1 | !============================================================================== |
---|
2 | |
---|
3 | subroutine photolysis_online(nlayer, alt, press, temp, |
---|
4 | $ mmean, rm, |
---|
5 | $ tau, sza, dist_sol, v_phot, e_phot, ig, ngrid, |
---|
6 | $ nreact) |
---|
7 | |
---|
8 | !*********************************************************************** |
---|
9 | ! |
---|
10 | ! subject: |
---|
11 | ! -------- |
---|
12 | ! |
---|
13 | ! photolysis online |
---|
14 | ! |
---|
15 | ! VERSION: Extracted from LMDZ.MARS work of Franck Lefevre (Yassin Jaziri) |
---|
16 | ! April 2019 - Yassin Jaziri add updates generic input (Yassin Jaziri) |
---|
17 | ! |
---|
18 | !*********************************************************************** |
---|
19 | |
---|
20 | use photolysis_mod |
---|
21 | use tracer_h |
---|
22 | use chimiedata_h, only: indexchim, fluxUV |
---|
23 | use types_asis, only: nb_phot_hv_max, nb_phot_max, jlabel, |
---|
24 | $ reactions |
---|
25 | |
---|
26 | implicit none |
---|
27 | |
---|
28 | ! input |
---|
29 | |
---|
30 | integer, intent(in) :: nlayer ! number of atmospheric layers |
---|
31 | integer, intent(in) :: ngrid ! number of atmospheric columns |
---|
32 | |
---|
33 | real, intent(in), dimension(nlayer) :: press, temp, mmean ! pressure (hpa)/temperature (k)/mean molecular mass (g.mol-1) |
---|
34 | real, intent(in), dimension(nlayer) :: alt ! altitude (km) |
---|
35 | real, intent(in), dimension(nlayer,nesp) :: rm ! mixing ratios |
---|
36 | real, intent(in) :: tau ! integrated aerosol optical depth at the surface |
---|
37 | real, intent(in) :: sza ! solar zenith angle (degrees) |
---|
38 | real, intent(in) :: dist_sol ! solar distance (au) |
---|
39 | integer, intent(in) :: ig ! grid point index |
---|
40 | integer, intent(in) :: nreact ! number of reactions in reactions files |
---|
41 | |
---|
42 | ! output |
---|
43 | |
---|
44 | real (kind = 8), dimension(nlayer,nb_phot_max) :: v_phot ! photolysis rates (s-1) |
---|
45 | real (kind = 8), dimension(nlayer,nb_phot_max) :: e_phot ! photolysis rates by energie (J.mol-1.s-1) |
---|
46 | |
---|
47 | ! stellar flux at planet |
---|
48 | |
---|
49 | real, dimension(nw) :: fplanet ! stellar flux (photon.s-1.nm-1.cm-2) at planet |
---|
50 | real :: factor |
---|
51 | |
---|
52 | ! atmosphere |
---|
53 | |
---|
54 | real, dimension(nw) :: albedo_chim ! Surface albedo calculated on chemistry wavelenght grid |
---|
55 | real, dimension(nlayer+1) :: colinc ! air column increment (molecule.cm-2) |
---|
56 | real, dimension(nlayer+1) :: airlev ! air density at each specified altitude (molec/cc) |
---|
57 | real, dimension(nlayer+1) :: edir, edn, eup ! normalised irradiances |
---|
58 | real, dimension(nlayer+1) :: fdir, fdn, fup ! normalised actinic fluxes |
---|
59 | real, dimension(nlayer+1) :: saflux ! total actinic flux |
---|
60 | real, dimension(nlayer+1,nw) :: dtrl ! rayleigh optical depth |
---|
61 | real, dimension(nlayer+1,nw) :: dtaer ! aerosol optical depth |
---|
62 | real, dimension(nlayer+1,nw) :: omaer ! aerosol single scattering albedo |
---|
63 | real, dimension(nlayer+1,nw) :: gaer ! aerosol asymmetry parameter |
---|
64 | real, dimension(nlayer+1,nw) :: dtcld ! cloud optical depth |
---|
65 | real, dimension(nlayer+1,nw) :: omcld ! cloud single scattering albedo |
---|
66 | real, dimension(nlayer+1,nw) :: gcld ! cloud asymmetry parameter |
---|
67 | real, dimension(nlayer+1,nw) :: dagas ! total gas optical depth |
---|
68 | real, dimension(nlayer+1,nw,nabs) :: dtgas ! optical depth for each gas |
---|
69 | real, dimension(nlayer+1) :: zpress ! pressure (hpa)/altitude (km)/temperature (k)/mean molecular mass (g.mol-1) |
---|
70 | real, dimension(nlayer+1) :: zalt ! pressure (hpa)/altitude (km)/temperature (k)/mean molecular mass (g.mol-1) |
---|
71 | real, dimension(nlayer+1) :: ztemp ! pressure (hpa)/altitude (km)/temperature (k)/mean molecular mass (g.mol-1) |
---|
72 | real, dimension(nlayer+1) :: zmmean ! pressure (hpa)/altitude (km)/temperature (k)/mean molecular mass (g.mol-1) |
---|
73 | |
---|
74 | integer, dimension(0:nlayer+1) :: nid |
---|
75 | real, dimension(0:nlayer+1,nlayer+1) :: dsdh |
---|
76 | |
---|
77 | integer :: i, ilay, iw, ialt, iphot, ispe, ij, igas, ireact |
---|
78 | integer :: ilev, nlev |
---|
79 | real :: deltaj |
---|
80 | |
---|
81 | !==== define working vertical grid for the uv radiative code |
---|
82 | |
---|
83 | nlev = nlayer + 1 |
---|
84 | |
---|
85 | do ilev = 1,nlev-1 |
---|
86 | zpress(ilev) = press(ilev) |
---|
87 | zalt(ilev) = alt(ilev) |
---|
88 | ztemp(ilev) = temp(ilev) |
---|
89 | zmmean(ilev) = mmean(ilev) |
---|
90 | end do |
---|
91 | |
---|
92 | zpress(nlev) = 0. ! top of the atmosphere |
---|
93 | zalt(nlev) = zalt(nlev-1) + (zalt(nlev-1) - zalt(nlev-2)) |
---|
94 | ztemp(nlev) = ztemp(nlev-1) |
---|
95 | zmmean(nlev) = zmmean(nlev-1) |
---|
96 | |
---|
97 | !==== air column increments and rayleigh optical depth |
---|
98 | |
---|
99 | call setair(nlev, nw, wl, wc, zpress, ztemp, zmmean, colinc, dtrl, |
