1 | Subroutine aeropacity(ngrid,nlayer,nq,pplay,pplev,pq, & |
---|
2 | aerosol,reffrad,QREFvis3d,QREFir3d,tau_col,cloudfrac,totcloudfrac,clearsky) |
---|
3 | |
---|
4 | use radinc_h, only : L_TAUMAX,naerkind |
---|
5 | use aerosol_mod |
---|
6 | USE comgeomfi_h |
---|
7 | USE tracer_h, only: noms,rho_co2,rho_ice |
---|
8 | |
---|
9 | implicit none |
---|
10 | |
---|
11 | !================================================================== |
---|
12 | ! |
---|
13 | ! Purpose |
---|
14 | ! ------- |
---|
15 | ! Compute aerosol optical depth in each gridbox. |
---|
16 | ! |
---|
17 | ! Authors |
---|
18 | ! ------- |
---|
19 | ! F. Forget |
---|
20 | ! F. Montmessin (water ice scheme) |
---|
21 | ! update J.-B. Madeleine (2008) |
---|
22 | ! dust removal, simplification by Robin Wordsworth (2009) |
---|
23 | ! |
---|
24 | ! Input |
---|
25 | ! ----- |
---|
26 | ! ngrid Number of horizontal gridpoints |
---|
27 | ! nlayer Number of layers |
---|
28 | ! nq Number of tracers |
---|
29 | ! pplev Pressure (Pa) at each layer boundary |
---|
30 | ! pq Aerosol mixing ratio |
---|
31 | ! reffrad(ngrid,nlayer,naerkind) Aerosol effective radius |
---|
32 | ! QREFvis3d(ngrid,nlayer,naerkind) \ 3d extinction coefficients |
---|
33 | ! QREFir3d(ngrid,nlayer,naerkind) / at reference wavelengths |
---|
34 | ! |
---|
35 | ! Output |
---|
36 | ! ------ |
---|
37 | ! aerosol Aerosol optical depth in layer l, grid point ig |
---|
38 | ! tau_col Total column optical depth at grid point ig |
---|
39 | ! |
---|
40 | !======================================================================= |
---|
41 | |
---|
42 | !#include "dimensions.h" |
---|
43 | !#include "dimphys.h" |
---|
44 | #include "callkeys.h" |
---|
45 | #include "comcstfi.h" |
---|
46 | !#include "comvert.h" |
---|
47 | |
---|
48 | INTEGER,INTENT(IN) :: ngrid ! number of atmospheric columns |
---|
49 | INTEGER,INTENT(IN) :: nlayer ! number of atmospheric layers |
---|
50 | INTEGER,INTENT(IN) :: nq ! number of tracers |
---|
51 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! mid-layer pressure (Pa) |
---|
52 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! inter-layer pressure (Pa) |
---|
53 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! tracers (.../kg_of_air) |
---|
54 | REAL,INTENT(OUT) :: aerosol(ngrid,nlayer,naerkind) ! aerosol optical depth |
---|
55 | REAL,INTENT(IN) :: reffrad(ngrid,nlayer,naerkind) ! aerosol effective radius |
---|
56 | REAL,INTENT(IN) :: QREFvis3d(ngrid,nlayer,naerkind) ! extinction coefficient in the visible |
---|
57 | REAL,INTENT(IN) :: QREFir3d(ngrid,nlayer,naerkind) |
---|
58 | REAL,INTENT(OUT):: tau_col(ngrid) !column integrated visible optical depth |
---|
59 | ! BENJAMIN MODIFS |
---|
60 | real,intent(in) :: cloudfrac(ngrid,nlayer) ! cloud fraction |
---|
61 | real,intent(out) :: totcloudfrac(ngrid) ! total cloud fraction |
---|
