1 | C====================================================================== |
---|
2 | PROGRAM newstart |
---|
3 | c======================================================================= |
---|
4 | c |
---|
5 | c |
---|
6 | c Auteur: Christophe Hourdin/Francois Forget/Yann Wanherdrick |
---|
7 | c ------ |
---|
8 | c Derniere modif : 12/03 |
---|
9 | c |
---|
10 | c |
---|
11 | c Objet: Create or modify the initial state for the LMD Mars GCM |
---|
12 | c ----- (fichiers NetCDF start et startfi) |
---|
13 | c |
---|
14 | c |
---|
15 | c======================================================================= |
---|
16 | |
---|
17 | implicit none |
---|
18 | |
---|
19 | #include "dimensions.h" |
---|
20 | #include "dimphys.h" |
---|
21 | #include "surfdat.h" |
---|
22 | #include "comsoil.h" |
---|
23 | #include "planete.h" |
---|
24 | #include "paramet.h" |
---|
25 | #include "comconst.h" |
---|
26 | #include "comvert.h" |
---|
27 | #include "comgeom2.h" |
---|
28 | #include "control.h" |
---|
29 | #include "logic.h" |
---|
30 | #include "description.h" |
---|
31 | #include "ener.h" |
---|
32 | #include "temps.h" |
---|
33 | #include "lmdstd.h" |
---|
34 | #include "comdissnew.h" |
---|
35 | #include "clesph0.h" |
---|
36 | #include "serre.h" |
---|
37 | #include "netcdf.inc" |
---|
38 | #include "advtrac.h" |
---|
39 | #include "tracer.h" |
---|
40 | c======================================================================= |
---|
41 | c Declarations |
---|
42 | c======================================================================= |
---|
43 | |
---|
44 | c Variables dimension du fichier "start_archive" |
---|
45 | c------------------------------------ |
---|
46 | CHARACTER relief*3 |
---|
47 | |
---|
48 | |
---|
49 | c Variables pour les lectures NetCDF des fichiers "start_archive" |
---|
50 | c-------------------------------------------------- |
---|
51 | INTEGER nid_dyn, nid_fi,nid,nvarid |
---|
52 | INTEGER length |
---|
53 | parameter (length = 100) |
---|
54 | INTEGER tab0 |
---|
55 | INTEGER NB_ETATMAX |
---|
56 | parameter (NB_ETATMAX = 100) |
---|
57 | |
---|
58 | REAL date |
---|
59 | REAL p_rad,p_omeg,p_g,p_mugaz,p_daysec |
---|
60 | |
---|
61 | c Variable histoire |
---|
62 | c------------------ |
---|
63 | REAL vcov(iip1,jjm,llm),ucov(iip1,jjp1,llm) ! vents covariants |
---|
64 | REAL phis(iip1,jjp1) |
---|
65 | REAL q(iip1,jjp1,llm,nqmx) ! champs advectes |
---|
66 | |
---|
67 | c autre variables dynamique nouvelle grille |
---|
68 | c------------------------------------------ |
---|
69 | REAL pks(iip1,jjp1) |
---|
70 | REAL w(iip1,jjp1,llm+1) |
---|
71 | REAL pbaru(ip1jmp1,llm),pbarv(ip1jm,llm) |
---|
72 | ! REAL dv(ip1jm,llm),du(ip1jmp1,llm) |
---|
73 | ! REAL dh(ip1jmp1,llm),dp(ip1jmp1) |
---|
74 | REAL phi(iip1,jjp1,llm) |
---|
75 | |
---|
76 | integer klatdat,klongdat |
---|
77 | PARAMETER (klatdat=180,klongdat=360) |
---|
78 | |
---|
79 | c Physique sur grille scalaire |
---|
80 | c---------------------------- |
---|
81 | real zmeaS(iip1,jjp1),zstdS(iip1,jjp1) |
---|
82 | real zsigS(iip1,jjp1),zgamS(iip1,jjp1),ztheS(iip1,jjp1) |
---|
83 | |
---|
84 | c variable physique |
---|
85 | c------------------ |
---|
86 | REAL tsurf(ngridmx) ! surface temperature |
---|
87 | REAL tsoil(ngridmx,nsoilmx) ! soil temperature |
---|
88 | ! REAL co2ice(ngridmx) ! CO2 ice layer |
---|
89 | REAL emis(ngridmx) ! surface emissivity |
---|
90 | REAL qsurf(ngridmx,nqmx) |
---|
91 | REAL q2(ngridmx,nlayermx+1) |
---|
92 | ! REAL rnaturfi(ngridmx) |
---|
93 | real alb(iip1,jjp1),albfi(ngridmx) ! albedos |
---|
94 | real ith(iip1,jjp1,nsoilmx),ithfi(ngridmx,nsoilmx) ! thermal inertia (3D) |
---|
95 | real surfith(iip1,jjp1),surfithfi(ngridmx) ! surface thermal inertia (2D) |
---|
96 | REAL latfi(ngridmx),lonfi(ngridmx),airefi(ngridmx) |
---|
97 | |
---|
98 | INTEGER i,j,l,isoil,ig,idum |
---|
99 | real mugaz ! molar mass of the atmosphere |
---|
100 | |
---|
101 | integer ierr |
---|
102 | |
---|
103 | c Variables on the new grid along scalar points |
---|
104 | c------------------------------------------------------ |
---|
105 | ! REAL p(iip1,jjp1) |
---|
106 | REAL t(iip1,jjp1,llm) |
---|
107 | REAL tset(iip1,jjp1,llm) |
---|
108 | real phisold_newgrid(iip1,jjp1) |
---|
109 | REAL :: teta(iip1, jjp1, llm) |
---|
110 | REAL :: pk(iip1,jjp1,llm) |
---|
111 | REAL :: pkf(iip1,jjp1,llm) |
---|
112 | REAL :: ps(iip1, jjp1) |
---|
113 | REAL :: masse(iip1,jjp1,llm) |
---|
114 | REAL :: xpn,xps,xppn(iim),xpps(iim) |
---|
115 | REAL :: p3d(iip1, jjp1, llm+1) |
---|
116 | REAL :: beta(iip1,jjp1,llm) |
---|
117 | ! REAL dteta(ip1jmp1,llm) |
---|
118 | |
---|
119 | c Variable de l'ancienne grille |
---|
120 | c------------------------------ |
---|
121 | real time |
---|
122 | real tab_cntrl(100) |
---|
123 | real tab_cntrl_bis(100) |
---|
124 | |
---|
125 | c variables diverses |
---|
126 | c------------------- |
---|
127 | real choix_1,pp |
---|
128 | character*80 fichnom |
---|
129 | integer Lmodif,iq,thermo |
---|
130 | character modif*20 |
---|
131 | real z_reel(iip1,jjp1) |
---|
132 | real tsud,albsud,alb_bb,ith_bb,Tiso,Tabove |
---|
133 | real ptoto,pcap,patm,airetot,ptotn,patmn |
---|
134 | ! real ssum |
---|
135 | character*1 yes |
---|
136 | logical :: flagtset=.false. , flagps0=.false. |
---|
137 | real val, val2, val3 ! to store temporary variables |
---|
138 | real :: iceith=2000 ! thermal inertia of subterranean ice |
---|
139 | integer iref,jref |
---|
140 | |
---|
141 | INTEGER :: itau |
---|
142 | |
---|
143 | INTEGER :: nq,numvanle |
---|
144 | character(len=20) :: txt ! to store some text |
---|
145 | integer :: count |
---|
146 | |
---|
147 | ! MONS data: |
---|
148 | real :: MONS_Hdn(iip1,jjp1) ! Hdn: %WEH=Mass fraction of H2O |
---|
149 | real :: MONS_d21(iip1,jjp1) ! ice table "depth" (in kg/m2) |
---|
150 | ! coefficient to apply to convert d21 to 'true' depth (m) |
---|
151 | real :: MONS_coeff |
---|
152 | real :: MONS_coeffS ! coeff for southern hemisphere |
---|
153 | real :: MONS_coeffN ! coeff for northern hemisphere |
---|
154 | ! real,parameter :: icedepthmin=1.e-3 ! Ice begins at most at that depth |
---|
155 | |
---|
156 | c sortie visu pour les champs dynamiques |
---|
157 | c--------------------------------------- |
---|
158 | ! INTEGER :: visuid |
---|
159 | ! real :: time_step,t_ops,t_wrt |
---|
160 | ! CHARACTER*80 :: visu_file |
---|
161 | |
---|
162 | cpp = 744.499 ! for Mars, instead of 1004.70885 (Earth) |
---|
163 | |
---|
164 | |
---|
165 | preff = 610. ! for Mars, instead of 101325. (Earth) |
---|
166 | pa= 20 ! for Mars, instead of 500 (Earth) |
---|
167 | |
---|
168 | c======================================================================= |
---|
169 | c Choice of the start file(s) to use |
---|
170 | c======================================================================= |
---|
171 | |
---|
172 | write(*,*) 'From which kind of files do you want to create new', |
---|
173 | . 'start and startfi files' |
---|
174 | write(*,*) ' 0 - from a file start_archive' |
---|
175 | write(*,*) ' 1 - from files start and startfi' |
---|
176 | |
---|
177 | c----------------------------------------------------------------------- |
---|
178 | c Open file(s) to modify (start or start_archive) |
---|
179 | c----------------------------------------------------------------------- |
---|
180 | |
---|
181 | DO |
---|
182 | read(*,*,iostat=ierr) choix_1 |
---|
183 | if ((choix_1 /= 0).OR.(choix_1 /=1)) EXIT |
---|
184 | ENDDO |
---|
185 | |
---|
186 | c Open start_archive |
---|
187 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
188 | if (choix_1.eq.0) then |
---|
189 | |
---|
190 | write(*,*) 'Creating start files from:' |
---|
191 | write(*,*) './start_archive.nc' |
---|
192 | write(*,*) |
---|
193 | fichnom = 'start_archive.nc' |
---|
194 | ierr = NF_OPEN (fichnom, NF_NOWRITE,nid) |
---|