---|
100 | $ airlev) |
---|
101 | |
---|
102 | !==== set surface albedo |
---|
103 | |
---|
104 | call setalb(nw,wl,ig,ngrid,albedo_chim) |
---|
105 | |
---|
106 | !==== set temperature-dependent cross-sections and optical depths |
---|
107 | |
---|
108 | iphot = 0 |
---|
109 | ij = 0 |
---|
110 | igas = 0 |
---|
111 | ireact = 0 |
---|
112 | dtgas(:,:,:) = 0. |
---|
113 | |
---|
114 | do while(iphot<nb_phot_hv_max) |
---|
115 | ij = ij + 1 |
---|
116 | iphot = iphot + 1 |
---|
117 | ireact = ireact + 1 |
---|
118 | |
---|
119 | if (tdim(ij).eq.1) then |
---|
120 | ! Avoid to calculate several times dtgas for a same specie |
---|
121 | if (jlabelbis(iphot)) then |
---|
122 | ispe = indexchim(trim(jlabel(iphot,2))) |
---|
123 | do iw = 1,nw-1 |
---|
124 | do ilay = 1,nlayer |
---|
125 | dtgas(ilay,iw,ij-igas) = colinc(ilay)*rm(ilay,ispe) |
---|
126 | $ *xs(1,iw,ij) |
---|
127 | end do |
---|
128 | end do |
---|
129 | else |
---|
130 | igas = igas + 1 |
---|
131 | end if |
---|
132 | do while(reactions(ireact)%rtype/=0) |
---|
133 | ireact = ireact + 1 |
---|
134 | end do |
---|
135 | if (reactions(ireact)%three_prod) iphot = iphot + 1 |
---|
136 | else |
---|
137 | call setsj(nb_phot_hv_max,nlayer,nw,temp,tdim(ij), |
---|
138 | $ xs(:tdim(ij),:,ij), |
---|
139 | $ xs_temp(:,ij),sj(:,:,iphot)) |
---|
140 | |
---|
141 | ! Avoid to calculate several times dtgas for a same specie |
---|
142 | if (jlabelbis(iphot)) then |
---|
143 | ispe = indexchim(trim(jlabel(iphot,2))) |
---|
144 | do iw = 1,nw-1 |
---|
145 | do ilay = 1,nlayer |
---|
146 | dtgas(ilay,iw,ij-igas) = colinc(ilay)*rm(ilay,ispe) |
---|
147 | $ *sj(ilay,iw,iphot) |
---|
148 | end do |
---|
149 | end do |
---|
150 | else |
---|
151 | igas = igas + 1 |
---|
152 | end if |
---|
153 | |
---|
154 | do iw = 1,nw-1 |
---|
155 | do ilay = 1,nlayer |
---|
156 | sj(ilay,iw,iphot) = sj(ilay,iw,iphot)*qy(iw,ij) |
---|
157 | end do |
---|
158 | end do |
---|
159 | |
---|
160 | do while(reactions(ireact)%rtype/=0) |
---|
161 | ireact = ireact + 1 |
---|
162 | end do |
---|
163 | if (reactions(ireact)%three_prod) then |
---|
164 | iphot = iphot + 1 |
---|
165 | do iw = 1,nw-1 |
---|
166 | do ilay = 1,nlayer |
---|
167 | sj(ilay,iw,iphot) = sj(ilay,iw,iphot-1) |
---|
168 | end do |
---|
169 | end do |
---|
170 | end if |
---|
171 | |
---|
172 | endif ! end if tdim .eq. 1 |
---|
173 | |
---|
174 | end do ! end while |
---|
175 | |
---|
176 | ! total gas optical depth |
---|
177 | |
---|
178 | dagas(:,:) = 0. |
---|
179 | |
---|
180 | do i = 1,nabs |
---|
181 | do iw = 1,nw-1 |
---|
182 | do ilay = 1,nlayer |
---|
183 | dagas(ilay,iw) = dagas(ilay,iw) + dtgas(ilay,iw,i) |
---|
184 | end do |
---|
185 | end do |
---|
186 | end do |
---|
187 | |
---|
188 | !==== set aerosol properties and optical depth |
---|
189 | |
---|
190 | call setaer(nlev,zalt,tau,nw,dtaer,omaer,gaer) |
---|
191 | |
---|
192 | !==== set cloud properties and optical depth |
---|
193 | |
---|
194 | call setcld(nlev,nw,dtcld,omcld,gcld) |
---|
195 | |
---|
196 | !==== slant path lengths in spherical geometry |
---|
197 | |
---|
198 | call sphers(nlev,zalt,sza,dsdh,nid) |
---|
199 | |
---|
200 | !==== stellar flux at planet |
---|
201 | |
---|
202 | factor = (1./dist_sol)**2. |
---|
203 | do iw = 1,nw-1 |
---|
204 | fplanet(iw) = fstar1AU(iw)*factor |
---|
205 | end do |
---|
206 | |
---|
207 | !==== initialise photolysis rates |
---|
208 | |
---|
209 | v_phot(:,1:nb_phot_hv_max) = 0. |
---|
210 | e_phot(:,1:nb_phot_hv_max) = 0. |
---|
211 | |
---|
212 | !==== start of wavelength lopp |
---|
213 | |
---|
214 | do iw = 1,nw-1 |
---|
215 | |
---|
216 | ! monochromatic radiative transfer. outputs are: |
---|
217 | ! normalized irradiances edir(nlayer), edn(nlayer), eup(nlayer) |
---|
218 | ! normalized actinic fluxes fdir(nlayer), fdn(nlayer), fup(nlayer) |
---|
219 | ! where |
---|
220 | ! dir = direct beam, dn = down-welling diffuse, up = up-welling diffuse |
---|
221 | |
---|
222 | call rtlink(nlev, nw, iw, albedo_chim(iw), |
---|
223 | $ sza, dsdh, nid, dtrl, |
---|
224 | $ dagas, dtcld, omcld, gcld, dtaer, omaer, gaer, |
---|
225 | $ edir, edn, eup, fdir, fdn, fup) |
---|
226 | |
---|
227 | |
---|
228 | ! spherical actinic flux |
---|
229 | |
---|
230 | do ilay = 1,nlayer |
---|
231 | saflux(ilay) = fplanet(iw)* |
---|
232 | $ (fdir(ilay) + fdn(ilay) + fup(ilay)) |
---|
233 | fluxUV(ig,iw,ilay) = saflux(ilay) |
---|
234 | end do |
---|
235 | |
---|
236 | ! photolysis rate integration |
---|
237 | ! (0.12/(wc(iw)*1e-9)) E(wc) en J.mol-1 |
---|
238 | |
---|
239 | do i = 1,nb_phot_hv_max |
---|
240 | do ilay = 1,nlayer |
---|
241 | deltaj = saflux(ilay)*sj(ilay,iw,i) |
---|
242 | v_phot(ilay,i) = v_phot(ilay,i) + deltaj*(wu(iw)-wl(iw)) |
---|
243 | if (wc(iw).le.photoheat_lmax) then |
---|
244 | e_phot(ilay,i) = e_phot(ilay,i) |
---|
245 | $ + deltaj*(wu(iw)-wl(iw))*(0.12/(wc(iw)*1e-9)) |
---|
246 | end if |
---|
247 | end do |
---|
248 | end do |
---|
249 | |
---|
250 | ! eliminate small values |
---|
251 | |
---|