62 | logical,intent(in) :: clearsky |
---|
63 | |
---|
64 | real aerosol0 |
---|
65 | |
---|
66 | INTEGER l,ig,iq,iaer |
---|
67 | |
---|
68 | LOGICAL,SAVE :: firstcall=.true. |
---|
69 | REAL CBRT |
---|
70 | EXTERNAL CBRT |
---|
71 | |
---|
72 | INTEGER,SAVE :: i_co2ice=0 ! co2 ice |
---|
73 | INTEGER,SAVE :: i_h2oice=0 ! water ice |
---|
74 | CHARACTER(LEN=20) :: tracername ! to temporarily store text |
---|
75 | |
---|
76 | ! for fixed dust profiles |
---|
77 | real topdust, expfactor, zp |
---|
78 | REAL taudusttmp(ngrid) ! Temporary dust opacity used before scaling |
---|
79 | REAL tauh2so4tmp(ngrid) ! Temporary h2so4 opacity used before scaling |
---|
80 | |
---|
81 | real CLFtot |
---|
82 | |
---|
83 | ! identify tracers |
---|
84 | IF (firstcall) THEN |
---|
85 | |
---|
86 | write(*,*) "Tracers found in aeropacity:" |
---|
87 | do iq=1,nq |
---|
88 | tracername=noms(iq) |
---|
89 | if (tracername.eq."co2_ice") then |
---|
90 | i_co2ice=iq |
---|
91 | write(*,*) "i_co2ice=",i_co2ice |
---|
92 | |
---|
93 | endif |
---|
94 | if (tracername.eq."h2o_ice") then |
---|
95 | i_h2oice=iq |
---|
96 | write(*,*) "i_h2oice=",i_h2oice |
---|
97 | endif |
---|
98 | enddo |
---|
99 | |
---|
100 | if (noaero) then |
---|
101 | print*, "No active aerosols found in aeropacity" |
---|
102 | else |
---|
103 | print*, "If you would like to use aerosols, make sure any old" |
---|
104 | print*, "start files are updated in newstart using the option" |
---|
105 | print*, "q=0" |
---|
106 | write(*,*) "Active aerosols found in aeropacity:" |
---|
107 | endif |
---|
108 | |
---|
109 | if ((iaero_co2.ne.0).and.(.not.noaero)) then |
---|
110 | print*, 'iaero_co2= ',iaero_co2 |
---|
111 | endif |
---|
112 | if (iaero_h2o.ne.0) then |
---|
113 | print*,'iaero_h2o= ',iaero_h2o |
---|
114 | endif |
---|
115 | if (iaero_dust.ne.0) then |
---|
116 | print*,'iaero_dust= ',iaero_dust |
---|
117 | endif |
---|
118 | if (iaero_h2so4.ne.0) then |
---|
119 | print*,'iaero_h2so4= ',iaero_h2so4 |
---|
120 | endif |
---|
121 | if (iaero_back2lay.ne.0) then |
---|
122 | print*,'iaero_back2lay= ',iaero_back2lay |
---|
123 | endif |
---|
124 | |
---|
125 | firstcall=.false. |
---|
126 | ENDIF ! of IF (firstcall) |
---|
127 | |
---|
128 | |
---|
129 | ! --------------------------------------------------------- |
---|
130 | !================================================================== |
---|
131 | ! CO2 ice aerosols |
---|
132 | !================================================================== |
---|
133 | |
---|
134 | if (iaero_co2.ne.0) then |
---|
135 | iaer=iaero_co2 |
---|
136 | ! 1. Initialization |
---|
137 | aerosol(1:ngrid,1:nlayer,iaer)=0.0 |
---|
138 | ! 2. Opacity calculation |
---|
139 | if (noaero) then ! aerosol set to zero |
---|
140 | aerosol(1:ngrid,1:nlayer,iaer)=0.0 |
---|
141 | elseif (aerofixco2.or.(i_co2ice.eq.0)) then ! CO2 ice cloud prescribed |