195 | IF (ierr.NE.NF_NOERR) THEN |
---|
196 | write(6,*)' Problem opening file:',fichnom |
---|
197 | write(6,*)' ierr = ', ierr |
---|
198 | CALL ABORT |
---|
199 | ENDIF |
---|
200 | tab0 = 50 |
---|
201 | Lmodif = 1 |
---|
202 | |
---|
203 | c OR open start and startfi files |
---|
204 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
205 | else |
---|
206 | write(*,*) 'Creating start files from:' |
---|
207 | write(*,*) './start.nc and ./startfi.nc' |
---|
208 | write(*,*) |
---|
209 | fichnom = 'start.nc' |
---|
210 | ierr = NF_OPEN (fichnom, NF_NOWRITE,nid_dyn) |
---|
211 | IF (ierr.NE.NF_NOERR) THEN |
---|
212 | write(6,*)' Problem opening file:',fichnom |
---|
213 | write(6,*)' ierr = ', ierr |
---|
214 | CALL ABORT |
---|
215 | ENDIF |
---|
216 | |
---|
217 | fichnom = 'startfi.nc' |
---|
218 | ierr = NF_OPEN (fichnom, NF_NOWRITE,nid_fi) |
---|
219 | IF (ierr.NE.NF_NOERR) THEN |
---|
220 | write(6,*)' Problem opening file:',fichnom |
---|
221 | write(6,*)' ierr = ', ierr |
---|
222 | CALL ABORT |
---|
223 | ENDIF |
---|
224 | |
---|
225 | tab0 = 0 |
---|
226 | Lmodif = 0 |
---|
227 | |
---|
228 | endif |
---|
229 | |
---|
230 | c----------------------------------------------------------------------- |
---|
231 | c Lecture du tableau des parametres du run (pour la dynamique) |
---|
232 | c----------------------------------------------------------------------- |
---|
233 | |
---|
234 | if (choix_1.eq.0) then |
---|
235 | |
---|
236 | write(*,*) 'reading tab_cntrl START_ARCHIVE' |
---|
237 | c |
---|
238 | ierr = NF_INQ_VARID (nid, "controle", nvarid) |
---|
239 | #ifdef NC_DOUBLE |
---|
240 | ierr = NF_GET_VAR_DOUBLE(nid, nvarid, tab_cntrl) |
---|
241 | #else |
---|
242 | ierr = NF_GET_VAR_REAL(nid, nvarid, tab_cntrl) |
---|
243 | #endif |
---|
244 | c |
---|
245 | else if (choix_1.eq.1) then |
---|
246 | |
---|
247 | write(*,*) 'reading tab_cntrl START' |
---|
248 | c |
---|
249 | ierr = NF_INQ_VARID (nid_dyn, "controle", nvarid) |
---|
250 | #ifdef NC_DOUBLE |
---|
251 | ierr = NF_GET_VAR_DOUBLE(nid_dyn, nvarid, tab_cntrl) |
---|
252 | #else |
---|
253 | ierr = NF_GET_VAR_REAL(nid_dyn, nvarid, tab_cntrl) |
---|
254 | #endif |
---|
255 | c |
---|
256 | write(*,*) 'reading tab_cntrl STARTFI' |
---|
257 | c |
---|
258 | ierr = NF_INQ_VARID (nid_fi, "controle", nvarid) |
---|
259 | #ifdef NC_DOUBLE |
---|
260 | ierr = NF_GET_VAR_DOUBLE(nid_fi, nvarid, tab_cntrl_bis) |
---|
261 | #else |
---|
262 | ierr = NF_GET_VAR_REAL(nid_fi, nvarid, tab_cntrl_bis) |
---|
263 | #endif |
---|
264 | c |
---|
265 | do i=1,50 |
---|
266 | tab_cntrl(i+50)=tab_cntrl_bis(i) |
---|
267 | enddo |
---|
268 | write(*,*) 'printing tab_cntrl', tab_cntrl |
---|
269 | do i=1,100 |
---|
270 | write(*,*) i,tab_cntrl(i) |
---|
271 | enddo |
---|
272 | |
---|
273 | endif |
---|
274 | c----------------------------------------------------------------------- |
---|
275 | c Initialisation des constantes dynamique |
---|
276 | c----------------------------------------------------------------------- |
---|
277 | |
---|
278 | kappa = tab_cntrl(9) |
---|
279 | etot0 = tab_cntrl(12) |
---|
280 | ptot0 = tab_cntrl(13) |
---|
281 | ztot0 = tab_cntrl(14) |
---|
282 | stot0 = tab_cntrl(15) |
---|
283 | ang0 = tab_cntrl(16) |
---|
284 | write(*,*) "Newstart: kappa,etot0,ptot0,ztot0,stot0,ang0" |
---|
285 | write(*,*) kappa,etot0,ptot0,ztot0,stot0,ang0 |
---|
286 | |
---|
287 | ! for vertical coordinate |
---|
288 | preff=tab_cntrl(18) ! reference surface pressure |
---|
289 | pa=tab_cntrl(17) ! reference pressure at which coord is purely pressure |
---|
290 | !NB: in start_archive files tab_cntrl(17)=tab_cntrl(18)=0 |
---|
291 | if (preff.eq.0) then |
---|
292 | preff=610 |
---|
293 | pa=20 |
---|
294 | endif |
---|
295 | write(*,*) "Newstart: preff=",preff," pa=",pa |
---|
296 | yes=' ' |
---|
297 | do while ((yes.ne.'y').and.(yes.ne.'n')) |
---|
298 | write(*,*) "Change the values of preff and pa? (y/n)" |
---|
299 | read(*,fmt='(a)') yes |
---|
300 | end do |
---|
301 | if (yes.eq.'y') then |
---|
302 | write(*,*)"New value of reference surface pressure preff?" |
---|
303 | write(*,*)" (for Mars, typically preff=610)" |
---|
304 | read(*,*) preff |
---|
305 | write(*,*)"New value of reference pressure pa for purely" |
---|
306 | write(*,*)"pressure levels (for hybrid coordinates)?" |
---|
307 | write(*,*)" (for Mars, typically pa=20)" |
---|
308 | read(*,*) pa |
---|
309 | endif |
---|
310 | c----------------------------------------------------------------------- |
---|
311 | c Lecture du tab_cntrl et initialisation des constantes physiques |
---|
312 | c - pour start: Lmodif = 0 => pas de modifications possibles |
---|
313 | c (modif dans le tabfi de readfi + loin) |
---|
314 | c - pour start_archive: Lmodif = 1 => modifications possibles |
---|
315 | c----------------------------------------------------------------------- |
---|
316 | if (choix_1.eq.0) then |
---|
317 | call tabfi (nid,Lmodif,tab0,day_ini,lllm,p_rad, |
---|
318 | . p_omeg,p_g,p_mugaz,p_daysec,time) |
---|
319 | else if (choix_1.eq.1) then |
---|
320 | call tabfi (nid_fi,Lmodif,tab0,day_ini,lllm,p_rad, |
---|
321 | . p_omeg,p_g,p_mugaz,p_daysec,time) |
---|
322 | endif |
---|
323 | |
---|
324 | rad = p_rad |
---|
325 | omeg = p_omeg |
---|
326 | g = p_g |
---|
327 | mugaz = p_mugaz |
---|
328 | daysec = p_daysec |
---|
329 | |
---|
330 | ! print*,'daysec=',p_daysec |
---|
331 | ! stop |
---|
332 | |
---|
333 | ! write(*,*) 'aire',aire |
---|
334 | |
---|
335 | |
---|
336 | c======================================================================= |
---|
337 | c INITIALISATIONS DIVERSES |
---|
338 | c======================================================================= |
---|
339 | ! Load tracer names: |
---|
340 | call iniadvtrac(nq,numvanle) |
---|
341 | ! tnom(:) now contains tracer names |
---|
342 | ! Initialize global tracer indexes (stored in tracer.h) |
---|
343 | call initracer() |
---|
344 | ! Load parameters from run.def file |
---|
345 | CALL defrun_new( 99, .TRUE. ) |
---|
346 | CALL iniconst |
---|
347 | CALL inigeom |
---|
348 | idum=-1 |
---|
349 | idum=0 |
---|
350 | |
---|
351 | c Initialisation coordonnees /aires |
---|
352 | c ------------------------------- |
---|
353 | ! Note: rlatu(:) and rlonv(:) are commons defined in "comgeom.h" |
---|
354 | ! rlatu() and rlonv() are given in radians |
---|
355 | latfi(1)=rlatu(1) |
---|
356 | lonfi(1)=0. |
---|
357 | DO j=2,jjm |
---|
358 | DO i=1,iim |
---|
359 | latfi((j-2)*iim+1+i)=rlatu(j) |
---|
360 | lonfi((j-2)*iim+1+i)=rlonv(i) |
---|
361 | ENDDO |
---|
362 | ENDDO |
---|
363 | latfi(ngridmx)=rlatu(jjp1) |
---|
364 | lonfi(ngridmx)=0. |
---|
365 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,aire,airefi) |
---|
366 | |
---|
367 | c======================================================================= |
---|
368 | c lecture topographie, albedo, inertie thermique, relief sous-maille |
---|
369 | c======================================================================= |
---|
370 | |
---|
371 | if (choix_1.ne.1) then ! pour ne pas avoir besoin du fichier |
---|
372 | ! surface.dat dans le cas des start |
---|
373 | |
---|
374 | c do while((relief(1:3).ne.'mol').AND.(relief(1:3).ne.'pla')) |
---|
375 | c write(*,*) |
---|
376 | c write(*,*) 'choix du relief (mola,pla)' |
---|
377 | c write(*,*) '(Topographie MGS MOLA, plat)' |
---|
378 | c read(*,fmt='(a3)') relief |
---|
379 | relief="mola" |
---|
380 | c enddo |
---|
381 | |
---|
382 | CALL datareadnc(relief,phis,alb,surfith,zmeaS,zstdS,zsigS,zgamS, |
---|
383 | . ztheS) |
---|
384 | |
---|
385 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,phis,phisfi) |
---|
386 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,surfith,surfithfi) |
---|
387 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,alb,albfi) |
---|