252 | where (v_phot(:,1:nb_phot_hv_max) < 1.e-30) |
---|
253 | v_phot(:,1:nb_phot_hv_max) = 0. |
---|
254 | end where |
---|
255 | where (e_phot(:,1:nb_phot_hv_max) < 1.e-30) |
---|
256 | e_phot(:,1:nb_phot_hv_max) = 0. |
---|
257 | end where |
---|
258 | |
---|
259 | end do ! iw |
---|
260 | |
---|
261 | contains |
---|
262 | |
---|
263 | !============================================================================== |
---|
264 | |
---|
265 | subroutine setair(nlev, nw, wl, wc, press, temp, zmmean, |
---|
266 | $ colinc, dtrl, airlev) |
---|
267 | |
---|
268 | *-----------------------------------------------------------------------------* |
---|
269 | *= PURPOSE: =* |
---|
270 | *= computes air column increments and rayleigh optical depth =* |
---|
271 | *-----------------------------------------------------------------------------* |
---|
272 | |
---|
273 | use comcstfi_mod, only: g, avocado |
---|
274 | |
---|
275 | implicit none |
---|
276 | |
---|
277 | ! input: |
---|
278 | |
---|
279 | integer :: nlev, nw |
---|
280 | |
---|
281 | real, dimension(nw) :: wl, wc ! lower and central wavelength grid (nm) |
---|
282 | real, dimension(nlev) :: press, temp, zmmean ! pressure (hpa), temperature (k), molecular mass (g.mol-1) |
---|
283 | |
---|
284 | ! output: |
---|
285 | |
---|
286 | real, dimension(nlev) :: colinc ! air column increments (molecule.cm-2) |
---|
287 | real, dimension(nlev) :: airlev ! air density at each specified altitude (molec/cc) |
---|
288 | real, dimension(nlev,nw) :: dtrl ! rayleigh optical depth |
---|
289 | |
---|
290 | ! local: |
---|
291 | |
---|
292 | real :: dp, nu |
---|
293 | real, dimension(nw) :: srayl |
---|
294 | integer :: ilev, iw |
---|
295 | |
---|
296 | ! compute column increments |
---|
297 | |
---|
298 | do ilev = 1, nlev-1 |
---|
299 | dp = (press(ilev) - press(ilev+1))*100. |
---|
300 | colinc(ilev) = avocado*0.1*dp/(zmmean(ilev)*g) |
---|
301 | end do |
---|
302 | colinc(nlev) = 0.0 |
---|
303 | |
---|
304 | do iw = 1, nw - 1 |
---|
305 | |
---|
306 | ! co2 rayleigh cross-section |
---|
307 | ! ityaksov et al., chem. phys. lett., 462, 31-34, 2008 |
---|
308 | |
---|
309 | ! nu = 1./(wc(iw)*1.e-7) |
---|
310 | ! srayl(iw) = 1.78e-26*nu**(4. + 0.625) |
---|
311 | ! srayl(iw) = srayl(iw)*1.e-20 ! cm2 |
---|
312 | |
---|
313 | ! calcul Ityaksov et al., 2008 pour N2 |
---|
314 | |
---|
315 | nu = 1./(wc(iw)*1.e-7) ! cm-1 |
---|
316 | srayl(iw) = 1.8e-26*nu**(4. + 0.534) |
---|
317 | srayl(iw) = srayl(iw)*1.e-20 |
---|
318 | |
---|
319 | do ilev = 1, nlev |
---|
320 | dtrl(ilev,iw) = colinc(ilev)*srayl(iw) ! cm2 |
---|
321 | end do |
---|
322 | end do |
---|
323 | |
---|
324 | ! compute density |
---|
325 | |
---|
326 | do ilev = 1, nlev |
---|
327 | airlev(ilev) = press(ilev)/(1.38e-19*temp(ilev)) |
---|
328 | end do |
---|
329 | |
---|
330 | end subroutine setair |
---|
331 | |
---|
332 | !============================================================================== |
---|
333 | |
---|
334 | subroutine setaer(nlev,zalt,tau,nw,dtaer,omaer,gaer) |
---|
335 | |
---|
336 | !-----------------------------------------------------------------------------* |
---|
337 | != PURPOSE: =* |
---|
338 | != Set aerosol properties for each specified altitude layer. Properties =* |
---|
339 | != may be wavelength dependent. =* |
---|
340 | !-----------------------------------------------------------------------------* |
---|
341 | |
---|
342 | implicit none |
---|
343 | |
---|
344 | ! input |
---|
345 | |
---|
346 | integer :: nlev ! number of vertical layers |
---|
347 | integer :: nw ! number of wavelength grid points |
---|
348 | real, dimension(nlev) :: zalt ! altitude (km) |
---|
349 | real :: tau ! integrated aerosol optical depth at the surface |
---|
350 | |
---|
351 | ! output |
---|
352 | |
---|
353 | real, dimension(nlev,nw) :: dtaer ! aerosol optical depth |
---|
354 | real, dimension(nlev,nw) :: omaer ! aerosol single scattering albedo |
---|
355 | real, dimension(nlev,nw) :: gaer ! aerosol asymmetry parameter |
---|
356 | |
---|
357 | ! local |
---|
358 | |
---|
359 | integer :: ilev, iw |
---|
360 | real, dimension(nlev) :: aer ! dust extinction |
---|
361 | real :: omega, g, scaleh, gamma |
---|
362 | real :: dz, tautot, q0 |
---|
363 | |
---|
364 | omega = 0.622 ! single scattering albedo : wolff et al.(2010) at 258 nm |
---|
365 | g = 0.88 ! asymmetry factor : mateshvili et al. (2007) at 210 nm |
---|
366 | scaleh = 10. ! scale height (km) |
---|
367 | gamma = 0.03 ! conrath parameter |
---|
368 | |
---|
369 | dtaer(:,:) = 0. |
---|
370 | omaer(:,:) = 0. |
---|
371 | gaer(:,:) = 0. |
---|
372 | |
---|
373 | ! optical depth profile: |
---|
374 | |
---|
375 | tautot = 0. |
---|
376 | do ilev = 1, nlev-1 |
---|
377 | dz = zalt(ilev+1) - zalt(ilev) |
---|
378 | tautot = tautot + exp(gamma*(1. - exp(zalt(ilev)/scaleh)))*dz |
---|
379 | end do |
---|
380 | |
---|
381 | q0 = tau/tautot |
---|
382 | do ilev = 1, nlev-1 |
---|
383 | dz = zalt(ilev+1) - zalt(ilev) |
---|
384 | dtaer(ilev,:) = q0*exp(gamma*(1. - exp(zalt(ilev)/scaleh)))*dz |
