) = min(aerosol(ig,l,iaer),L_TAUMAX) |
---|
169 | |
---|
170 | |
---|
171 | ENDDO |
---|
172 | ENDDO |
---|
173 | end if ! if fixed or varying |
---|
174 | end if ! if CO2 aerosols |
---|
175 | !================================================================== |
---|
176 | ! Water ice / liquid |
---|
177 | !================================================================== |
---|
178 | |
---|
179 | if (iaero_h2o.ne.0) then |
---|
180 | iaer=iaero_h2o |
---|
181 | ! 1. Initialization |
---|
182 | aerosol(1:ngrid,1:nlayer,iaer)=0.0 |
---|
183 | ! 2. Opacity calculation |
---|
184 | if (aerofixh2o.or.(i_h2oice.eq.0).or.clearsky) then |
---|
185 | aerosol(1:ngrid,1:nlayer,iaer) =1.e-9 |
---|
186 | |
---|
187 | ! put cloud at cloudlvl |
---|
188 | if(kastprof.and.(cloudlvl.ne.0.0))then |
---|
189 | ig=1 |
---|
190 | do l=1,nlayer |
---|
191 | if(int(cloudlvl).eq.l)then |
---|
192 | !if(cloudlvl.gt.(pplay(ig,l)/pplev(ig,1)))then |
---|
193 | print*,'Inserting cloud at level ',l |
---|
194 | !aerosol(ig,l,iaer)=10.0 |
---|
195 | |
---|
196 | rho_ice=920.0 |
---|
197 | |
---|
198 | ! the Kasting approximation |
---|
199 | aerosol(ig,l,iaer) = & |
---|
200 | ( 0.75 * QREFvis3d(ig,l,iaer) / & |
---|
201 | ( rho_ice * reffrad(ig,l,iaer) ) ) * & |
---|
202 | !( pq(ig,l,i_h2oice) + 1.E-9 ) * & |
---|
203 | ( 4.0e-4 + 1.E-9 ) * & |
---|
204 | ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
205 | |
---|
206 | |
---|
207 | open(115,file='clouds.out',form='formatted') |
---|
208 | write(115,*) l,aerosol(ig,l,iaer) |
---|
209 | close(115) |
---|
210 | |
---|
211 | return |
---|
212 | endif |
---|
213 | end do |
---|
214 | |
---|
215 | call abort |
---|
216 | endif |
---|
217 | |
---|
218 | else |
---|
219 | |
---|
220 | do ig=1, ngrid |
---|
221 | do l=1,nlayer-1 ! to stop the rad tran bug |
---|
222 | |
---|
223 | aerosol(ig,l,iaer) = & !modification by BC |
---|
224 | ( 0.75 * QREFvis3d(ig,l,iaer) / & |
---|
225 | ( rho_ice * reffrad(ig,l,iaer) ) ) * & |
---|
226 | ! pq(ig,l,i_h2oice) * & !JL I dropped the +1e-9 here to have the same |
---|
227 | !( pplev(ig,l) - pplev(ig,l+1) ) / g ! opacity in the clearsky=true and the |
---|
228 | ! clear=false/pq=0 case |
---|
229 | ( pq(ig,l,i_h2oice) + 1.E-9 ) * & ! Doing this makes the code unstable, so I have restored it (RW) |
---|
230 | ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
231 | |
---|
232 | enddo |
---|
233 | enddo |
---|
234 | |
---|
235 | if(CLFvarying)then |
---|
236 | call totalcloudfrac(ngrid,nlayer,nq,cloudfrac,totcloudfrac,pplev,pq,aerosol(1,1,iaer)) |
---|
237 | do ig=1, ngrid |
---|
238 | do l=1,nlayer-1 ! to stop the rad tran bug |
---|
239 | CLFtot = max(totcloudfrac(ig),0.01) |
---|
240 | aerosol(ig,l,iaer)=aerosol(ig,l,iaer)/CLFtot |
---|
241 | aerosol(ig,l,iaer) = max(aerosol(ig,l,iaer),1.e-9) |
---|
242 | enddo |
---|
243 | enddo |
---|
244 | else |
---|
245 | do ig=1, ngrid |
---|
246 | do l=1,nlayer-1 ! to stop the rad tran bug |
---|
247 | CLFtot = CLFfixval |