388 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,zmeaS,zmea) |
---|
389 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,zstdS,zstd) |
---|
390 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,zsigS,zsig) |
---|
391 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,zgamS,zgam) |
---|
392 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,ztheS,zthe) |
---|
393 | |
---|
394 | endif ! of if (choix_1.ne.1) |
---|
395 | |
---|
396 | |
---|
397 | c======================================================================= |
---|
398 | c Lecture des fichiers (start ou start_archive) |
---|
399 | c======================================================================= |
---|
400 | |
---|
401 | if (choix_1.eq.0) then |
---|
402 | |
---|
403 | write(*,*) 'Reading file START_ARCHIVE' |
---|
404 | CALL lect_start_archive(date,tsurf,tsoil,emis,q2, |
---|
405 | . t,ucov,vcov,ps,teta,phisold_newgrid,q,qsurf, |
---|
406 | & surfith,nid) |
---|
407 | write(*,*) "OK, read start_archive file" |
---|
408 | ! copy soil thermal inertia |
---|
409 | ithfi(:,:)=inertiedat(:,:) |
---|
410 | |
---|
411 | ierr= NF_CLOSE(nid) |
---|
412 | |
---|
413 | else if (choix_1.eq.1) then ! c'est l'appel a tabfi de phyeta0 qui |
---|
414 | ! permet de changer les valeurs du |
---|
415 | ! tab_cntrl Lmodif=1 |
---|
416 | tab0=0 |
---|
417 | Lmodif=1 ! Lmodif set to 1 to allow modifications in phyeta0 |
---|
418 | write(*,*) 'Reading file START' |
---|
419 | fichnom = 'start.nc' |
---|
420 | CALL dynetat0(fichnom,nqmx,vcov,ucov,teta,q,masse, |
---|
421 | . ps,phis,time) |
---|
422 | |
---|
423 | write(*,*) 'Reading file STARTFI' |
---|
424 | fichnom = 'startfi.nc' |
---|
425 | CALL phyetat0 (fichnom,tab0,Lmodif,nsoilmx,nqmx, |
---|
426 | . day_ini,time, |
---|
427 | . tsurf,tsoil,emis,q2,qsurf) |
---|
428 | |
---|
429 | ! copy albedo and soil thermal inertia |
---|
430 | do i=1,ngridmx |
---|
431 | albfi(i) = albedodat(i) |
---|
432 | do j=1,nsoilmx |
---|
433 | ithfi(i,j) = inertiedat(i,j) |
---|
434 | enddo |
---|
435 | ! build a surfithfi(:) using 1st layer of ithfi(:), which might |
---|
436 | ! be neede later on if reinitializing soil thermal inertia |
---|
437 | surfithfi(i)=ithfi(i,1) |
---|
438 | enddo |
---|
439 | |
---|
440 | else |
---|
441 | CALL exit(1) |
---|
442 | endif |
---|
443 | |
---|
444 | dtvr = daysec/FLOAT(day_step) |
---|
445 | dtphys = dtvr * FLOAT(iphysiq) |
---|
446 | |
---|
447 | c======================================================================= |
---|
448 | c |
---|
449 | c======================================================================= |
---|
450 | |
---|
451 | do ! infinite loop on list of changes |
---|
452 | |
---|
453 | write(*,*) |
---|
454 | write(*,*) |
---|
455 | write(*,*) 'List of possible changes :' |
---|
456 | write(*,*) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' |
---|
457 | write(*,*) |
---|
458 | write(*,*) 'flat : no topography ("aquaplanet")' |
---|
459 | write(*,*) 'bilball : uniform albedo and thermal inertia' |
---|
460 | write(*,*) 'coldspole : cold subsurface and high albedo at S.pole' |
---|
461 | write(*,*) 'qname : change tracer name' |
---|
462 | write(*,*) 'q=0 : ALL tracer =zero' |
---|
463 | write(*,*) 'q=x : give a specific uniform value to one tracer' |
---|
464 | write(*,*) 'ini_q : tracers initialisation for chemistry, water an |
---|
465 | $d ice ' |
---|
466 | write(*,*) 'ini_q-H2O : tracers initialisation for chemistry and |
---|
467 | $ice ' |
---|
468 | write(*,*) 'ini_q-iceH2O : tracers initialisation for chemistry on |
---|
469 | $ly ' |
---|
470 | write(*,*) 'noglacier : Remove tropical H2O ice if |lat|<45' |
---|
471 | write(*,*) 'watercapn : H20 ice on permanent N polar cap ' |
---|
472 | write(*,*) 'watercaps : H20 ice on permanent S polar cap ' |
---|
473 | write(*,*) 'wetstart : start with a wet atmosphere' |
---|
474 | write(*,*) 'isotherm : Isothermal Temperatures, wind set to zero' |
---|
475 | write(*,*) 'coldstart : Start X K above the CO2 frost point and |
---|
476 | $set wind to zero (assumes 100% CO2)' |
---|
477 | write(*,*) 'co2ice=0 : remove CO2 polar cap' |
---|
478 | write(*,*) 'ptot : change total pressure' |
---|
479 | write(*,*) 'therm_ini_s: Set soil thermal inertia to reference sur |
---|
480 | &face values' |
---|
481 | write(*,*) 'subsoilice_n: Put deep underground ice layer in northe |
---|
482 | &rn hemisphere' |
---|
483 | write(*,*) 'subsoilice_s: Put deep underground ice layer in southe |
---|
484 | &rn hemisphere' |
---|
485 | write(*,*) 'mons_ice: Put underground ice layer according to MONS- |
---|
486 | &derived data' |
---|
487 | |
---|
488 | write(*,*) |
---|
489 | write(*,*) 'Change to perform ?' |
---|
490 | write(*,*) ' (enter keyword or return to end)' |
---|
491 | write(*,*) |
---|
492 | |
---|
493 | read(*,fmt='(a20)') modif |
---|
494 | if (modif(1:1) .eq. ' ') exit ! exit loop on changes |
---|
495 | |
---|
496 | write(*,*) |
---|
497 | write(*,*) trim(modif) , ' : ' |
---|
498 | |
---|
499 | c 'flat : no topography ("aquaplanet")' |
---|
500 | c ------------------------------------- |
---|
501 | if (modif(1:len_trim(modif)) .eq. 'flat') then |
---|
502 | c set topo to zero |
---|
503 | CALL initial0(ip1jmp1,z_reel) |
---|
504 | CALL multscal(ip1jmp1,z_reel,g,phis) |
---|
505 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,phis,phisfi) |
---|
506 | write(*,*) 'topography set to zero.' |
---|
507 | write(*,*) 'WARNING : the subgrid topography parameters', |
---|
508 | & ' were not set to zero ! => set calllott to F' |
---|
509 | |
---|
510 | c Choice for surface pressure |
---|
511 | yes=' ' |
---|
512 | do while ((yes.ne.'y').and.(yes.ne.'n')) |
---|
513 | write(*,*) 'Do you wish to choose homogeneous surface', |
---|
514 | & 'pressure (y) or let newstart interpolate ', |
---|
515 | & ' the previous field (n)?' |
---|
516 | read(*,fmt='(a)') yes |
---|
517 | end do |
---|
518 | if (yes.eq.'y') then |
---|
519 | flagps0=.true. |
---|
520 | write(*,*) 'New value for ps (Pa) ?' |
---|
521 | 201 read(*,*,iostat=ierr) patm |
---|
522 | if(ierr.ne.0) goto 201 |
---|
523 | write(*,*) |
---|
524 | write(*,*) ' new ps everywhere (Pa) = ', patm |
---|
525 | write(*,*) |
---|
526 | do j=1,jjp1 |
---|
527 | do i=1,iip1 |
---|
528 | ps(i,j)=patm |
---|
529 | enddo |
---|
530 | enddo |
---|
531 | end if |
---|
532 | |
---|
533 | c bilball : albedo, inertie thermique uniforme |
---|
534 | c -------------------------------------------- |
---|
535 | else if (modif(1:len_trim(modif)) .eq. 'bilball') then |
---|
536 | write(*,*) 'constante albedo and iner.therm:' |
---|
537 | write(*,*) 'New value for albedo (ex: 0.25) ?' |
---|
538 | 101 read(*,*,iostat=ierr) alb_bb |
---|
539 | if(ierr.ne.0) goto 101 |
---|
540 | write(*,*) |
---|
541 | write(*,*) ' uniform albedo (new value):',alb_bb |
---|
542 | write(*,*) |
---|
543 | |
---|
544 | write(*,*) 'New value for thermal inertia (eg: 247) ?' |
---|
545 | 102 read(*,*,iostat=ierr) ith_bb |
---|
546 | if(ierr.ne.0) goto 102 |
---|
547 | write(*,*) 'uniform thermal inertia (new value):',ith_bb |
---|
548 | DO j=1,jjp1 |
---|
549 | DO i=1,iip1 |
---|
550 | alb(i,j) = alb_bb ! albedo |
---|
551 | do isoil=1,nsoilmx |
---|
552 | ith(i,j,isoil) = ith_bb ! thermal inertia |
---|
553 | enddo |
---|
554 | END DO |
---|
555 | END DO |
---|
556 | ! CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,ith,ithfi) |
---|
557 | CALL gr_dyn_fi(nsoilmx,iip1,jjp1,ngridmx,ith,ithfi) |
---|
558 | CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,alb,albfi) |
---|
559 | |
---|
560 | c coldspole : sous-sol de la calotte sud toujours froid |
---|
561 | c ----------------------------------------------------- |
---|
562 | else if (modif(1:len_trim(modif)) .eq. 'coldspole') then |
---|
563 | write(*,*)'new value for the subsurface temperature', |
---|
564 | & ' beneath the permanent southern polar cap ? (eg: 141 K)' |