---|
385 | omaer(ilev,:) = omega |
---|
386 | gaer(ilev,:) = g |
---|
387 | end do |
---|
388 | |
---|
389 | end subroutine setaer |
---|
390 | |
---|
391 | !============================================================================== |
---|
392 | |
---|
393 | subroutine setcld(nlev,nw,dtcld,omcld,gcld) |
---|
394 | |
---|
395 | !-----------------------------------------------------------------------------* |
---|
396 | != PURPOSE: =* |
---|
397 | != Set cloud properties for each specified altitude layer. Properties =* |
---|
398 | != may be wavelength dependent. =* |
---|
399 | !-----------------------------------------------------------------------------* |
---|
400 | |
---|
401 | implicit none |
---|
402 | |
---|
403 | ! input |
---|
404 | |
---|
405 | integer :: nlev ! number of vertical layers |
---|
406 | integer :: nw ! number of wavelength grid points |
---|
407 | |
---|
408 | ! output |
---|
409 | |
---|
410 | real, dimension(nlev,nw) :: dtcld ! cloud optical depth |
---|
411 | real, dimension(nlev,nw) :: omcld ! cloud single scattering albedo |
---|
412 | real, dimension(nlev,nw) :: gcld ! cloud asymmetry parameter |
---|
413 | |
---|
414 | ! local |
---|
415 | |
---|
416 | integer :: ilev, iw |
---|
417 | |
---|
418 | ! dtcld : optical depth |
---|
419 | ! omcld : single scattering albedo |
---|
420 | ! gcld : asymmetry factor |
---|
421 | |
---|
422 | do ilev = 1, nlev - 1 |
---|
423 | do iw = 1, nw - 1 |
---|
424 | dtcld(ilev,iw) = 0. ! no clouds for the moment |
---|
425 | omcld(ilev,iw) = 0.99 |
---|
426 | gcld(ilev,iw) = 0.85 |
---|
427 | end do |
---|
428 | end do |
---|
429 | |
---|
430 | end subroutine setcld |
---|
431 | |
---|
432 | !============================================================================== |
---|
433 | |
---|
434 | subroutine sphers(nlev, z, zen, dsdh, nid) |
---|
435 | |
---|
436 | !-----------------------------------------------------------------------------* |
---|
437 | != PURPOSE: =* |
---|
438 | != Calculate slant path over vertical depth ds/dh in spherical geometry. =* |
---|
439 | != Calculation is based on: A.Dahlback, and K.Stamnes, A new spheric model =* |
---|
440 | != for computing the radiation field available for photolysis and heating =* |
---|
441 | != at twilight, Planet.Space Sci., v39, n5, pp. 671-683, 1991 (Appendix B) =* |
---|
442 | !-----------------------------------------------------------------------------* |
---|
443 | != PARAMETERS: =* |
---|
444 | != NZ - INTEGER, number of specified altitude levels in the working (I)=* |
---|
445 | != grid =* |
---|
446 | != Z - REAL, specified altitude working grid (km) (I)=* |
---|
447 | != ZEN - REAL, solar zenith angle (degrees) (I)=* |
---|
448 | != DSDH - REAL, slant path of direct beam through each layer crossed (O)=* |
---|
449 | != when travelling from the top of the atmosphere to layer i; =* |
---|
450 | != DSDH(i,j), i = 0..NZ-1, j = 1..NZ-1 =* |
---|
451 | != NID - INTEGER, number of layers crossed by the direct beam when (O)=* |
---|
452 | != travelling from the top of the atmosphere to layer i; =* |
---|
453 | != NID(i), i = 0..NZ-1 =* |
---|
454 | !-----------------------------------------------------------------------------* |
---|
455 | |
---|
456 | use comcstfi_mod, only: rad, pi |
---|
457 | |
---|
458 | implicit none |
---|
459 | |
---|
460 | ! input |
---|
461 | |
---|
462 | integer, intent(in) :: nlev |
---|
463 | real, dimension(nlev), intent(in) :: z |
---|
464 | real, intent(in) :: zen |
---|
465 | |
---|
466 | ! output |
---|
467 | |
---|
468 | INTEGER nid(0:nlev) |
---|
469 | REAL dsdh(0:nlev,nlev) |
---|
470 | |
---|
471 | ! more program constants |
---|
472 | |
---|
473 | REAL re, ze(nlev) |
---|
474 | REAL dr |
---|
475 | real radius ! km |
---|
476 | |
---|
477 | ! local |
---|
478 | |
---|
479 | real :: zenrad, rpsinz, rj, rjp1, dsj, dhj, ga, gb, sm |
---|
480 | integer :: i, j, k, id, nlay |
---|
481 | |
---|
482 | REAL zd(0:nlev-1) |
---|
483 | |
---|
484 | !----------------------------------------------------------------------------- |
---|
485 | |
---|
486 | radius = rad*1.e-3 ! rad [m] -> radius [km] |
---|
487 | dr = pi/180. |
---|
488 | zenrad = zen*dr |
---|
489 | |
---|
490 | ! number of layers: |
---|
491 | |
---|
492 | nlay = nlev - 1 |
---|
493 | |
---|
494 | ! include the elevation above sea level to the radius of Mars: |
---|
495 | |
---|
496 | re = radius + z(1) |
---|
497 | |
---|
498 | ! correspondingly z changed to the elevation above Mars surface: |
---|
499 | |
---|
500 | DO k = 1, nlev |
---|
501 | ze(k) = z(k) - z(1) |
---|
502 | END DO |
---|
503 | |
---|
504 | ! inverse coordinate of z |
---|
505 | |
---|
506 | zd(0) = ze(nlev) |
---|
507 | DO k = 1, nlay |
---|
508 | zd(k) = ze(nlev - k) |
---|
509 | END DO |
---|
510 | |
---|
511 | ! initialise dsdh(i,j), nid(i) |
---|
512 | |
---|
513 | nid(:) = 0. |
---|
514 | dsdh(:,:) = 0. |
---|
515 | |
---|
516 | ! calculate ds/dh of every layer |
---|
517 | |
---|
518 | do i = 0,nlay |
---|