---|
248 | aerosol(ig,l,iaer)=aerosol(ig,l,iaer)/CLFtot |
---|
249 | aerosol(ig,l,iaer) = max(aerosol(ig,l,iaer),1.e-9) |
---|
250 | enddo |
---|
251 | enddo |
---|
252 | end if!(CLFvarying) |
---|
253 | endif !(aerofixed.or.(i_h2oice.eq.0).or.clearsky) |
---|
254 | |
---|
255 | end if ! End if h2o aerosol |
---|
256 | |
---|
257 | !================================================================== |
---|
258 | ! Dust |
---|
259 | !================================================================== |
---|
260 | if (iaero_dust.ne.0) then |
---|
261 | iaer=iaero_dust |
---|
262 | ! 1. Initialization |
---|
263 | aerosol(1:ngrid,1:nlayer,iaer)=0.0 |
---|
264 | |
---|
265 | topdust=30.0 ! km (used to be 10.0 km) LK |
---|
266 | |
---|
267 | ! 2. Opacity calculation |
---|
268 | |
---|
269 | ! expfactor=0. |
---|
270 | DO l=1,nlayer-1 |
---|
271 | DO ig=1,ngrid |
---|
272 | ! Typical mixing ratio profile |
---|
273 | |
---|
274 | zp=(pplev(ig,1)/pplay(ig,l))**(70./topdust) |
---|
275 | expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) |
---|
276 | |
---|
277 | ! Vertical scaling function |
---|
278 | aerosol(ig,l,iaer)= (pplev(ig,l)-pplev(ig,l+1)) & |
---|
279 | *expfactor |
---|
280 | |
---|
281 | |
---|
282 | ENDDO |
---|
283 | ENDDO |
---|
284 | |
---|
285 | ! Rescaling each layer to reproduce the choosen (or assimilated) |
---|
286 | ! dust extinction opacity at visible reference wavelength, which |
---|
287 | ! is scaled to the surface pressure pplev(ig,1) |
---|
288 | |
---|
289 | taudusttmp(1:ngrid)=0. |
---|
290 | DO l=1,nlayer |
---|
291 | DO ig=1,ngrid |
---|
292 | taudusttmp(ig) = taudusttmp(ig) & |
---|
293 | + aerosol(ig,l,iaer) |
---|
294 | ENDDO |
---|
295 | ENDDO |
---|
296 | DO l=1,nlayer-1 |
---|
297 | DO ig=1,ngrid |
---|
298 | aerosol(ig,l,iaer) = max(1E-20, & |
---|
299 | dusttau & |
---|
300 | * pplev(ig,1) / pplev(ig,1) & |
---|
301 | * aerosol(ig,l,iaer) & |
---|
302 | / taudusttmp(ig)) |
---|
303 | |
---|
304 | ENDDO |
---|
305 | ENDDO |
---|
306 | end if ! If dust aerosol |
---|
307 | |
---|
308 | !================================================================== |
---|
309 | ! H2SO4 |
---|
310 | !================================================================== |
---|
311 | ! added by LK |
---|
312 | if (iaero_h2so4.ne.0) then |
---|
313 | iaer=iaero_h2so4 |
---|
314 | |
---|
315 | ! 1. Initialization |
---|
316 | aerosol(1:ngrid,1:nlayer,iaer)=0.0 |
---|
317 | |
---|
318 | |
---|
319 | ! 2. Opacity calculation |
---|
320 | |
---|
321 | ! expfactor=0. |
---|
322 | DO l=1,nlayer-1 |
---|
323 | DO ig=1,ngrid |
---|
324 | ! Typical mixing ratio profile |
---|
325 | |
---|
326 | zp=(pplev(ig,1)/pplay(ig,l))**(70./30) !emulating topdust |
---|
327 | expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) |
---|
328 | |
---|
329 | ! Vertical scaling function |
---|
330 | aerosol(ig,l,iaer)= (pplev(ig,l)-pplev(ig,l+1))*expfactor |
---|
331 | |
---|
332 | ENDDO |
---|
333 | ENDDO |
---|