---|
565 | 103 read(*,*,iostat=ierr) tsud |
---|
566 | if(ierr.ne.0) goto 103 |
---|
567 | write(*,*) |
---|
568 | write(*,*) ' new value of the subsurface temperature:',tsud |
---|
569 | c nouvelle temperature sous la calotte permanente |
---|
570 | do l=2,nsoilmx |
---|
571 | tsoil(ngridmx,l) = tsud |
---|
572 | end do |
---|
573 | |
---|
574 | |
---|
575 | write(*,*)'new value for the albedo', |
---|
576 | & 'of the permanent southern polar cap ? (eg: 0.75)' |
---|
577 | 104 read(*,*,iostat=ierr) albsud |
---|
578 | if(ierr.ne.0) goto 104 |
---|
579 | write(*,*) |
---|
580 | |
---|
581 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
582 | c Option 1: only the albedo of the pole is modified : |
---|
583 | albfi(ngridmx)=albsud |
---|
584 | write(*,*) 'ig=',ngridmx,' albedo perennial cap ', |
---|
585 | & albfi(ngridmx) |
---|
586 | |
---|
587 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
588 | c Option 2 A haute resolution : coordonnee de la vrai calotte ~ |
---|
589 | c DO j=1,jjp1 |
---|
590 | c DO i=1,iip1 |
---|
591 | c ig=1+(j-2)*iim +i |
---|
592 | c if(j.eq.1) ig=1 |
---|
593 | c if(j.eq.jjp1) ig=ngridmx |
---|
594 | c if ((rlatu(j)*180./pi.lt.-84.).and. |
---|
595 | c & (rlatu(j)*180./pi.gt.-91.).and. |
---|
596 | c & (rlonv(i)*180./pi.gt.-91.).and. |
---|
597 | c & (rlonv(i)*180./pi.lt.0.)) then |
---|
598 | cc albedo de la calotte permanente fixe a albsud |
---|
599 | c alb(i,j)=albsud |
---|
600 | c write(*,*) 'lat=',rlatu(j)*180./pi, |
---|
601 | c & ' lon=',rlonv(i)*180./pi |
---|
602 | cc fin de la condition sur les limites de la calotte permanente |
---|
603 | c end if |
---|
604 | c ENDDO |
---|
605 | c ENDDO |
---|
606 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
607 | |
---|
608 | c CALL gr_dyn_fi(1,iip1,jjp1,ngridmx,alb,albfi) |
---|
609 | |
---|
610 | |
---|
611 | c ptot : Modification of the total pressure: ice + current atmosphere |
---|
612 | c ------------------------------------------------------------------- |
---|
613 | else if (modif(1:len_trim(modif)).eq.'ptot') then |
---|
614 | |
---|
615 | ! check if we have a co2_ice surface tracer: |
---|
616 | if (igcm_co2_ice.eq.0) then |
---|
617 | write(*,*) " No surface CO2 ice !" |
---|
618 | write(*,*) " only atmospheric pressure will be considered!" |
---|
619 | endif |
---|
620 | c calcul de la pression totale glace + atm actuelle |
---|
621 | patm=0. |
---|
622 | airetot=0. |
---|
623 | pcap=0. |
---|
624 | DO j=1,jjp1 |
---|
625 | DO i=1,iim |
---|
626 | ig=1+(j-2)*iim +i |
---|
627 | if(j.eq.1) ig=1 |
---|
628 | if(j.eq.jjp1) ig=ngridmx |
---|
629 | patm = patm + ps(i,j)*aire(i,j) |
---|
630 | airetot= airetot + aire(i,j) |
---|
631 | if (igcm_co2_ice.ne.0) then |
---|
632 | !pcap = pcap + aire(i,j)*co2ice(ig)*g |
---|
633 | pcap = pcap + aire(i,j)*qsurf(ig,igcm_co2_ice)*g |
---|
634 | endif |
---|
635 | ENDDO |
---|
636 | ENDDO |
---|
637 | ptoto = pcap + patm |
---|
638 | |
---|
639 | print*,'Current total pressure at surface (co2 ice + atm) ', |
---|
640 | & ptoto/airetot |
---|
641 | |
---|
642 | print*,'new value?' |
---|
643 | read(*,*) ptotn |
---|
644 | ptotn=ptotn*airetot |
---|
645 | patmn=ptotn-pcap |
---|
646 | print*,'ptoto,patm,ptotn,patmn' |
---|
647 | print*,ptoto,patm,ptotn,patmn |
---|
648 | print*,'Mult. factor for pressure (atm only)', patmn/patm |
---|
649 | do j=1,jjp1 |
---|
650 | do i=1,iip1 |
---|
651 | ps(i,j)=ps(i,j)*patmn/patm |
---|
652 | enddo |
---|
653 | enddo |
---|
654 | |
---|
655 | c Correction pour la conservation des traceurs |
---|
656 | yes=' ' |
---|
657 | do while ((yes.ne.'y').and.(yes.ne.'n')) |
---|
658 | write(*,*) 'Do you wish to conserve tracer total mass (y)', |
---|
659 | & ' or tracer mixing ratio (n) ?' |
---|
660 | read(*,fmt='(a)') yes |
---|
661 | end do |
---|
662 | |
---|
663 | if (yes.eq.'y') then |
---|
664 | write(*,*) 'OK : conservation of tracer total mass' |
---|
665 | DO iq =1, nqmx |
---|
666 | DO l=1,llm |
---|
667 | DO j=1,jjp1 |
---|
668 | DO i=1,iip1 |
---|
669 | q(i,j,l,iq)=q(i,j,l,iq)*patm/patmn |
---|
670 | ENDDO |
---|
671 | ENDDO |
---|
672 | ENDDO |
---|
673 | ENDDO |
---|
674 | else |
---|
675 | write(*,*) 'OK : conservation of tracer mixing ratio' |
---|
676 | end if |
---|
677 | |
---|
678 | c qname : change tracer name |
---|
679 | c -------------------------- |
---|
680 | else if (trim(modif).eq.'qname') then |
---|
681 | yes='y' |
---|
682 | do while (yes.eq.'y') |
---|
683 | write(*,*) 'Which tracer name do you want to change ?' |
---|
684 | do iq=1,nqmx |
---|
685 | write(*,'(i3,a3,a20)')iq,' : ',trim(tnom(iq)) |
---|
686 | enddo |
---|
687 | write(*,'(a35,i3)') |
---|
688 | & '(enter tracer number; between 1 and ',nqmx |
---|
689 | write(*,*)' or any other value to quit this option)' |
---|
690 | read(*,*) iq |
---|
691 | if ((iq.ge.1).and.(iq.le.nqmx)) then |
---|
692 | write(*,*)'Change tracer name ',trim(tnom(iq)),' to ?' |
---|
693 | read(*,*) txt |
---|
694 | tnom(iq)=txt |
---|
695 | write(*,*)'Do you want to change another tracer name (y/n)?' |
---|
696 | read(*,'(a)') yes |
---|
697 | else |
---|
698 | ! inapropiate value of iq; quit this option |
---|
699 | yes='n' |
---|
700 | endif ! of if ((iq.ge.1).and.(iq.le.nqmx)) |
---|
701 | enddo ! of do while (yes.ne.'y') |
---|
702 | |
---|
703 | c q=0 : set tracers to zero |
---|
704 | c ------------------------- |
---|
705 | else if (modif(1:len_trim(modif)).eq.'q=0') then |
---|
706 | c mise a 0 des q (traceurs) |
---|
707 | write(*,*) 'Tracers set to 0 (1.E-30 in fact)' |
---|
708 | DO iq =1, nqmx |
---|
709 | DO l=1,llm |
---|
710 | DO j=1,jjp1 |
---|
711 | DO i=1,iip1 |
---|
712 | q(i,j,l,iq)=1.e-30 |
---|
713 | ENDDO |
---|
714 | ENDDO |
---|
715 | ENDDO |
---|
716 | ENDDO |
---|
717 | |
---|
718 | c set surface tracers to zero |
---|
719 | DO iq =1, nqmx |
---|
720 | DO ig=1,ngridmx |
---|
721 | qsurf(ig,iq)=0. |
---|
722 | ENDDO |
---|
723 | ENDDO |
---|
724 | |
---|
725 | c q=x : initialise tracer manually |
---|
726 | c -------------------------------- |
---|
727 | else if (modif(1:len_trim(modif)).eq.'q=x') then |
---|
728 | write(*,*) 'Which tracer do you want to modify ?' |
---|
729 | do iq=1,nqmx |
---|
730 | write(*,*)iq,' : ',trim(tnom(iq)) |
---|
731 | enddo |
---|
732 | write(*,*) '(choose between 1 and ',nqmx,')' |
---|
733 | read(*,*) iq |
---|
734 | write(*,*)'mixing ratio of tracer ',trim(tnom(iq)), |
---|
735 | & ' ? (kg/kg)' |
---|
736 | read(*,*) val |
---|
737 | DO l=1,llm |
---|
738 | DO j=1,jjp1 |
---|
739 | DO i=1,iip1 |
---|
740 | q(i,j,l,iq)=val |
---|
741 | ENDDO |
---|
742 | ENDDO |
---|
743 | ENDDO |
---|
744 | write(*,*) 'SURFACE value of tracer ',trim(tnom(iq)), |
---|
745 | & ' ? (kg/m2)' |
---|
746 | read(*,*) val |
---|
747 | DO ig=1,ngridmx |
---|
748 | qsurf(ig,iq)=val |
---|
749 | ENDDO |
---|
750 | |
---|
751 | c ini_q : Initialize tracers for chemistry |
---|
752 | c ----------------------------------------------- |
---|
753 | else if (modif(1:len_trim(modif)) .eq. 'ini_q') then |
---|
754 | c For more than 32 layers, possible to initiate thermosphere only |
---|
755 | thermo=0 |
---|
756 | yes=' ' |
---|
757 | if (llm.gt.32) then |
---|
758 | do while ((yes.ne.'y').and.(yes.ne.'n')) |
---|
759 | write(*,*)'', |
---|
760 | & 'initialisation for thermosphere only? (y/n)' |
---|
761 | read(*,fmt='(a)') yes |
---|
762 | if (yes.eq.'y') then |
---|
763 | thermo=1 |
---|
764 | else |
---|
765 | thermo=0 |
---|
766 | endif |
---|
767 | enddo |
---|
768 | endif |
---|
769 | |
---|
770 | c call inichim_newstart(q,ps,sig,nqmx,latfi,lonfi,airefi, |
---|
771 | c $ thermo,qsurf) |
---|
772 | write(*,*) 'Chemical species initialized' |
---|
773 | |
---|
774 | if (thermo.eq.0) then |
---|
775 | c mise a 0 des qsurf (traceurs a la surface) |
---|
776 | DO iq =1, nqmx |
---|
777 | DO ig=1,ngridmx |
---|
778 | qsurf(ig,iq)=0. |