519 | rpsinz = (re + zd(i))*sin(zenrad) |
---|
520 | |
---|
521 | IF ( (zen .GT. 90.0) .AND. (rpsinz .LT. re) ) THEN |
---|
522 | nid(i) = -1 |
---|
523 | ELSE |
---|
524 | |
---|
525 | ! Find index of layer in which the screening height lies |
---|
526 | |
---|
527 | id = i |
---|
528 | if (zen > 90.) then |
---|
529 | do j = 1,nlay |
---|
530 | IF( (rpsinz .LT. ( zd(j-1) + re ) ) .AND. |
---|
531 | $ (rpsinz .GE. ( zd(j) + re )) ) id = j |
---|
532 | end do |
---|
533 | end if |
---|
534 | |
---|
535 | do j = 1,id |
---|
536 | sm = 1.0 |
---|
537 | IF (j .EQ. id .AND. id .EQ. i .AND. zen .GT. 90.0) |
---|
538 | $ sm = -1.0 |
---|
539 | |
---|
540 | rj = re + zd(j-1) |
---|
541 | rjp1 = re + zd(j) |
---|
542 | |
---|
543 | dhj = zd(j-1) - zd(j) |
---|
544 | |
---|
545 | ga = rj*rj - rpsinz*rpsinz |
---|
546 | gb = rjp1*rjp1 - rpsinz*rpsinz |
---|
547 | |
---|
548 | ga = max(ga, 0.) |
---|
549 | gb = max(gb, 0.) |
---|
550 | |
---|
551 | IF (id.GT.i .AND. j.EQ.id) THEN |
---|
552 | dsj = sqrt(ga) |
---|
553 | ELSE |
---|
554 | dsj = sqrt(ga) - sm*sqrt(gb) |
---|
555 | END IF |
---|
556 | dsdh(i,j) = dsj/dhj |
---|
557 | end do |
---|
558 | nid(i) = id |
---|
559 | end if |
---|
560 | end do ! i = 0,nlay |
---|
561 | |
---|
562 | end subroutine sphers |
---|
563 | |
---|
564 | !============================================================================== |
---|
565 | |
---|
566 | SUBROUTINE rtlink(nlev, nw, iw, ag, zen, dsdh, nid, dtrl, |
---|
567 | $ dagas, dtcld, omcld, gcld, dtaer, omaer, gaer, |
---|
568 | $ edir, edn, eup, fdir, fdn, fup) |
---|
569 | |
---|
570 | implicit none |
---|
571 | |
---|
572 | ! input |
---|
573 | |
---|
574 | integer, intent(in) :: nlev, nw, iw ! number of wavelength grid points |
---|
575 | REAL ag |
---|
576 | REAL zen |
---|
577 | REAL dsdh(0:nlev,nlev) |
---|
578 | INTEGER nid(0:nlev) |
---|
579 | |
---|
580 | REAL dtrl(nlev,nw) |
---|
581 | REAL dagas(nlev,nw) |
---|
582 | REAL dtcld(nlev,nw), omcld(nlev,nw), gcld(nlev,nw) |
---|
583 | REAL dtaer(nlev,nw), omaer(nlev,nw), gaer(nlev,nw) |
---|
584 | |
---|
585 | ! output |
---|
586 | |
---|
587 | REAL edir(nlev), edn(nlev), eup(nlev) |
---|
588 | REAL fdir(nlev), fdn(nlev), fup(nlev) |
---|
589 | |
---|
590 | ! local: |
---|
591 | |
---|
592 | REAL dt(nlev), om(nlev), g(nlev) |
---|
593 | REAL dtabs,dtsct,dscld,dsaer,dacld,daaer |
---|
594 | INTEGER i, ii |
---|
595 | real, parameter :: largest = 1.e+36 |
---|
596 | |
---|
597 | ! specific two ps2str |
---|
598 | |
---|
599 | REAL ediri(nlev), edni(nlev), eupi(nlev) |
---|
600 | REAL fdiri(nlev), fdni(nlev), fupi(nlev) |
---|
601 | |
---|
602 | logical, save :: delta = .true. |
---|
603 | |
---|
604 | !_______________________________________________________________________ |
---|
605 | |
---|
606 | ! initialize: |
---|
607 | |
---|
608 | do i = 1, nlev |
---|
609 | fdir(i) = 0. |
---|
610 | fup(i) = 0. |
---|
611 | fdn(i) = 0. |
---|
612 | edir(i) = 0. |
---|
613 | eup(i) = 0. |
---|
614 | edn(i) = 0. |
---|
615 | end do |
---|
616 | |
---|
617 | do i = 1, nlev - 1 |
---|
618 | dscld = dtcld(i,iw)*omcld(i,iw) |
---|
619 | dacld = dtcld(i,iw)*(1.-omcld(i,iw)) |
---|
620 | |
---|
621 | dsaer = dtaer(i,iw)*omaer(i,iw) |
---|
622 | daaer = dtaer(i,iw)*(1.-omaer(i,iw)) |
---|
623 | |
---|
624 | dtsct = dtrl(i,iw) + dscld + dsaer |
---|
625 | dtabs = dagas(i,iw) + dacld + daaer |
---|
626 | |
---|
627 | dtabs = amax1(dtabs,1./largest) |
---|
628 | dtsct = amax1(dtsct,1./largest) |
---|
629 | |
---|
630 | ! invert z-coordinate: |
---|
631 | |
---|
632 | ii = nlev - i |
---|
633 | dt(ii) = dtsct + dtabs |
---|
634 | om(ii) = dtsct/(dtsct + dtabs) |
---|
635 | IF(dtsct .EQ. 1./largest) om(ii) = 1./largest |
---|
636 | g(ii) = (gcld(i,iw)*dscld + |
---|
637 | $ gaer(i,iw)*dsaer)/dtsct |
---|
638 | end do |
---|
639 | |
---|
640 | ! call rt routine: |
---|
641 | |
---|
642 | call ps2str(nlev, zen, ag, dt, om, g, |
---|
643 | $ dsdh, nid, delta, |
---|
644 | $ fdiri, fupi, fdni, ediri, eupi, edni) |
---|
645 | |
---|
646 | ! output (invert z-coordinate) |
---|
647 | |
---|
648 | do i = 1, nlev |
---|
649 | ii = nlev - i + 1 |
---|
650 | fdir(i) = fdiri(ii) |
---|
651 | fup(i) = fupi(ii) |
---|
652 | fdn(i) = fdni(ii) |
---|
653 | edir(i) = ediri(ii) |
---|
654 | eup(i) = eupi(ii) |
---|
655 | edn(i) = edni(ii) |
---|
656 | end do |
---|
657 | |
---|
658 | end subroutine rtlink |
---|
659 | |
---|
660 | *=============================================================================* |
---|
661 | |
---|
662 | subroutine ps2str(nlev,zen,rsfc,tauu,omu,gu, |
---|
663 | $ dsdh, nid, delta, |
---|
664 | $ fdr, fup, fdn, edr, eup, edn) |
---|
665 | |
---|
666 | !-----------------------------------------------------------------------------* |
---|
667 | != PURPOSE: =* |
---|
668 | != Solve two-stream equations for multiple layers. The subroutine is based =* |
---|
669 | != on equations from: Toon et al., J.Geophys.Res., v94 (D13), Nov 20, 1989.=* |
---|
670 | != It contains 9 two-stream methods to choose from. A pseudo-spherical =* |
---|