334 | tauh2so4tmp(1:ngrid)=0. |
---|
335 | DO l=1,nlayer |
---|
336 | DO ig=1,ngrid |
---|
337 | tauh2so4tmp(ig) = tauh2so4tmp(ig) + aerosol(ig,l,iaer) |
---|
338 | ENDDO |
---|
339 | ENDDO |
---|
340 | DO l=1,nlayer-1 |
---|
341 | DO ig=1,ngrid |
---|
342 | aerosol(ig,l,iaer) = max(1E-20, & |
---|
343 | 1 & |
---|
344 | * pplev(ig,1) / pplev(ig,1) & |
---|
345 | * aerosol(ig,l,iaer) & |
---|
346 | / tauh2so4tmp(ig)) |
---|
347 | |
---|
348 | ENDDO |
---|
349 | ENDDO |
---|
350 | |
---|
351 | ! 1/700. is assuming a "sulfurtau" of 1 |
---|
352 | ! Sulfur aerosol routine to be improved. |
---|
353 | ! aerosol0 = & |
---|
354 | ! ( 0.75 * QREFvis3d(ig,l,iaer) / & |
---|
355 | ! ( rho_h2so4 * reffrad(ig,l,iaer) ) ) * & |
---|
356 | ! ( pq(ig,l,i_h2so4) + 1.E-9 ) * & |
---|
357 | ! ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
358 | ! aerosol0 = max(aerosol0,1.e-9) |
---|
359 | ! aerosol0 = min(aerosol0,L_TAUMAX) |
---|
360 | ! aerosol(ig,l,iaer) = aerosol0 |
---|
361 | |
---|
362 | ! ENDDO |
---|
363 | ! ENDDO |
---|
364 | end if |
---|
365 | |
---|
366 | |
---|
367 | ! --------------------------------------------------------- |
---|
368 | !================================================================== |
---|
369 | ! Two-layer aerosols (unknown composition) |
---|
370 | ! S. Guerlet (2013) |
---|
371 | !================================================================== |
---|
372 | |
---|
373 | if (iaero_back2lay .ne.0) then |
---|
374 | iaer=iaero_back2lay |
---|
375 | ! 1. Initialization |
---|
376 | aerosol(1:ngrid,1:nlayer,iaer)=0.0 |
---|
377 | ! 2. Opacity calculation |
---|
378 | DO ig=1,ngrid |
---|
379 | DO l=1,nlayer-1 |
---|
380 | aerosol(ig,l,iaer) = ( pplev(ig,l) - pplev(ig,l+1) ) |
---|
381 | !! 1. below tropospheric layer: no aerosols |
---|
382 | IF (pplev(ig,l) .gt. pres_bottom_tropo) THEN |
---|
383 | aerosol(ig,l,iaer) = 0.*aerosol(ig,l,iaer) |
---|
384 | !! 2. tropo layer |
---|
385 | ELSEIF (pplev(ig,l) .le. pres_bottom_tropo .and. pplev(ig,l) .ge. pres_top_tropo) THEN |
---|
386 | aerosol(ig,l,iaer) = obs_tau_col_tropo*aerosol(ig,l,iaer) |
---|
387 | !! 3. linear transition |
---|
388 | ELSEIF (pplev(ig,l) .lt. pres_top_tropo .and. pplev(ig,l) .gt. pres_bottom_strato) THEN |
---|
389 | expfactor=log(obs_tau_col_strato/obs_tau_col_tropo)/log(pres_bottom_strato/pres_top_tropo) |
---|
390 | aerosol(ig,l,iaer)= obs_tau_col_tropo*((pplev(ig,l)/pres_top_tropo)**expfactor)*aerosol(ig,l,iaer)/1.5 |
---|
391 | !! 4. strato layer |
---|
392 | ELSEIF (pplev(ig,l) .le. pres_bottom_strato .and. pplev(ig,l) .gt. pres_top_strato) THEN |
---|
393 | aerosol(ig,l,iaer)= obs_tau_col_strato*aerosol(ig,l,iaer) |
---|
394 | !! 5. above strato layer: no aerosols |
---|
395 | ELSEIF (pplev(ig,l) .lt. pres_top_strato) THEN |
---|
396 | aerosol(ig,l,iaer) = 0.*aerosol(ig,l,iaer) |
---|
397 | ENDIF |
---|
398 | ENDDO |
---|
399 | ENDDO |
---|
400 | |
---|
401 | ! 3. Re-normalize to observed total column |
---|
402 | tau_col(:)=0.0 |