---|
779 | ENDDO |
---|
780 | ENDDO |
---|
781 | endif |
---|
782 | |
---|
783 | c ini_q-H2O : as above exept for the water vapour tracer |
---|
784 | c ------------------------------------------------------ |
---|
785 | else if (modif(1:len_trim(modif)) .eq. 'ini_q-H2O') then |
---|
786 | ! for more than 32 layers, possible to initiate thermosphere only |
---|
787 | thermo=0 |
---|
788 | yes=' ' |
---|
789 | if(llm.gt.32) then |
---|
790 | do while ((yes.ne.'y').and.(yes.ne.'n')) |
---|
791 | write(*,*)'', |
---|
792 | & 'initialisation for thermosphere only? (y/n)' |
---|
793 | read(*,fmt='(a)') yes |
---|
794 | if (yes.eq.'y') then |
---|
795 | thermo=1 |
---|
796 | else |
---|
797 | thermo=0 |
---|
798 | endif |
---|
799 | enddo |
---|
800 | endif |
---|
801 | c call inichim_newstart(q,ps,sig,nqmx-1,latfi,lonfi,airefi, |
---|
802 | c $ thermo,qsurf) |
---|
803 | c write(*,*) 'Initialized chem. species exept last (H2O)' |
---|
804 | |
---|
805 | if (thermo.eq.0) then |
---|
806 | c set surface tracers to zero, except water ice |
---|
807 | DO iq =1, nqmx |
---|
808 | if (iq.ne.igcm_h2o_ice) then |
---|
809 | DO ig=1,ngridmx |
---|
810 | qsurf(ig,iq)=0. |
---|
811 | ENDDO |
---|
812 | endif |
---|
813 | ENDDO |
---|
814 | endif |
---|
815 | |
---|
816 | c ini_q-iceH2O : as above exept for ice et H2O |
---|
817 | c ----------------------------------------------- |
---|
818 | else if (modif(1:len_trim(modif)) .eq. 'ini_q-iceH2O') then |
---|
819 | c For more than 32 layers, possible to initiate thermosphere only |
---|
820 | thermo=0 |
---|
821 | yes=' ' |
---|
822 | if(llm.gt.32) then |
---|
823 | do while ((yes.ne.'y').and.(yes.ne.'n')) |
---|
824 | write(*,*)'', |
---|
825 | & 'initialisation for thermosphere only? (y/n)' |
---|
826 | read(*,fmt='(a)') yes |
---|
827 | if (yes.eq.'y') then |
---|
828 | thermo=1 |
---|
829 | else |
---|
830 | thermo=0 |
---|
831 | endif |
---|
832 | enddo |
---|
833 | endif |
---|
834 | |
---|
835 | c call inichim_newstart(q,ps,sig,nqmx-2,latfi,lonfi,airefi, |
---|
836 | c $ thermo,qsurf) |
---|
837 | c write(*,*) 'Initialized chem. species exept ice and H2O' |
---|
838 | |
---|
839 | if (thermo.eq.0) then |
---|
840 | c set surface tracers to zero, except water ice |
---|
841 | DO iq =1, nqmx |
---|
842 | if (iq.ne.igcm_h2o_ice) then |
---|
843 | DO ig=1,ngridmx |
---|
844 | qsurf(ig,iq)=0. |
---|
845 | ENDDO |
---|
846 | endif |
---|
847 | ENDDO |
---|
848 | endif |
---|
849 | |
---|
850 | c wetstart : wet atmosphere with a north to south gradient |
---|
851 | c -------------------------------------------------------- |
---|
852 | else if (modif(1:len_trim(modif)) .eq. 'wetstart') then |
---|
853 | ! check that there is indeed a water vapor tracer |
---|
854 | if (igcm_h2o_vap.eq.0) then |
---|
855 | write(*,*) "No water vapour tracer! Can't use this option" |
---|
856 | stop |
---|
857 | endif |
---|
858 | DO l=1,llm |
---|
859 | DO j=1,jjp1 |
---|
860 | DO i=1,iip1 |
---|
861 | q(i,j,l,igcm_h2o_vap)=150.e-6 * (rlatu(j)+pi/2.) / pi |
---|
862 | ENDDO |
---|
863 | ENDDO |
---|
864 | ENDDO |
---|
865 | |
---|
866 | write(*,*) 'Water mass mixing ratio at north pole=' |
---|
867 | * ,q(1,1,1,igcm_h2o_vap) |
---|
868 | write(*,*) '---------------------------south pole=' |
---|
869 | * ,q(1,jjp1,1,igcm_h2o_vap) |
---|
870 | |
---|
871 | c noglacier : remove tropical water ice (to initialize high res sim) |
---|
872 | c -------------------------------------------------- |
---|
873 | else if (modif(1:len_trim(modif)) .eq. 'noglacier') then |
---|
874 | do ig=1,ngridmx |
---|
875 | j=(ig-2)/iim +2 |
---|
876 | if(ig.eq.1) j=1 |
---|
877 | write(*,*) 'OK: remove surface ice for |lat|<45' |
---|
878 | if (abs(rlatu(j)*180./pi).lt.45.) then |
---|
879 | qsurf(ig,igcm_h2o_ice)=0. |
---|
880 | end if |
---|
881 | end do |
---|
882 | |
---|
883 | |
---|
884 | c watercapn : H20 ice on permanent northern cap |
---|
885 | c -------------------------------------------------- |
---|
886 | else if (modif(1:len_trim(modif)) .eq. 'watercapn') then |
---|
887 | do ig=1,ngridmx |
---|
888 | j=(ig-2)/iim +2 |
---|
889 | if(ig.eq.1) j=1 |
---|
890 | if (rlatu(j)*180./pi.gt.80.) then |
---|
891 | qsurf(ig,igcm_h2o_ice)=1.e5 |
---|
892 | write(*,*) 'ig=',ig,' H2O ice mass (kg/m2)= ', |
---|
893 | & qsurf(ig,igcm_h2o_ice) |
---|
894 | write(*,*)' ==> Ice mesh South boundary (deg)= ', |
---|
895 | & rlatv(j)*180./pi |
---|
896 | end if |
---|
897 | enddo |
---|
898 | |
---|
899 | c watercaps : H20 ice on permanent southern cap |
---|
900 | c ------------------------------------------------- |
---|
901 | else if (modif(1:len_trim(modif)) .eq. 'watercaps') then |
---|
902 | do ig=1,ngridmx |
---|
903 | j=(ig-2)/iim +2 |
---|
904 | if(ig.eq.1) j=1 |
---|
905 | if (rlatu(j)*180./pi.lt.-80.) then |
---|
906 | qsurf(ig,igcm_h2o_ice)=1.e5 |
---|
907 | write(*,*) 'ig=',ig,' H2O ice mass (kg/m2)= ', |
---|
908 | & qsurf(ig,igcm_h2o_ice) |
---|
909 | write(*,*)' ==> Ice mesh North boundary (deg)= ', |
---|
910 | & rlatv(j-1)*180./pi |
---|
911 | end if |
---|
912 | enddo |
---|
913 | |
---|
914 | |
---|
915 | ! northsea goes here ! |
---|
916 | |
---|
917 | |
---|
918 | |
---|
919 | |
---|
920 | c isotherm : Isothermal temperatures and no winds |
---|
921 | c ------------------------------------------------ |
---|
922 | else if (modif(1:len_trim(modif)) .eq. 'isotherm') then |
---|
923 | |
---|
924 | write(*,*)'Isothermal temperature of the atmosphere, |
---|
925 | & surface and subsurface' |
---|
926 | write(*,*) 'Value of this temperature ? :' |
---|
927 | 203 read(*,*,iostat=ierr) Tiso |
---|
928 | if(ierr.ne.0) goto 203 |
---|
929 | |
---|
930 | do ig=1, ngridmx |
---|
931 | tsurf(ig) = Tiso |
---|
932 | end do |
---|
933 | do l=2,nsoilmx |
---|
934 | do ig=1, ngridmx |
---|
935 | tsoil(ig,l) = Tiso |
---|
936 | end do |
---|
937 | end do |
---|
938 | DO j=1,jjp1 |
---|
939 | DO i=1,iim |
---|
940 | Do l=1,llm |
---|
941 | Tset(i,j,l)=Tiso |
---|
942 | end do |
---|
943 | end do |
---|
944 | end do |
---|
945 | flagtset=.true. |
---|
946 | call initial0(llm*ip1jmp1,ucov) |
---|
947 | call initial0(llm*ip1jm,vcov) |
---|
948 | call initial0(ngridmx*(llm+1),q2) |
---|
949 | |
---|
950 | |
---|
951 | c coldstart : T set 1K above CO2 frost point and no winds |
---|
952 | c ------------------------------------------------ |
---|
953 | else if (modif(1:len_trim(modif)) .eq. 'coldstart') then |
---|
954 | |
---|
955 | write(*,*)'set temperature of the atmosphere,' |
---|
956 | &,'surface and subsurface how many degrees above CO2 frost point?' |
---|
957 | 204 read(*,*,iostat=ierr) Tabove |
---|
958 | if(ierr.ne.0) goto 204 |
---|
959 | |
---|
960 | DO j=1,jjp1 |
---|
961 | DO i=1,iim |
---|
962 | ig=1+(j-2)*iim +i |
---|
963 | if(j.eq.1) ig=1 |
---|
964 | if(j.eq.jjp1) ig=ngridmx |
---|
965 | tsurf(ig) = (-3167.8)/(log(.01*ps(i,j))-23.23)+Tabove |
---|
966 | END DO |
---|
967 | END DO |
---|
968 | do l=1,nsoilmx |
---|
969 | do ig=1, ngridmx |
---|
970 | tsoil(ig,l) = tsurf(ig) |
---|
971 | end do |
---|
972 | end do |
---|
973 | DO j=1,jjp1 |
---|
974 | DO i=1,iim |
---|
975 | Do l=1,llm |
---|
976 | pp = aps(l) +bps(l)*ps(i,j) |
---|
977 | Tset(i,j,l)=(-3167.8)/(log(.01*pp)-23.23)+Tabove |
---|
978 | end do |
---|
979 | end do |
---|
980 | end do |
---|
981 | |
---|
982 | flagtset=.true. |
---|
983 | call initial0(llm*ip1jmp1,ucov) |
---|
984 | call initial0(llm*ip1jm,vcov) |
---|
985 | call initial0(ngridmx*(llm+1),q2) |
---|
986 | |
---|
987 | |
---|
988 | c co2ice=0 : remove CO2 polar ice caps' |
---|
989 | c ------------------------------------------------ |
---|
990 | else if (modif(1:len_trim(modif)) .eq. 'co2ice=0') then |
---|
991 | ! check that there is indeed a co2_ice tracer ... |
---|
992 | if (igcm_co2_ice.ne.0) then |
---|
993 | do ig=1,ngridmx |
---|
994 | !co2ice(ig)=0 |
---|