671 | != correction has also been added. =* |
---|
672 | !-----------------------------------------------------------------------------* |
---|
673 | != PARAMETERS: =* |
---|
674 | != NLEVEL - INTEGER, number of specified altitude levels in the working (I)=* |
---|
675 | != grid =* |
---|
676 | != ZEN - REAL, solar zenith angle (degrees) (I)=* |
---|
677 | != RSFC - REAL, surface albedo at current wavelength (I)=* |
---|
678 | != TAUU - REAL, unscaled optical depth of each layer (I)=* |
---|
679 | != OMU - REAL, unscaled single scattering albedo of each layer (I)=* |
---|
680 | != GU - REAL, unscaled asymmetry parameter of each layer (I)=* |
---|
681 | != DSDH - REAL, slant path of direct beam through each layer crossed (I)=* |
---|
682 | != when travelling from the top of the atmosphere to layer i; =* |
---|
683 | != DSDH(i,j), i = 0..NZ-1, j = 1..NZ-1 =* |
---|
684 | != NID - INTEGER, number of layers crossed by the direct beam when (I)=* |
---|
685 | != travelling from the top of the atmosphere to layer i; =* |
---|
686 | != NID(i), i = 0..NZ-1 =* |
---|
687 | != DELTA - LOGICAL, switch to use delta-scaling (I)=* |
---|
688 | != .TRUE. -> apply delta-scaling =* |
---|
689 | != .FALSE.-> do not apply delta-scaling =* |
---|
690 | != FDR - REAL, contribution of the direct component to the total (O)=* |
---|
691 | != actinic flux at each altitude level =* |
---|
692 | != FUP - REAL, contribution of the diffuse upwelling component to (O)=* |
---|
693 | != the total actinic flux at each altitude level =* |
---|
694 | != FDN - REAL, contribution of the diffuse downwelling component to (O)=* |
---|
695 | != the total actinic flux at each altitude level =* |
---|
696 | != EDR - REAL, contribution of the direct component to the total (O)=* |
---|
697 | != spectral irradiance at each altitude level =* |
---|
698 | != EUP - REAL, contribution of the diffuse upwelling component to (O)=* |
---|
699 | != the total spectral irradiance at each altitude level =* |
---|
700 | != EDN - REAL, contribution of the diffuse downwelling component to (O)=* |
---|
701 | *= the total spectral irradiance at each altitude level =* |
---|
702 | !-----------------------------------------------------------------------------* |
---|
703 | |
---|
704 | implicit none |
---|
705 | |
---|
706 | ! input: |
---|
707 | |
---|
708 | INTEGER nlev |
---|
709 | REAL zen, rsfc |
---|
710 | REAL tauu(nlev), omu(nlev), gu(nlev) |
---|
711 | REAL dsdh(0:nlev,nlev) |
---|
712 | INTEGER nid(0:nlev) |
---|
713 | LOGICAL delta |
---|
714 | |
---|
715 | ! output: |
---|
716 | |
---|
717 | REAL fup(nlev),fdn(nlev),fdr(nlev) |
---|
718 | REAL eup(nlev),edn(nlev),edr(nlev) |
---|
719 | |
---|
720 | ! local: |
---|
721 | |
---|
722 | REAL tausla(0:nlev), tauc(0:nlev) |
---|
723 | REAL mu2(0:nlev), mu, sum |
---|
724 | |
---|
725 | ! internal coefficients and matrix |
---|
726 | |
---|
727 | REAL lam(nlev),taun(nlev),bgam(nlev) |
---|
728 | REAL e1(nlev),e2(nlev),e3(nlev),e4(nlev) |
---|
729 | REAL cup(nlev),cdn(nlev),cuptn(nlev),cdntn(nlev) |
---|
730 | REAL mu1(nlev) |
---|
731 | INTEGER row |
---|
732 | REAL a(2*nlev),b(2*nlev),d(2*nlev),e(2*nlev),y(2*nlev) |
---|
733 | |
---|
734 | ! other: |
---|
735 | |
---|
736 | REAL pifs, fdn0 |
---|
737 | REAL gi(nlev), omi(nlev), tempg |
---|
738 | REAL f, g, om |
---|
739 | REAL gam1, gam2, gam3, gam4 |
---|
740 | real, parameter :: largest = 1.e+36 |
---|
741 | real, parameter :: precis = 1.e-7 |
---|
742 | |
---|
743 | ! For calculations of Associated Legendre Polynomials for GAMA1,2,3,4 |
---|
744 | ! in delta-function, modified quadrature, hemispheric constant, |
---|
745 | ! Hybrid modified Eddington-delta function metods, p633,Table1. |
---|
746 | ! W.E.Meador and W.R.Weaver, GAS,1980,v37,p.630 |
---|
747 | ! W.J.Wiscombe and G.W. Grams, GAS,1976,v33,p2440, |
---|
748 | ! uncomment the following two lines and the appropriate statements further |
---|
749 | ! down. |
---|
750 | ! REAL YLM0, YLM2, YLM4, YLM6, YLM8, YLM10, YLM12, YLMS, BETA0, |
---|
751 | ! > BETA1, BETAn, amu1, subd |
---|
752 | |
---|
753 | REAL expon, expon0, expon1, divisr, temp, up, dn |
---|
754 | REAL ssfc |
---|
755 | INTEGER nlayer, mrows, lev |
---|
756 | |
---|
757 | INTEGER i, j |
---|
758 | |
---|
759 | ! Some additional program constants: |
---|
760 | |
---|
761 | real pi, dr |
---|
762 | REAL eps |
---|
763 | PARAMETER (eps = 1.E-3) |
---|
764 | !_______________________________________________________________________ |
---|
765 | |
---|
766 | ! MU = cosine of solar zenith angle |
---|
767 | ! RSFC = surface albedo |
---|
768 | ! TAUU = unscaled optical depth of each layer |
---|
769 | ! OMU = unscaled single scattering albedo |
---|
770 | ! GU = unscaled asymmetry factor |
---|
771 | ! KLEV = max dimension of number of layers in atmosphere |
---|
772 | ! NLAYER = number of layers in the atmosphere |
---|
773 | ! NLEVEL = nlayer + 1 = number of levels |
---|
774 | |
---|
775 | ! initial conditions: pi*solar flux = 1; diffuse incidence = 0 |
---|
776 | |
---|
777 | pifs = 1. |