---|
142 | aerosol(1:ngrid,1:nlayer,iaer)=1.e-9 |
---|
143 | !aerosol(1:ngrid,12,iaer)=4.0 ! single cloud layer option |
---|
144 | else |
---|
145 | DO ig=1, ngrid |
---|
146 | DO l=1,nlayer-1 ! to stop the rad tran bug |
---|
147 | |
---|
148 | aerosol0 = & |
---|
149 | ( 0.75 * QREFvis3d(ig,l,iaer) / & |
---|
150 | ( rho_co2 * reffrad(ig,l,iaer) ) ) * & |
---|
151 | ( pq(ig,l,i_co2ice) + 1.E-9 ) * & |
---|
152 | ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
153 | aerosol0 = max(aerosol0,1.e-9) |
---|
154 | aerosol0 = min(aerosol0,L_TAUMAX) |
---|
155 | aerosol(ig,l,iaer) = aerosol0 |
---|
156 | ! aerosol(ig,l,iaer) = 0.0 |
---|
157 | ! print*, aerosol(ig,l,iaer) |
---|
158 | ! using cloud fraction |
---|
159 | ! aerosol(ig,l,iaer) = -log(1 - CLF + CLF*exp(-aerosol0/CLF)) |
---|
160 | ! aerosol(ig,l,iaer) = min(aerosol(ig,l,iaer),L_TAUMAX) |
---|
161 | |
---|
162 | |
---|
163 | ENDDO |
---|
164 | ENDDO |
---|
165 | end if ! if fixed or varying |
---|
166 | end if ! if CO2 aerosols |
---|
167 | !================================================================== |
---|
168 | ! Water ice / liquid |
---|
169 | !================================================================== |
---|
170 | |
---|
171 | if (iaero_h2o.ne.0) then |
---|
172 | iaer=iaero_h2o |
---|
173 | ! 1. Initialization |
---|
174 | aerosol(1:ngrid,1:nlayer,iaer)=0.0 |
---|
175 | ! 2. Opacity calculation |
---|
176 | if (aerofixh2o.or.(i_h2oice.eq.0).or.clearsky) then |
---|
177 | aerosol(1:ngrid,1:nlayer,iaer) =1.e-9 |
---|
178 | |
---|
179 | ! put cloud at cloudlvl |
---|
180 | if(kastprof.and.(cloudlvl.ne.0.0))then |
---|
181 | ig=1 |
---|
182 | do l=1,nlayer |
---|
183 | if(int(cloudlvl).eq.l)then |
---|
184 | !if(cloudlvl.gt.(pplay(ig,l)/pplev(ig,1)))then |
---|
185 | print*,'Inserting cloud at level ',l |
---|
186 | !aerosol(ig,l,iaer)=10.0 |
---|
187 | |
---|
188 | rho_ice=920.0 |
---|
189 | |
---|
190 | ! the Kasting approximation |
---|
191 | aerosol(ig,l,iaer) = & |
---|
192 | ( 0.75 * QREFvis3d(ig,l,iaer) / & |
---|
193 | ( rho_ice * reffrad(ig,l,iaer) ) ) * & |
---|
194 | !( pq(ig,l,i_h2oice) + 1.E-9 ) * & |
---|
195 | ( 4.0e-4 + 1.E-9 ) * & |
---|
196 | ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
197 | |
---|
198 | |
---|
199 | open(115,file='clouds.out',form='formatted') |
---|
200 | write(115,*) l,aerosol(ig,l,iaer) |
---|
201 | close(115) |
---|
202 | |
---|
203 | return |
---|
204 | endif |
---|
205 | end do |
---|
206 | |
---|
207 | call abort |
---|
208 | endif |
---|
209 | |
---|
210 | else |
---|
211 | |
---|
212 | do ig=1, ngrid |
---|
213 | do l=1,nlayer-1 ! to stop the rad tran bug |
---|
214 | |
---|
215 | aerosol(ig,l,iaer) = & !modification by BC |
---|
216 | ( 0.75 * QREFvis3d(ig,l,iaer) / & |
---|
217 | ( rho_ice * reffrad(ig,l,iaer) ) ) * & |
---|
218 | ! pq(ig,l,i_h2oice) * & !JL I dropped the +1e-9 here to have the same |