995 | qsurf(ig,igcm_co2_ice)=0 |
---|
996 | emis(ig)=emis(ngridmx/2) |
---|
997 | end do |
---|
998 | else |
---|
999 | write(*,*) "Can't remove CO2 ice!! (no co2_ice tracer)" |
---|
1000 | endif |
---|
1001 | |
---|
1002 | ! therm_ini_s: (re)-set soil thermal inertia to reference surface values |
---|
1003 | ! ---------------------------------------------------------------------- |
---|
1004 | |
---|
1005 | else if (modif(1:len_trim(modif)).eq.'therm_ini_s') then |
---|
1006 | ! write(*,*)"surfithfi(1):",surfithfi(1) |
---|
1007 | do isoil=1,nsoilmx |
---|
1008 | inertiedat(1:ngridmx,isoil)=surfithfi(1:ngridmx) |
---|
1009 | enddo |
---|
1010 | write(*,*)'OK: Soil thermal inertia has been reset to referenc |
---|
1011 | &e surface values' |
---|
1012 | ! write(*,*)"inertiedat(1,1):",inertiedat(1,1) |
---|
1013 | ithfi(:,:)=inertiedat(:,:) |
---|
1014 | ! recast ithfi() onto ith() |
---|
1015 | call gr_fi_dyn(nsoilmx,ngridmx,iip1,jjp1,ithfi,ith) |
---|
1016 | ! Check: |
---|
1017 | ! do i=1,iip1 |
---|
1018 | ! do j=1,jjp1 |
---|
1019 | ! do isoil=1,nsoilmx |
---|
1020 | ! write(77,*) i,j,isoil," ",ith(i,j,isoil) |
---|
1021 | ! enddo |
---|
1022 | ! enddo |
---|
1023 | ! enddo |
---|
1024 | |
---|
1025 | ! subsoilice_n: Put deep ice layer in northern hemisphere soil |
---|
1026 | ! ------------------------------------------------------------ |
---|
1027 | |
---|
1028 | else if (modif(1:len_trim(modif)).eq.'subsoilice_n') then |
---|
1029 | |
---|
1030 | write(*,*)'From which latitude (in deg.), up to the north pole, |
---|
1031 | &should we put subterranean ice?' |
---|
1032 | ierr=1 |
---|
1033 | do while (ierr.ne.0) |
---|
1034 | read(*,*,iostat=ierr) val |
---|
1035 | if (ierr.eq.0) then ! got a value |
---|
1036 | ! do a sanity check |
---|
1037 | if((val.lt.0.).or.(val.gt.90)) then |
---|
1038 | write(*,*)'Latitude should be between 0 and 90 deg. !!!' |
---|
1039 | ierr=1 |
---|
1040 | else ! find corresponding jref (nearest latitude) |
---|
1041 | ! note: rlatu(:) contains decreasing values of latitude |
---|
1042 | ! starting from PI/2 to -PI/2 |
---|
1043 | do j=1,jjp1 |
---|
1044 | if ((rlatu(j)*180./pi.ge.val).and. |
---|
1045 | & (rlatu(j+1)*180./pi.le.val)) then |
---|
1046 | ! find which grid point is nearest to val: |
---|
1047 | if (abs(rlatu(j)*180./pi-val).le. |
---|
1048 | & abs((rlatu(j+1)*180./pi-val))) then |
---|
1049 | jref=j |
---|
1050 | else |
---|
1051 | jref=j+1 |
---|
1052 | endif |
---|
1053 | |
---|
1054 | write(*,*)'Will use nearest grid latitude which is:', |
---|
1055 | & rlatu(jref)*180./pi |
---|
1056 | endif |
---|
1057 | enddo ! of do j=1,jjp1 |
---|
1058 | endif ! of if((val.lt.0.).or.(val.gt.90)) |
---|
1059 | endif !of if (ierr.eq.0) |
---|
1060 | enddo ! of do while |
---|
1061 | |
---|
1062 | ! Build layers() (as in soil_settings.F) |
---|
1063 | val2=sqrt(mlayer(0)*mlayer(1)) |
---|
1064 | val3=mlayer(1)/mlayer(0) |
---|
1065 | do isoil=1,nsoilmx |
---|
1066 | layer(isoil)=val2*(val3**(isoil-1)) |
---|
1067 | enddo |
---|
1068 | |
---|
1069 | write(*,*)'At which depth (in m.) does the ice layer begin?' |
---|
1070 | write(*,*)'(currently, the deepest soil layer extends down to:' |
---|
1071 | & ,layer(nsoilmx),')' |
---|
1072 | ierr=1 |
---|
1073 | do while (ierr.ne.0) |
---|
1074 | read(*,*,iostat=ierr) val2 |
---|
1075 | ! write(*,*)'val2:',val2,'ierr=',ierr |
---|
1076 | if (ierr.eq.0) then ! got a value, but do a sanity check |
---|
1077 | if(val2.gt.layer(nsoilmx)) then |
---|
1078 | write(*,*)'Depth should be less than ',layer(nsoilmx) |
---|
1079 | ierr=1 |
---|
1080 | endif |
---|
1081 | if(val2.lt.layer(1)) then |
---|
1082 | write(*,*)'Depth should be more than ',layer(1) |
---|
1083 | ierr=1 |
---|
1084 | endif |
---|
1085 | endif |
---|
1086 | enddo ! of do while |
---|
1087 | |
---|
1088 | ! find the reference index iref the depth corresponds to |
---|
1089 | ! if (val2.lt.layer(1)) then |
---|
1090 | ! iref=1 |
---|
1091 | ! else |
---|
1092 | do isoil=1,nsoilmx-1 |
---|
1093 | if((val2.gt.layer(isoil)).and.(val2.lt.layer(isoil+1))) |
---|
1094 | & then |
---|
1095 | iref=isoil |
---|
1096 | exit |
---|
1097 | endif |
---|
1098 | enddo |
---|
1099 | ! endif |
---|
1100 | |
---|
1101 | ! write(*,*)'iref:',iref,' jref:',jref |
---|
1102 | ! write(*,*)'layer',layer |
---|
1103 | ! write(*,*)'mlayer',mlayer |
---|
1104 | |
---|
1105 | ! thermal inertia of the ice: |
---|
1106 | ierr=1 |
---|
1107 | do while (ierr.ne.0) |
---|
1108 | write(*,*)'What is the value of subterranean ice thermal inert |
---|
1109 | &ia? (e.g.: 2000)' |
---|
1110 | read(*,*,iostat=ierr)iceith |
---|
1111 | enddo ! of do while |
---|
1112 | |
---|
1113 | ! recast ithfi() onto ith() |
---|
1114 | call gr_fi_dyn(nsoilmx,ngridmx,iip1,jjp1,ithfi,ith) |
---|
1115 | |
---|
1116 | do j=1,jref |
---|
1117 | ! write(*,*)'j:',j,'rlatu(j)*180./pi:',rlatu(j)*180./pi |
---|
1118 | do i=1,iip1 ! loop on longitudes |
---|
1119 | ! Build "equivalent" thermal inertia for the mixed layer |
---|
1120 | ith(i,j,iref+1)=sqrt((layer(iref+1)-layer(iref))/ |
---|
1121 | & (((val2-layer(iref))/(ith(i,j,iref)**2))+ |
---|
1122 | & ((layer(iref+1)-val2)/(iceith)**2))) |
---|
1123 | ! Set thermal inertia of lower layers |
---|
1124 | do isoil=iref+2,nsoilmx |
---|
1125 | ith(i,j,isoil)=iceith ! ice |
---|
1126 | enddo |
---|
1127 | enddo ! of do i=1,iip1 |
---|
1128 | enddo ! of do j=1,jjp1 |
---|
1129 | |
---|
1130 | |
---|
1131 | CALL gr_dyn_fi(nsoilmx,iip1,jjp1,ngridmx,ith,ithfi) |
---|
1132 | |
---|
1133 | ! do i=1,nsoilmx |
---|
1134 | ! write(*,*)'i:',i,'ithfi(1,i):',ithfi(1,i) |
---|
1135 | ! enddo |
---|
1136 | |
---|
1137 | |
---|
1138 | ! subsoilice_s: Put deep ice layer in southern hemisphere soil |
---|
1139 | ! ------------------------------------------------------------ |
---|
1140 | |
---|
1141 | else if (modif(1:len_trim(modif)).eq.'subsoilice_s') then |
---|
1142 | |
---|
1143 | write(*,*)'From which latitude (in deg.), down to the south pol |
---|
1144 | &e, should we put subterranean ice?' |
---|
1145 | ierr=1 |
---|
1146 | do while (ierr.ne.0) |
---|
1147 | read(*,*,iostat=ierr) val |
---|
1148 | if (ierr.eq.0) then ! got a value |
---|
1149 | ! do a sanity check |
---|
1150 | if((val.gt.0.).or.(val.lt.-90)) then |
---|
1151 | write(*,*)'Latitude should be between 0 and -90 deg. !!!' |
---|
1152 | ierr=1 |
---|
1153 | else ! find corresponding jref (nearest latitude) |
---|
1154 | ! note: rlatu(:) contains decreasing values of latitude |
---|
1155 | ! starting from PI/2 to -PI/2 |
---|
1156 | do j=1,jjp1 |
---|
1157 | if ((rlatu(j)*180./pi.ge.val).and. |
---|
1158 | & (rlatu(j+1)*180./pi.le.val)) then |
---|
1159 | ! find which grid point is nearest to val: |
---|
1160 | if (abs(rlatu(j)*180./pi-val).le. |
---|
1161 | & abs((rlatu(j+1)*180./pi-val))) then |
---|
1162 | jref=j |
---|
1163 | else |
---|
1164 | jref=j+1 |
---|
1165 | endif |
---|
1166 | |
---|
1167 | write(*,*)'Will use nearest grid latitude which is:', |
---|
1168 | & rlatu(jref)*180./pi |
---|
1169 | endif |
---|
1170 | enddo ! of do j=1,jjp1 |
---|
1171 | endif ! of if((val.lt.0.).or.(val.gt.90)) |
---|
1172 | endif !of if (ierr.eq.0) |
---|
1173 | enddo ! of do while |
---|
1174 | |
---|
1175 | ! Build layers() (as in soil_settings.F) |
---|
1176 | val2=sqrt(mlayer(0)*mlayer(1)) |
---|
1177 | val3=mlayer(1)/mlayer(0) |
---|
1178 | do isoil=1,nsoilmx |
---|
1179 | layer(isoil)=val2*(val3**(isoil-1)) |
---|
1180 | enddo |
---|
1181 | |
---|
1182 | write(*,*)'At which depth (in m.) does the ice layer begin?' |
---|
1183 | write(*,*)'(currently, the deepest soil layer extends down to:' |
---|
1184 | & ,layer(nsoilmx),')' |
---|
1185 | ierr=1 |
---|
1186 | do while (ierr.ne.0) |
---|
1187 | read(*,*,iostat=ierr) val2 |
---|
1188 | ! write(*,*)'val2:',val2,'ierr=',ierr |
---|
1189 | if (ierr.eq.0) then ! got a value, but do a sanity check |