---|
778 | fdn0 = 0. |
---|
779 | |
---|
780 | nlayer = nlev - 1 |
---|
781 | |
---|
782 | pi = acos(-1.) |
---|
783 | dr = pi/180. |
---|
784 | mu = COS(zen*dr) |
---|
785 | |
---|
786 | !************* compute coefficients for each layer: |
---|
787 | ! GAM1 - GAM4 = 2-stream coefficients, different for different approximations |
---|
788 | ! EXPON0 = calculation of e when TAU is zero |
---|
789 | ! EXPON1 = calculation of e when TAU is TAUN |
---|
790 | ! CUP and CDN = calculation when TAU is zero |
---|
791 | ! CUPTN and CDNTN = calc. when TAU is TAUN |
---|
792 | ! DIVISR = prevents division by zero |
---|
793 | |
---|
794 | do j = 0, nlev |
---|
795 | tauc(j) = 0. |
---|
796 | tausla(j) = 0. |
---|
797 | mu2(j) = 1./SQRT(largest) |
---|
798 | end do |
---|
799 | |
---|
800 | IF (.NOT. delta) THEN |
---|
801 | DO i = 1, nlayer |
---|
802 | gi(i) = gu(i) |
---|
803 | omi(i) = omu(i) |
---|
804 | taun(i) = tauu(i) |
---|
805 | END DO |
---|
806 | ELSE |
---|
807 | |
---|
808 | ! delta-scaling. Have to be done for delta-Eddington approximation, |
---|
809 | ! delta discrete ordinate, Practical Improved Flux Method, delta function, |
---|
810 | ! and Hybrid modified Eddington-delta function methods approximations |
---|
811 | |
---|
812 | DO i = 1, nlayer |
---|
813 | f = gu(i)*gu(i) |
---|
814 | gi(i) = (gu(i) - f)/(1 - f) |
---|
815 | omi(i) = (1 - f)*omu(i)/(1 - omu(i)*f) |
---|
816 | taun(i) = (1 - omu(i)*f)*tauu(i) |
---|
817 | END DO |
---|
818 | END IF |
---|
819 | |
---|
820 | ! calculate slant optical depth at the top of the atmosphere when zen>90. |
---|
821 | ! in this case, higher altitude of the top layer is recommended. |
---|
822 | |
---|
823 | IF (zen .GT. 90.0) THEN |
---|
824 | IF (nid(0) .LT. 0) THEN |
---|
825 | tausla(0) = largest |
---|
826 | ELSE |
---|
827 | sum = 0.0 |
---|
828 | DO j = 1, nid(0) |
---|
829 | sum = sum + 2.*taun(j)*dsdh(0,j) |
---|
830 | END DO |
---|
831 | tausla(0) = sum |
---|
832 | END IF |
---|
833 | END IF |
---|
834 | |
---|
835 | DO 11, i = 1, nlayer |
---|
836 | g = gi(i) |
---|
837 | om = omi(i) |
---|
838 | tauc(i) = tauc(i-1) + taun(i) |
---|
839 | |
---|
840 | ! stay away from 1 by precision. For g, also stay away from -1 |
---|
841 | |
---|
842 | tempg = AMIN1(abs(g),1. - precis) |
---|
843 | g = SIGN(tempg,g) |
---|
844 | om = AMIN1(om,1.-precis) |
---|
845 | |
---|
846 | ! calculate slant optical depth |
---|
847 | |
---|
848 | IF (nid(i) .LT. 0) THEN |
---|
849 | tausla(i) = largest |
---|
850 | ELSE |
---|
851 | sum = 0.0 |
---|
852 | DO j = 1, MIN(nid(i),i) |
---|
853 | sum = sum + taun(j)*dsdh(i,j) |
---|
854 | END DO |
---|
855 | DO j = MIN(nid(i),i)+1,nid(i) |
---|
856 | sum = sum + 2.*taun(j)*dsdh(i,j) |
---|
857 | END DO |
---|
858 | tausla(i) = sum |
---|
859 | IF (tausla(i) .EQ. tausla(i-1)) THEN |
---|
860 | mu2(i) = SQRT(largest) |
---|
861 | ELSE |
---|
862 | mu2(i) = (tauc(i)-tauc(i-1))/(tausla(i)-tausla(i-1)) |
---|
863 | mu2(i) = SIGN( AMAX1(ABS(mu2(i)),1./SQRT(largest)), |
---|
864 | $ mu2(i) ) |
---|
865 | END IF |
---|
866 | END IF |
---|
867 | |
---|
868 | !** the following gamma equations are from pg 16,289, Table 1 |
---|
869 | !** save mu1 for each approx. for use in converting irradiance to actinic flux |
---|
870 | |
---|
871 | ! Eddington approximation(Joseph et al., 1976, JAS, 33, 2452): |
---|
872 | |
---|
873 | c gam1 = (7. - om*(4. + 3.*g))/4. |
---|
874 | c gam2 = -(1. - om*(4. - 3.*g))/4. |
---|
875 | c gam3 = (2. - 3.*g*mu)/4. |
---|
876 | c gam4 = 1. - gam3 |
---|
877 | c mu1(i) = 0.5 |
---|
878 | |
---|
879 | * quadrature (Liou, 1973, JAS, 30, 1303-1326; 1974, JAS, 31, 1473-1475): |
---|
880 | |
---|
881 | c gam1 = 1.7320508*(2. - om*(1. + g))/2. |
---|
882 | c gam2 = 1.7320508*om*(1. - g)/2. |
---|
883 | c gam3 = (1. - 1.7320508*g*mu)/2. |
---|
884 | c gam4 = 1. - gam3 |
---|
885 | c mu1(i) = 1./sqrt(3.) |
---|
886 | |
---|
887 | * hemispheric mean (Toon et al., 1089, JGR, 94, 16287): |
---|
888 | |
---|
889 | gam1 = 2. - om*(1. + g) |
---|
890 | gam2 = om*(1. - g) |
---|
891 | gam3 = (2. - g*mu)/4. |
---|
892 | gam4 = 1. - gam3 |
---|
893 | mu1(i) = 0.5 |
---|
894 | |
---|
895 | * PIFM (Zdunkovski et al.,1980, Conrib.Atmos.Phys., 53, 147-166): |
---|
896 | c GAM1 = 0.25*(8. - OM*(5. + 3.*G)) |
---|
897 | c GAM2 = 0.75*OM*(1.-G) |
---|
898 | c GAM3 = 0.25*(2.-3.*G*MU) |
---|
899 | c GAM4 = 1. - GAM3 |
---|
900 | c mu1(i) = 0.5 |
---|
901 | |
---|
902 | * delta discrete ordinates (Schaller, 1979, Contrib.Atmos.Phys, 52, 17-26): |
---|
903 | c GAM1 = 0.5*1.7320508*(2. - OM*(1. + G)) |
---|
904 | c GAM2 = 0.5*1.7320508*OM*(1.-G) |
---|
905 | c GAM3 = 0.5*(1.-1.7320508*G*MU) |
---|
906 | c GAM4 = 1. - GAM3 |
---|
907 | c mu1(i) = 1./sqrt(3.) |
---|
908 | |
---|
909 | * Calculations of Associated Legendre Polynomials for GAMA1,2,3,4 |
---|
910 | * in delta-function, modified quadrature, hemispheric constant, |
---|
911 | * Hybrid modified Eddington-delta function metods, p633,Table1. |
---|
912 | * W.E.Meador and W.R.Weaver, GAS,1980,v37,p.630 |