---|
219 | !( pplev(ig,l) - pplev(ig,l+1) ) / g ! opacity in the clearsky=true and the |
---|
220 | ! clear=false/pq=0 case |
---|
221 | ( pq(ig,l,i_h2oice) + 1.E-9 ) * & ! Doing this makes the code unstable, so I have restored it (RW) |
---|
222 | ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
223 | |
---|
224 | enddo |
---|
225 | enddo |
---|
226 | |
---|
227 | if(CLFvarying)then |
---|
228 | call totalcloudfrac(ngrid,nlayer,nq,cloudfrac,totcloudfrac,pplev,pq,aerosol(1,1,iaer)) |
---|
229 | do ig=1, ngrid |
---|
230 | do l=1,nlayer-1 ! to stop the rad tran bug |
---|
231 | CLFtot = max(totcloudfrac(ig),0.01) |
---|
232 | aerosol(ig,l,iaer)=aerosol(ig,l,iaer)/CLFtot |
---|
233 | aerosol(ig,l,iaer) = max(aerosol(ig,l,iaer),1.e-9) |
---|
234 | enddo |
---|
235 | enddo |
---|
236 | else |
---|
237 | do ig=1, ngrid |
---|
238 | do l=1,nlayer-1 ! to stop the rad tran bug |
---|
239 | CLFtot = CLFfixval |
---|
240 | aerosol(ig,l,iaer)=aerosol(ig,l,iaer)/CLFtot |
---|
241 | aerosol(ig,l,iaer) = max(aerosol(ig,l,iaer),1.e-9) |
---|
242 | enddo |
---|
243 | enddo |
---|
244 | end if!(CLFvarying) |
---|
245 | endif !(aerofixed.or.(i_h2oice.eq.0).or.clearsky) |
---|
246 | |
---|
247 | end if ! End if h2o aerosol |
---|
248 | |
---|
249 | !================================================================== |
---|
250 | ! Dust |
---|
251 | !================================================================== |
---|
252 | if (iaero_dust.ne.0) then |
---|
253 | iaer=iaero_dust |
---|
254 | ! 1. Initialization |
---|
255 | aerosol(1:ngrid,1:nlayer,iaer)=0.0 |
---|
256 | |
---|
257 | topdust=30.0 ! km (used to be 10.0 km) LK |
---|
258 | |
---|
259 | ! 2. Opacity calculation |
---|
260 | |
---|
261 | ! expfactor=0. |
---|
262 | DO l=1,nlayer-1 |
---|
263 | DO ig=1,ngrid |
---|
264 | ! Typical mixing ratio profile |
---|
265 | |
---|
266 | zp=(pplev(ig,1)/pplay(ig,l))**(70./topdust) |
---|
267 | expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) |
---|
268 | |
---|
269 | ! Vertical scaling function |
---|
270 | aerosol(ig,l,iaer)= (pplev(ig,l)-pplev(ig,l+1)) & |
---|
271 | *expfactor |
---|
272 | |
---|
273 | |
---|
274 | ENDDO |
---|
275 | ENDDO |
---|
276 | |
---|
277 | ! Rescaling each layer to reproduce the choosen (or assimilated) |
---|
278 | ! dust extinction opacity at visible reference wavelength, which |
---|
279 | ! is scaled to the surface pressure pplev(ig,1) |
---|
280 | |
---|
281 | taudusttmp(1:ngrid)=0. |
---|
282 | DO l=1,nlayer |
---|
283 | DO ig=1,ngrid |
---|
284 | taudusttmp(ig) = taudusttmp(ig) & |
---|
285 | + aerosol(ig,l,iaer) |
---|
286 | ENDDO |
---|
287 | ENDDO |
---|
288 | DO l=1,nlayer-1 |
---|
289 | DO ig=1,ngrid |
---|
290 | aerosol(ig,l,iaer) = max(1E-20, & |
---|
291 | dusttau & |
---|
292 | * pplev(ig,1) / pplev(ig,1) & |
---|
293 | * aerosol(ig,l,iaer) & |
---|
294 | / taudusttmp(ig)) |