---|
1190 | if(val2.gt.layer(nsoilmx)) then |
---|
1191 | write(*,*)'Depth should be less than ',layer(nsoilmx) |
---|
1192 | ierr=1 |
---|
1193 | endif |
---|
1194 | if(val2.lt.layer(1)) then |
---|
1195 | write(*,*)'Depth should be more than ',layer(1) |
---|
1196 | ierr=1 |
---|
1197 | endif |
---|
1198 | endif |
---|
1199 | enddo ! of do while |
---|
1200 | |
---|
1201 | ! find the reference index iref the depth corresponds to |
---|
1202 | do isoil=1,nsoilmx-1 |
---|
1203 | if((val2.gt.layer(isoil)).and.(val2.lt.layer(isoil+1))) |
---|
1204 | & then |
---|
1205 | iref=isoil |
---|
1206 | exit |
---|
1207 | endif |
---|
1208 | enddo |
---|
1209 | |
---|
1210 | ! write(*,*)'iref:',iref,' jref:',jref |
---|
1211 | |
---|
1212 | ! thermal inertia of the ice: |
---|
1213 | ierr=1 |
---|
1214 | do while (ierr.ne.0) |
---|
1215 | write(*,*)'What is the value of subterranean ice thermal inert |
---|
1216 | &ia? (e.g.: 2000)' |
---|
1217 | read(*,*,iostat=ierr)iceith |
---|
1218 | enddo ! of do while |
---|
1219 | |
---|
1220 | ! recast ithfi() onto ith() |
---|
1221 | call gr_fi_dyn(nsoilmx,ngridmx,iip1,jjp1,ithfi,ith) |
---|
1222 | |
---|
1223 | do j=jref,jjp1 |
---|
1224 | ! write(*,*)'j:',j,'rlatu(j)*180./pi:',rlatu(j)*180./pi |
---|
1225 | do i=1,iip1 ! loop on longitudes |
---|
1226 | ! Build "equivalent" thermal inertia for the mixed layer |
---|
1227 | ith(i,j,iref+1)=sqrt((layer(iref+1)-layer(iref))/ |
---|
1228 | & (((val2-layer(iref))/(ith(i,j,iref)**2))+ |
---|
1229 | & ((layer(iref+1)-val2)/(iceith)**2))) |
---|
1230 | ! Set thermal inertia of lower layers |
---|
1231 | do isoil=iref+2,nsoilmx |
---|
1232 | ith(i,j,isoil)=iceith ! ice |
---|
1233 | enddo |
---|
1234 | enddo ! of do i=1,iip1 |
---|
1235 | enddo ! of do j=jref,jjp1 |
---|
1236 | |
---|
1237 | |
---|
1238 | CALL gr_dyn_fi(nsoilmx,iip1,jjp1,ngridmx,ith,ithfi) |
---|
1239 | |
---|
1240 | c 'mons_ice' : use MONS data to build subsurface ice table |
---|
1241 | c -------------------------------------------------------- |
---|
1242 | else if (modif(1:len_trim(modif)).eq.'mons_ice') then |
---|
1243 | |
---|
1244 | ! 1. Load MONS data |
---|
1245 | call load_MONS_data(MONS_Hdn,MONS_d21) |
---|
1246 | |
---|
1247 | ! 2. Get parameters from user |
---|
1248 | ierr=1 |
---|
1249 | do while (ierr.ne.0) |
---|
1250 | write(*,*) "Coefficient to apply to MONS 'depth' in Northern", |
---|
1251 | & " Hemisphere?" |
---|
1252 | write(*,*) " (should be somewhere between 3.2e-4 and 1.3e-3)" |
---|
1253 | read(*,*,iostat=ierr) MONS_coeffN |
---|
1254 | enddo |
---|
1255 | ierr=1 |
---|
1256 | do while (ierr.ne.0) |
---|
1257 | write(*,*) "Coefficient to apply to MONS 'depth' in Southern", |
---|
1258 | & " Hemisphere?" |
---|
1259 | write(*,*) " (should be somewhere between 3.2e-4 and 1.3e-3)" |
---|
1260 | read(*,*,iostat=ierr) MONS_coeffS |
---|
1261 | enddo |
---|
1262 | ierr=1 |
---|
1263 | do while (ierr.ne.0) |
---|
1264 | write(*,*) "Value of subterranean ice thermal inertia?" |
---|
1265 | write(*,*) " (e.g.: 2000, or perhaps 2290)" |
---|
1266 | read(*,*,iostat=ierr) iceith |
---|
1267 | enddo |
---|
1268 | |
---|
1269 | ! 3. Build subterranean thermal inertia |
---|
1270 | |
---|
1271 | ! initialise subsurface inertia with reference surface values |
---|
1272 | do isoil=1,nsoilmx |
---|
1273 | ithfi(1:ngridmx,isoil)=surfithfi(1:ngridmx) |
---|
1274 | enddo |
---|
1275 | ! recast ithfi() onto ith() |
---|
1276 | call gr_fi_dyn(nsoilmx,ngridmx,iip1,jjp1,ithfi,ith) |
---|
1277 | |
---|
1278 | do i=1,iip1 ! loop on longitudes |
---|
1279 | do j=1,jjp1 ! loop on latitudes |
---|
1280 | ! set MONS_coeff |
---|
1281 | if (rlatu(j).ge.0) then ! northern hemisphere |
---|
1282 | ! N.B: rlatu(:) contains decreasing values of latitude |
---|
1283 | ! starting from PI/2 to -PI/2 |
---|
1284 | MONS_coeff=MONS_coeffN |
---|
1285 | else ! southern hemisphere |
---|
1286 | MONS_coeff=MONS_coeffS |
---|
1287 | endif |
---|
1288 | ! check if we should put subterranean ice |
---|
1289 | if (MONS_Hdn(i,j).ge.14.0) then ! no ice if Hdn<14% |
---|
1290 | ! compute depth at which ice lies: |
---|
1291 | val=MONS_d21(i,j)*MONS_coeff |
---|
1292 | ! compute val2= the diurnal skin depth of surface inertia |
---|
1293 | ! assuming a volumetric heat cap. of C=1.e6 J.m-3.K-1 |
---|
1294 | val2=ith(i,j,1)*1.e-6*sqrt(88775./3.14159) |
---|
1295 | if (val.lt.val2) then |
---|
1296 | ! ice must be below the (surface inertia) diurnal skin depth |
---|
1297 | val=val2 |
---|
1298 | endif |
---|
1299 | if (val.lt.layer(nsoilmx)) then ! subterranean ice |
---|
1300 | ! find the reference index iref that depth corresponds to |
---|
1301 | iref=0 |
---|
1302 | do isoil=1,nsoilmx-1 |
---|
1303 | if ((val.ge.layer(isoil)).and.(val.lt.layer(isoil+1))) |
---|
1304 | & then |
---|
1305 | iref=isoil |
---|
1306 | exit |
---|
1307 | endif |
---|
1308 | enddo |
---|
1309 | ! Build "equivalent" thermal inertia for the mixed layer |
---|
1310 | ith(i,j,iref+1)=sqrt((layer(iref+1)-layer(iref))/ |
---|
1311 | & (((val-layer(iref))/(ith(i,j,iref+1)**2))+ |
---|
1312 | & ((layer(iref+1)-val)/(iceith)**2))) |
---|
1313 | ! Set thermal inertia of lower layers |
---|
1314 | do isoil=iref+2,nsoilmx |
---|
1315 | ith(i,j,isoil)=iceith |
---|
1316 | enddo |
---|
1317 | endif ! of if (val.lt.layer(nsoilmx)) |
---|
1318 | endif ! of if (MONS_Hdn(i,j).lt.14.0) |
---|
1319 | enddo ! do j=1,jjp1 |
---|
1320 | enddo ! do i=1,iip1 |
---|
1321 | |
---|
1322 | ! Check: |
---|
1323 | ! do i=1,iip1 |
---|
1324 | ! do j=1,jjp1 |
---|
1325 | ! do isoil=1,nsoilmx |
---|
1326 | ! write(77,*) i,j,isoil," ",ith(i,j,isoil) |
---|
1327 | ! enddo |
---|
1328 | ! enddo |
---|
1329 | ! enddo |
---|
1330 | |
---|
1331 | ! recast ith() into ithfi() |
---|
1332 | CALL gr_dyn_fi(nsoilmx,iip1,jjp1,ngridmx,ith,ithfi) |
---|
1333 | |
---|
1334 | else |
---|
1335 | write(*,*) ' Unknown (misspelled?) option!!!' |
---|
1336 | end if ! of if (modif(1:len_trim(modif)) .eq. '...') elseif ... |
---|
1337 | |
---|
1338 | enddo ! of do ! infinite loop on liste of changes |
---|
1339 | |
---|
1340 | 999 continue |
---|
1341 | |
---|
1342 | |
---|
1343 | c======================================================================= |
---|
1344 | c Correct pressure on the new grid (menu 0) |
---|
1345 | c======================================================================= |
---|
1346 | |
---|
1347 | if ((choix_1.eq.0).and.(.not.flagps0)) then |
---|
1348 | r = 1000.*8.31/mugaz |
---|
1349 | |
---|
1350 | do j=1,jjp1 |
---|
1351 | do i=1,iip1 |
---|
1352 | ps(i,j) = ps(i,j) * |
---|
1353 | . exp((phisold_newgrid(i,j)-phis(i,j)) / |
---|
1354 | . (t(i,j,1) * r)) |
---|
1355 | end do |
---|
1356 | end do |
---|
1357 | |
---|
1358 | c periodicity of surface ps in longitude |
---|
1359 | do j=1,jjp1 |
---|
1360 | ps(1,j) = ps(iip1,j) |
---|
1361 | end do |
---|
1362 | end if |
---|
1363 | |
---|
1364 | c======================================================================= |
---|
1365 | c======================================================================= |
---|
1366 | |
---|
1367 | c======================================================================= |
---|
1368 | c Initialisation de la physique / ecriture de newstartfi : |
---|
1369 | c======================================================================= |
---|
1370 | |
---|
1371 | |
---|
1372 | CALL inifilr |
---|
1373 | CALL pression(ip1jmp1, ap, bp, ps, p3d) |
---|
1374 | |
---|
1375 | c----------------------------------------------------------------------- |
---|
1376 | c Initialisation pks: |
---|
1377 | c----------------------------------------------------------------------- |
---|
1378 | |
---|
1379 | CALL exner_hyb(ip1jmp1, ps, p3d, beta, pks, pk, pkf) |
---|
1380 | ! Calcul de la temperature potentielle teta |
---|
1381 | |
---|
1382 | if (flagtset) then |
---|
1383 | DO l=1,llm |