---|
403 | DO l=1,nlayer |
---|
404 | DO ig=1,ngrid |
---|
405 | tau_col(ig) = tau_col(ig) & |
---|
406 | + aerosol(ig,l,iaer)/(obs_tau_col_tropo+obs_tau_col_strato) |
---|
407 | ENDDO |
---|
408 | ENDDO |
---|
409 | |
---|
410 | DO ig=1,ngrid |
---|
411 | DO l=1,nlayer-1 |
---|
412 | aerosol(ig,l,iaer)=aerosol(ig,l,iaer)/tau_col(ig) |
---|
413 | ENDDO |
---|
414 | ENDDO |
---|
415 | |
---|
416 | |
---|
417 | end if ! if Two-layer aerosols |
---|
418 | |
---|
419 | !================================================================== |
---|
420 | ! Saturn/Jupiter ammonia cloud = thin cloud (scale height 0.2 hard coded...) |
---|
421 | ! S. Guerlet (2013) |
---|
422 | !================================================================== |
---|
423 | |
---|
424 | if (iaero_nh3 .ne.0) then |
---|
425 | iaer=iaero_nh3 |
---|
426 | ! 1. Initialization |
---|
427 | aerosol(1:ngrid,1:nlayer,iaer)=0.D0 |
---|
428 | ! 2. Opacity calculation |
---|
429 | DO ig=1,ngrid |
---|
430 | |
---|
431 | DO l=1,nlayer-1 |
---|
432 | !! 1. below cloud layer: no opacity |
---|
433 | |
---|
434 | IF (pplev(ig,l) .gt. pres_nh3_cloud ) THEN |
---|
435 | aerosol(ig,l,iaer) = 0.D0 |
---|
436 | |
---|
437 | ELSEIF (pplev(ig,l) .le. pres_nh3_cloud ) THEN |
---|
438 | pente_cloud=5. !!(hard-coded, correspond to scale height 0.2) |
---|
439 | aerosol(ig,l,iaer) = ((pplev(ig,l)/pres_nh3_cloud)**(pente_cloud))*tau_nh3_cloud |
---|
440 | |
---|
441 | ENDIF |
---|
442 | ENDDO |
---|
443 | |
---|
444 | END DO |
---|
445 | |
---|
446 | ! 3. Re-normalize to observed total column |
---|
447 | tau_col(:)=0.0 |
---|
448 | DO l=1,nlayer |
---|
449 | DO ig=1,ngrid |
---|
450 | tau_col(ig) = tau_col(ig) & |
---|
451 | + aerosol(ig,l,iaer)/tau_nh3_cloud |
---|
452 | ENDDO |
---|
453 | ENDDO |
---|
454 | |
---|
455 | DO ig=1,ngrid |
---|
456 | DO l=1,nlayer-1 |
---|
457 | aerosol(ig,l,iaer)=aerosol(ig,l,iaer)/tau_col(ig) |
---|
458 | ENDDO |
---|
459 | ENDDO |
---|
460 | |
---|
461 | end if ! if NH3 cloud |
---|
462 | !================================================================== |
---|
463 | ! Jovian auroral aerosols (unknown composition) NON-GENERIC: vertical and meridional profile tuned to observations |
---|
464 | ! S. Guerlet (2015) |
---|
465 | !================================================================== |
---|
466 | |
---|
467 | |
---|
468 | if (iaero_aurora .ne.0) then |
---|
469 | iaer=iaero_aurora |
---|
470 | ! 1. Initialization |
---|
471 | aerosol(1:ngrid,1:nlayer,iaer)=0.D0 |
---|
472 | pm = 2000. !!case study: maxi aerosols at 20 hPa |
---|
473 | ! 2. Opacity calculation |
---|
474 | DO ig=1,ngrid |
---|
475 | |
---|
476 | !! Test Jupiter (based on Zhang et al 2013 observations, but a bit different), decembre 2015 |
---|
477 | DO l=1,nlayer |
---|
478 | aerosol(ig,l,iaer) = (pplev(ig,l)/pm)**2 * exp(-(pplev(ig,l)/pm)**2) |
---|
479 | ENDDO |
---|
480 | ENDDO |
---|
481 | |
---|
482 | ! 3. Meridional distribution, and re-normalize to observed total column |