---|
295 | |
---|
296 | ENDDO |
---|
297 | ENDDO |
---|
298 | end if ! If dust aerosol |
---|
299 | |
---|
300 | !================================================================== |
---|
301 | ! H2SO4 |
---|
302 | !================================================================== |
---|
303 | ! added by LK |
---|
304 | if (iaero_h2so4.ne.0) then |
---|
305 | iaer=iaero_h2so4 |
---|
306 | |
---|
307 | ! 1. Initialization |
---|
308 | aerosol(1:ngrid,1:nlayer,iaer)=0.0 |
---|
309 | |
---|
310 | |
---|
311 | ! 2. Opacity calculation |
---|
312 | |
---|
313 | ! expfactor=0. |
---|
314 | DO l=1,nlayer-1 |
---|
315 | DO ig=1,ngrid |
---|
316 | ! Typical mixing ratio profile |
---|
317 | |
---|
318 | zp=(pplev(ig,1)/pplay(ig,l))**(70./30) !emulating topdust |
---|
319 | expfactor=max(exp(0.007*(1.-max(zp,1.))),1.e-3) |
---|
320 | |
---|
321 | ! Vertical scaling function |
---|
322 | aerosol(ig,l,iaer)= (pplev(ig,l)-pplev(ig,l+1))*expfactor |
---|
323 | |
---|
324 | ENDDO |
---|
325 | ENDDO |
---|
326 | tauh2so4tmp(1:ngrid)=0. |
---|
327 | DO l=1,nlayer |
---|
328 | DO ig=1,ngrid |
---|
329 | tauh2so4tmp(ig) = tauh2so4tmp(ig) + aerosol(ig,l,iaer) |
---|
330 | ENDDO |
---|
331 | ENDDO |
---|
332 | DO l=1,nlayer-1 |
---|
333 | DO ig=1,ngrid |
---|
334 | aerosol(ig,l,iaer) = max(1E-20, & |
---|
335 | 1 & |
---|
336 | * pplev(ig,1) / pplev(ig,1) & |
---|
337 | * aerosol(ig,l,iaer) & |
---|
338 | / tauh2so4tmp(ig)) |
---|
339 | |
---|
340 | ENDDO |
---|
341 | ENDDO |
---|
342 | |
---|
343 | ! 1/700. is assuming a "sulfurtau" of 1 |
---|
344 | ! Sulfur aerosol routine to be improved. |
---|
345 | ! aerosol0 = & |
---|
346 | ! ( 0.75 * QREFvis3d(ig,l,iaer) / & |
---|
347 | ! ( rho_h2so4 * reffrad(ig,l,iaer) ) ) * & |
---|
348 | ! ( pq(ig,l,i_h2so4) + 1.E-9 ) * & |
---|
349 | ! ( pplev(ig,l) - pplev(ig,l+1) ) / g |
---|
350 | ! aerosol0 = max(aerosol0,1.e-9) |
---|
351 | ! aerosol0 = min(aerosol0,L_TAUMAX) |
---|
352 | ! aerosol(ig,l,iaer) = aerosol0 |
---|
353 | |
---|
354 | ! ENDDO |
---|
355 | ! ENDDO |
---|
356 | end if |
---|
357 | |
---|
358 | |
---|
359 | ! --------------------------------------------------------- |
---|
360 | !================================================================== |
---|
361 | ! Two-layer aerosols (unknown composition) |
---|
362 | ! S. Guerlet (2013) |
---|
363 | !================================================================== |
---|
364 | |
---|
365 | if (iaero_back2lay .ne.0) then |
---|
366 | iaer=iaero_back2lay |
---|
367 | ! 1. Initialization |
---|
368 | aerosol(1:ngrid,1:nlayer,iaer)=0.0 |
---|
369 | ! 2. Opacity calculation |
---|
370 | DO ig=1,ngrid |
---|
371 | DO l=1,nlayer-1 |
---|
372 | aerosol(ig,l,iaer) = ( pplev(ig,l) - pplev(ig,l+1) ) |
---|
373 | !! 1. below tropospheric layer: no aerosols |
---|
374 | IF (pplev(ig,l) .gt. pres_bottom_tropo) THEN |
---|
375 | aerosol(ig,l,iaer) = 0.*aerosol(ig,l,iaer) |