---|
1384 | DO j=1,jjp1 |
---|
1385 | DO i=1,iim |
---|
1386 | teta(i,j,l) = Tset(i,j,l) * cpp/pk(i,j,l) |
---|
1387 | ENDDO |
---|
1388 | teta (iip1,j,l)= teta (1,j,l) |
---|
1389 | ENDDO |
---|
1390 | ENDDO |
---|
1391 | else if (choix_1.eq.0) then |
---|
1392 | DO l=1,llm |
---|
1393 | DO j=1,jjp1 |
---|
1394 | DO i=1,iim |
---|
1395 | teta(i,j,l) = t(i,j,l) * cpp/pk(i,j,l) |
---|
1396 | ENDDO |
---|
1397 | teta (iip1,j,l)= teta (1,j,l) |
---|
1398 | ENDDO |
---|
1399 | ENDDO |
---|
1400 | endif |
---|
1401 | |
---|
1402 | C Calcul intermediaire |
---|
1403 | c |
---|
1404 | if (choix_1.eq.0) then |
---|
1405 | CALL massdair( p3d, masse ) |
---|
1406 | c |
---|
1407 | print *,' ALPHAX ',alphax |
---|
1408 | |
---|
1409 | DO l = 1, llm |
---|
1410 | DO i = 1, iim |
---|
1411 | xppn(i) = aire( i, 1 ) * masse( i , 1 , l ) |
---|
1412 | xpps(i) = aire( i,jjp1 ) * masse( i , jjp1 , l ) |
---|
1413 | ENDDO |
---|
1414 | xpn = SUM(xppn)/apoln |
---|
1415 | xps = SUM(xpps)/apols |
---|
1416 | DO i = 1, iip1 |
---|
1417 | masse( i , 1 , l ) = xpn |
---|
1418 | masse( i , jjp1 , l ) = xps |
---|
1419 | ENDDO |
---|
1420 | ENDDO |
---|
1421 | endif |
---|
1422 | phis(iip1,:) = phis(1,:) |
---|
1423 | |
---|
1424 | CALL inidissip ( lstardis, nitergdiv, nitergrot, niterh, |
---|
1425 | * tetagdiv, tetagrot , tetatemp ) |
---|
1426 | itau=0 |
---|
1427 | if (choix_1.eq.0) then |
---|
1428 | day_ini=int(date) |
---|
1429 | endif |
---|
1430 | c |
---|
1431 | CALL geopot ( ip1jmp1, teta , pk , pks, phis , phi ) |
---|
1432 | |
---|
1433 | CALL caldyn0( itau,ucov,vcov,teta,ps,masse,pk,phis , |
---|
1434 | * phi,w, pbaru,pbarv,day_ini+time ) |
---|
1435 | c CALL caldyn |
---|
1436 | c $ ( itau,ucov,vcov,teta,ps,masse,pk,pkf,phis , |
---|
1437 | c $ phi,conser,du,dv,dteta,dp,w, pbaru,pbarv, day_ini ) |
---|
1438 | |
---|
1439 | CALL dynredem0("restart.nc",day_ini,anneeref,phis,nqmx) |
---|
1440 | CALL dynredem1("restart.nc",0.0,vcov,ucov,teta,q,nqmx,masse,ps) |
---|
1441 | C |
---|
1442 | C Ecriture etat initial physique |
---|
1443 | C |
---|
1444 | |
---|
1445 | call physdem1("restartfi.nc",lonfi,latfi,nsoilmx,nqmx, |
---|
1446 | . dtphys,float(day_ini), |
---|
1447 | . time,tsurf,tsoil,emis,q2,qsurf, |
---|
1448 | . airefi,albfi,ithfi,zmea,zstd,zsig,zgam,zthe) |
---|
1449 | |
---|
1450 | c======================================================================= |
---|
1451 | c Formats |
---|
1452 | c======================================================================= |
---|
1453 | |
---|
1454 | 1 FORMAT(//10x,'la valeur de im =',i4,2x,'lue sur le fichier de dema |
---|
1455 | *rrage est differente de la valeur parametree iim =',i4//) |
---|
1456 | 2 FORMAT(//10x,'la valeur de jm =',i4,2x,'lue sur le fichier de dema |
---|
1457 | *rrage est differente de la valeur parametree jjm =',i4//) |
---|
1458 | 3 FORMAT(//10x,'la valeur de lllm =',i4,2x,'lue sur le fichier demar |
---|
1459 | *rage est differente de la valeur parametree llm =',i4//) |
---|
1460 | |
---|
1461 | end |
---|
1462 | |
---|
1463 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1464 | subroutine load_MONS_data(MONS_Hdn,MONS_d21) |
---|
1465 | implicit none |
---|
1466 | ! routine to load Benedicte Diez MONS dataset, fill in date in southern |
---|
1467 | ! polar region, and interpolate the result onto the GCM grid |
---|
1468 | #include"dimensions.h" |
---|
1469 | #include"paramet.h" |
---|
1470 | #include"datafile.h" |
---|
1471 | #include"comgeom.h" |
---|
1472 | ! arguments: |
---|
1473 | real,intent(out) :: MONS_Hdn(iip1,jjp1) ! Hdn: %WEH=Mass fraction of H2O |
---|
1474 | real,intent(out) :: MONS_d21(iip1,jjp1) ! ice table "depth" (in kg/m2) |
---|
1475 | ! N.B MONS datasets should be of dimension (iip1,jjp1) |
---|
1476 | ! local variables: |
---|
1477 | character(len=88) :: filename="results_MONS_lat_lon_H_depth.txt" |
---|
1478 | character(len=88) :: txt ! to store some text |
---|
1479 | integer :: ierr,i,j |
---|
1480 | integer,parameter :: nblon=180 ! number of longitudes of MONS datasets |
---|
1481 | integer,parameter :: nblat=90 ! number of latitudes of MONS datasets |
---|
1482 | real :: pi |
---|
1483 | real :: longitudes(nblon) ! MONS dataset longitudes |
---|
1484 | real :: latitudes(nblat) ! MONS dataset latitudes |
---|
1485 | ! MONS dataset: mass fraction of H2O where H is assumed to be in H2O |
---|
1486 | real :: Hdn(nblon,nblat) |
---|
1487 | real :: d21(nblon,nblat)! MONS dataset "depth" (g/cm2) |
---|
1488 | |
---|
1489 | ! Extended MONS dataset (for interp_horiz) |
---|
1490 | real :: Hdnx(nblon+1,nblat) |
---|
1491 | real :: d21x(nblon+1,nblat) |
---|
1492 | real :: lon_bound(nblon+1) ! longitude boundaries |
---|
1493 | real :: lat_bound(nblat-1) ! latitude boundaries |
---|
1494 | |
---|
1495 | ! 1. Initializations: |
---|
1496 | |
---|
1497 | write(*,*) "Loading MONS data" |
---|
1498 | |
---|
1499 | ! Open MONS datafile: |
---|
1500 | open(42,file=trim(datafile)//"/"//trim(filename), |
---|
1501 | & status="old",iostat=ierr) |
---|
1502 | if (ierr/=0) then |
---|
1503 | write(*,*) "Error in load_MONS_data:" |
---|
1504 | write(*,*) "Failed opening file ", |
---|
1505 | & trim(datafile)//"/"//trim(filename) |
---|
1506 | write(*,*)'1) You can change the path to the file in ' |
---|
1507 | write(*,*)' file phymars/datafile.h' |
---|
1508 | write(*,*)'2) If necessary ',trim(filename), |
---|
1509 | & ' (and other datafiles)' |
---|
1510 | write(*,*)' can be obtained online at:' |
---|
1511 | write(*,*)' http://www.lmd.jussieu.fr/~forget/datagcm/datafile' |
---|
1512 | CALL ABORT |
---|
1513 | else ! skip first line of file (dummy read) |
---|
1514 | read(42,*) txt |
---|
1515 | endif |
---|
1516 | |
---|
1517 | pi=2.*asin(1.) |
---|
1518 | |
---|
1519 | !2. Load MONS data (on MONS grid) |
---|
1520 | do j=1,nblat |
---|
1521 | do i=1,nblon |
---|
1522 | ! swap latitude index so latitudes go from north pole to south pole: |
---|
1523 | read(42,*) latitudes(nblat-j+1),longitudes(i), |
---|
1524 | & Hdn(i,nblat-j+1),d21(i,nblat-j+1) |
---|
1525 | ! multiply d21 by 10 to convert from g/cm2 to kg/m2 |
---|
1526 | d21(i,nblat-j+1)=d21(i,nblat-j+1)*10.0 |
---|
1527 | enddo |
---|
1528 | enddo |
---|
1529 | close(42) |
---|
1530 | |
---|
1531 | ! there is unfortunately no d21 data for latitudes -77 to -90 |
---|
1532 | ! so we build some by linear interpolation between values at -75 |
---|
1533 | ! and assuming d21=0 at the pole |
---|
1534 | do j=84,90 ! latitudes(84)=-77 ; latitudes(83)=-75 |
---|
1535 | do i=1,nblon |
---|
1536 | d21(i,j)=d21(i,83)*((latitudes(j)+90)/15.0) |
---|
1537 | enddo |
---|
1538 | enddo |
---|
1539 | |
---|
1540 | ! 3. Build extended MONS dataset & boundaries (for interp_horiz) |
---|
1541 | ! longitude boundaries (in radians): |
---|
1542 | do i=1,nblon |
---|
1543 | ! NB: MONS data is every 2 degrees in longitude |
---|
1544 | lon_bound(i)=(longitudes(i)+1.0)*pi/180.0 |
---|
1545 | enddo |
---|
1546 | ! extra 'modulo' value |
---|
1547 | lon_bound(nblon+1)=lon_bound(1)+2.0*pi |
---|
1548 | |
---|
1549 | ! latitude boundaries (in radians): |
---|
1550 | do j=1,nblat-1 |
---|
1551 | ! NB: Mons data is every 2 degrees in latitude |
---|
1552 | lat_bound(j)=(latitudes(j)-1.0)*pi/180.0 |
---|
1553 | enddo |
---|
1554 | |
---|
1555 | ! MONS datasets: |
---|
1556 | do j=1,nblat |
---|
1557 | Hdnx(1:nblon,j)=Hdn(1:nblon,j) |
---|
1558 | Hdnx(nblon+1,j)=Hdnx(1,j) |
---|
1559 | d21x(1:nblon,j)=d21(1:nblon,j) |
---|
1560 | d21x(nblon+1,j)=d21x(1,j) |
---|
1561 | enddo |
---|
1562 | |
---|
1563 | ! Interpolate onto GCM grid |
---|
1564 | call interp_horiz(Hdnx,MONS_Hdn,nblon,nblat-1,iim,jjm,1, |
---|
1565 | & lon_bound,lat_bound,rlonu,rlatv) |
---|
1566 | call interp_horiz(d21x,MONS_d21,nblon,nblat-1,iim,jjm,1, |
---|
1567 | & lon_bound,lat_bound,rlonu,rlatv) |
---|
1568 | |
---|
1569 | end subroutine |
---|