---|
483 | tau_col(:)=0.D0 |
---|
484 | DO ig=1,ngrid |
---|
485 | !!Jupiter |
---|
486 | !!Hem sud: |
---|
487 | IF (latitude(ig)*180.D0/pi .lt. -45.D0 .and. latitude(ig)*180.D0/pi .gt. -70.) THEN |
---|
488 | obs_tau_col_aurora= 10.D0**(-0.06D0*latitude(ig)*180.D0/pi-3.4D0) |
---|
489 | ELSEIF (latitude(ig)*180.D0/pi .lt. -37.D0 .and. latitude(ig)*180.D0/pi .ge. -45.) THEN |
---|
490 | obs_tau_col_aurora= 10.D0**(-0.3D0*latitude(ig)*180.D0/pi-14.3D0) |
---|
491 | ELSEIF (latitude(ig)*180./pi .le. -70. ) THEN |
---|
492 | obs_tau_col_aurora= 10**(0.06*70.-3.4D0) |
---|
493 | !!Hem Nord: |
---|
494 | ELSEIF (latitude(ig)*180.D0/pi .gt. 30.D0 .and. latitude(ig)*180.D0/pi .lt. 70.) THEN |
---|
495 | obs_tau_col_aurora= 10.D0**(0.03D0*latitude(ig)*180.D0/pi-1.17D0) |
---|
496 | ELSEIF (latitude(ig)*180.D0/pi .gt. 22.D0 .and. latitude(ig)*180.D0/pi .le. 30.) THEN |
---|
497 | obs_tau_col_aurora= 10.D0**(0.3D0*latitude(ig)*180.D0/pi-9.4D0) |
---|
498 | ELSEIF (latitude(ig)*180.D0/pi .ge. 70.) THEN |
---|
499 | obs_tau_col_aurora= 10**(0.03*70.-1.17D0) |
---|
500 | ELSEIF (latitude(ig)*180.D0/pi .ge. -37. .and. latitude(ig)*180.D0/pi .le. 22.) THEN |
---|
501 | obs_tau_col_aurora = 0.001D0 !!Jupiter: mini pas a zero |
---|
502 | ENDIF |
---|
503 | |
---|
504 | DO l=1,nlayer |
---|
505 | tau_col(ig) = tau_col(ig) + aerosol(ig,l,iaer)/obs_tau_col_aurora |
---|
506 | ENDDO |
---|
507 | ENDDO |
---|
508 | |
---|
509 | DO ig=1,ngrid |
---|
510 | DO l=1,nlayer-1 |
---|
511 | aerosol(ig,l,iaer)=aerosol(ig,l,iaer)/tau_col(ig) |
---|
512 | ENDDO |
---|
513 | ENDDO |
---|
514 | |
---|
515 | |
---|
516 | end if ! if Auroral aerosols |
---|
517 | |
---|
518 | |
---|
519 | ! -------------------------------------------------------------------------- |
---|
520 | ! Column integrated visible optical depth in each point (used for diagnostic) |
---|
521 | |
---|
522 | tau_col(:)=0.0 |
---|
523 | do iaer = 1, naerkind |
---|
524 | do l=1,nlayer |
---|
525 | do ig=1,ngrid |
---|
526 | tau_col(ig) = tau_col(ig) + aerosol(ig,l,iaer) |
---|
527 | end do |
---|
528 | end do |
---|
529 | end do |
---|
530 | |
---|
531 | do ig=1,ngrid |
---|
532 | do l=1,nlayer |
---|
533 | do iaer = 1, naerkind |
---|
534 | if(aerosol(ig,l,iaer).gt.1.e3)then |
---|
535 | print*,'WARNING: aerosol=',aerosol(ig,l,iaer) |
---|
536 | print*,'at ig=',ig,', l=',l,', iaer=',iaer |
---|
537 | print*,'QREFvis3d=',QREFvis3d(ig,l,iaer) |
---|
538 | print*,'reffrad=',reffrad(ig,l,iaer) |
---|
539 | endif |
---|
540 | end do |
---|
541 | end do |
---|
542 | end do |
---|
543 | |
---|
544 | do ig=1,ngrid |
---|
545 | if(tau_col(ig).gt.1.e3)then |
---|
546 | print*,'WARNING: tau_col=',tau_col(ig) |
---|
547 | print*,'at ig=',ig |
---|
548 | print*,'aerosol=',aerosol(ig,:,:) |
---|
549 | print*,'QREFvis3d=',QREFvis3d(ig,:,:) |
---|
550 | print*,'reffrad=',reffrad(ig,:,:) |
---|
551 | endif |
---|
552 | end do |
---|
553 | return |
---|
554 | end subroutine aeropacity |
---|
555 | |
---|