---|
376 | !! 2. tropo layer |
---|
377 | ELSEIF (pplev(ig,l) .le. pres_bottom_tropo .and. pplev(ig,l) .ge. pres_top_tropo) THEN |
---|
378 | aerosol(ig,l,iaer) = obs_tau_col_tropo*aerosol(ig,l,iaer) |
---|
379 | !! 3. linear transition |
---|
380 | ELSEIF (pplev(ig,l) .lt. pres_top_tropo .and. pplev(ig,l) .gt. pres_bottom_strato) THEN |
---|
381 | expfactor=log(obs_tau_col_strato/obs_tau_col_tropo)/log(pres_bottom_strato/pres_top_tropo) |
---|
382 | aerosol(ig,l,iaer)= obs_tau_col_tropo*((pplev(ig,l)/pres_top_tropo)**expfactor)*aerosol(ig,l,iaer)/1.5 |
---|
383 | !! 4. strato layer |
---|
384 | ELSEIF (pplev(ig,l) .le. pres_bottom_strato .and. pplev(ig,l) .gt. pres_top_strato) THEN |
---|
385 | aerosol(ig,l,iaer)= obs_tau_col_strato*aerosol(ig,l,iaer) |
---|
386 | !! 5. above strato layer: no aerosols |
---|
387 | ELSEIF (pplev(ig,l) .lt. pres_top_strato) THEN |
---|
388 | aerosol(ig,l,iaer) = 0.*aerosol(ig,l,iaer) |
---|
389 | ENDIF |
---|
390 | ENDDO |
---|
391 | ENDDO |
---|
392 | |
---|
393 | ! 3. Re-normalize to observed total column |
---|
394 | tau_col(:)=0.0 |
---|
395 | DO l=1,nlayer |
---|
396 | DO ig=1,ngrid |
---|
397 | tau_col(ig) = tau_col(ig) & |
---|
398 | + aerosol(ig,l,iaer)/(obs_tau_col_tropo+obs_tau_col_strato) |
---|
399 | ENDDO |
---|
400 | ENDDO |
---|
401 | |
---|
402 | DO ig=1,ngrid |
---|
403 | DO l=1,nlayer-1 |
---|
404 | aerosol(ig,l,iaer)=aerosol(ig,l,iaer)/tau_col(ig) |
---|
405 | ENDDO |
---|
406 | ENDDO |
---|
407 | |
---|
408 | |
---|
409 | end if ! if Two-layer aerosols |
---|
410 | |
---|
411 | |
---|
412 | ! -------------------------------------------------------------------------- |
---|
413 | ! Column integrated visible optical depth in each point (used for diagnostic) |
---|
414 | |
---|
415 | tau_col(:)=0.0 |
---|
416 | do iaer = 1, naerkind |
---|
417 | do l=1,nlayer |
---|
418 | do ig=1,ngrid |
---|
419 | tau_col(ig) = tau_col(ig) + aerosol(ig,l,iaer) |
---|
420 | end do |
---|
421 | end do |
---|
422 | end do |
---|
423 | |
---|
424 | do ig=1,ngrid |
---|
425 | do l=1,nlayer |
---|
426 | do iaer = 1, naerkind |
---|
427 | if(aerosol(ig,l,iaer).gt.1.e3)then |
---|
428 | print*,'WARNING: aerosol=',aerosol(ig,l,iaer) |
---|
429 | print*,'at ig=',ig,', l=',l,', iaer=',iaer |
---|
430 | print*,'QREFvis3d=',QREFvis3d(ig,l,iaer) |
---|
431 | print*,'reffrad=',reffrad(ig,l,iaer) |
---|
432 | endif |
---|
433 | end do |
---|
434 | end do |
---|
435 | end do |
---|
436 | |
---|
437 | do ig=1,ngrid |
---|
438 | if(tau_col(ig).gt.1.e3)then |
---|
439 | print*,'WARNING: tau_col=',tau_col(ig) |
---|
440 | print*,'at ig=',ig |
---|
441 | print*,'aerosol=',aerosol(ig,:,:) |
---|
442 | print*,'QREFvis3d=',QREFvis3d(ig,:,:) |
---|
443 | print*,'reffrad=',reffrad(ig,:,:) |
---|
444 | endif |
---|
445 | end do |
---|
446 | return |
---|
447 | end subroutine aeropacity |
---|
448 | |
---|