---|
913 | * W.J.Wiscombe and G.W. Grams, GAS,1976,v33,p2440 |
---|
914 | c YLM0 = 2. |
---|
915 | c YLM2 = -3.*G*MU |
---|
916 | c YLM4 = 0.875*G**3*MU*(5.*MU**2-3.) |
---|
917 | c YLM6=-0.171875*G**5*MU*(15.-70.*MU**2+63.*MU**4) |
---|
918 | c YLM8=+0.073242*G**7*MU*(-35.+315.*MU**2-693.*MU**4 |
---|
919 | c *+429.*MU**6) |
---|
920 | c YLM10=-0.008118*G**9*MU*(315.-4620.*MU**2+18018.*MU**4 |
---|
921 | c *-25740.*MU**6+12155.*MU**8) |
---|
922 | c YLM12=0.003685*G**11*MU*(-693.+15015.*MU**2-90090.*MU**4 |
---|
923 | c *+218790.*MU**6-230945.*MU**8+88179.*MU**10) |
---|
924 | c YLMS=YLM0+YLM2+YLM4+YLM6+YLM8+YLM10+YLM12 |
---|
925 | c YLMS=0.25*YLMS |
---|
926 | c BETA0 = YLMS |
---|
927 | c |
---|
928 | c amu1=1./1.7320508 |
---|
929 | c YLM0 = 2. |
---|
930 | c YLM2 = -3.*G*amu1 |
---|
931 | c YLM4 = 0.875*G**3*amu1*(5.*amu1**2-3.) |
---|
932 | c YLM6=-0.171875*G**5*amu1*(15.-70.*amu1**2+63.*amu1**4) |
---|
933 | c YLM8=+0.073242*G**7*amu1*(-35.+315.*amu1**2-693.*amu1**4 |
---|
934 | c *+429.*amu1**6) |
---|
935 | c YLM10=-0.008118*G**9*amu1*(315.-4620.*amu1**2+18018.*amu1**4 |
---|
936 | c *-25740.*amu1**6+12155.*amu1**8) |
---|
937 | c YLM12=0.003685*G**11*amu1*(-693.+15015.*amu1**2-90090.*amu1**4 |
---|
938 | c *+218790.*amu1**6-230945.*amu1**8+88179.*amu1**10) |
---|
939 | c YLMS=YLM0+YLM2+YLM4+YLM6+YLM8+YLM10+YLM12 |
---|
940 | c YLMS=0.25*YLMS |
---|
941 | c BETA1 = YLMS |
---|
942 | c |
---|
943 | c BETAn = 0.25*(2. - 1.5*G-0.21875*G**3-0.085938*G**5 |
---|
944 | c *-0.045776*G**7) |
---|
945 | |
---|
946 | |
---|
947 | * Hybrid modified Eddington-delta function(Meador and Weaver,1980,JAS,37,630): |
---|
948 | c subd=4.*(1.-G*G*(1.-MU)) |
---|
949 | c GAM1 = (7.-3.*G*G-OM*(4.+3.*G)+OM*G*G*(4.*BETA0+3.*G))/subd |
---|
950 | c GAM2 =-(1.-G*G-OM*(4.-3.*G)-OM*G*G*(4.*BETA0+3.*G-4.))/subd |
---|
951 | c GAM3 = BETA0 |
---|
952 | c GAM4 = 1. - GAM3 |
---|
953 | c mu1(i) = (1. - g*g*(1.- mu) )/(2. - g*g) |
---|
954 | |
---|
955 | ***** |
---|
956 | * delta function (Meador, and Weaver, 1980, JAS, 37, 630): |
---|
957 | c GAM1 = (1. - OM*(1. - beta0))/MU |
---|
958 | c GAM2 = OM*BETA0/MU |
---|
959 | c GAM3 = BETA0 |
---|
960 | c GAM4 = 1. - GAM3 |
---|
961 | c mu1(i) = mu |
---|
962 | ***** |
---|
963 | * modified quadrature (Meador, and Weaver, 1980, JAS, 37, 630): |
---|
964 | c GAM1 = 1.7320508*(1. - OM*(1. - beta1)) |
---|
965 | c GAM2 = 1.7320508*OM*beta1 |
---|
966 | c GAM3 = BETA0 |
---|
967 | c GAM4 = 1. - GAM3 |
---|
968 | c mu1(i) = 1./sqrt(3.) |
---|
969 | |
---|
970 | * hemispheric constant (Toon et al., 1989, JGR, 94, 16287): |
---|
971 | c GAM1 = 2.*(1. - OM*(1. - betan)) |
---|
972 | c GAM2 = 2.*OM*BETAn |
---|
973 | c GAM3 = BETA0 |
---|
974 | c GAM4 = 1. - GAM3 |
---|
975 | c mu1(i) = 0.5 |
---|
976 | |
---|
977 | ***** |
---|
978 | |
---|
979 | * lambda = pg 16,290 equation 21 |
---|
980 | * big gamma = pg 16,290 equation 22 |
---|
981 | * if gam2 = 0., then bgam = 0. |
---|
982 | |
---|
983 | lam(i) = sqrt(gam1*gam1 - gam2*gam2) |
---|
984 | |
---|
985 | IF (gam2 .NE. 0.) THEN |
---|
986 | bgam(i) = (gam1 - lam(i))/gam2 |
---|
987 | ELSE |
---|
988 | bgam(i) = 0. |
---|
989 | END IF |
---|
990 | |
---|
991 | expon = EXP(-lam(i)*taun(i)) |
---|
992 | |
---|
993 | * e1 - e4 = pg 16,292 equation 44 |
---|
994 | |
---|
995 | e1(i) = 1. + bgam(i)*expon |
---|
996 | e2(i) = 1. - bgam(i)*expon |
---|
997 | e3(i) = bgam(i) + expon |
---|
998 | e4(i) = bgam(i) - expon |
---|
999 | |
---|
1000 | * the following sets up for the C equations 23, and 24 |
---|
1001 | * found on page 16,290 |
---|
1002 | * prevent division by zero (if LAMBDA=1/MU, shift 1/MU^2 by EPS = 1.E-3 |
---|
1003 | * which is approx equiv to shifting MU by 0.5*EPS* (MU)**3 |
---|
1004 | |
---|
1005 | expon0 = EXP(-tausla(i-1)) |
---|
1006 | expon1 = EXP(-tausla(i)) |
---|
1007 | |
---|
1008 | divisr = lam(i)*lam(i) - 1./(mu2(i)*mu2(i)) |
---|
1009 | temp = AMAX1(eps,abs(divisr)) |
---|
1010 | divisr = SIGN(temp,divisr) |
---|
1011 | |
---|
1012 | up = om*pifs*((gam1 - 1./mu2(i))*gam3 + gam4*gam2)/divisr |
---|
1013 | dn = om*pifs*((gam1 + 1./mu2(i))*gam4 + gam2*gam3)/divisr |
---|
1014 | |
---|
1015 | * cup and cdn are when tau is equal to zero |
---|
1016 | * cuptn and cdntn are when tau is equal to taun |
---|
1017 | |
---|
1018 | cup(i) = up*expon0 |
---|
1019 | cdn(i) = dn*expon0 |
---|
1020 | cuptn(i) = up*expon1 |
---|
1021 | cdntn(i) = dn*expon1 |
---|
1022 | |
---|
1023 | 11 CONTINUE |
---|
1024 | |
---|
1025 | ***************** set up matrix ****** |
---|
1026 | * ssfc = pg 16,292 equation 37 where pi Fs is one (unity). |
---|
1027 | |
---|
1028 | ssfc = rsfc*mu*EXP(-tausla(nlayer))*pifs |
---|
1029 | |
---|
1030 | * MROWS = the number of rows in the matrix |
---|
1031 | |
---|
1032 | mrows = 2*nlayer |
---|
1033 | |
---|
1034 | * the following are from pg 16,292 equations 39 - 43. |
---|
1035 | * set up first row of matrix: |
---|
1036 | |
---|
1037 | i = 1 |
---|
1038 | a(1) = 0. |
---|
1039 | b(1) = e1(i) |
---|
1040 | d(1) = -e2(i) |
---|
1041 | e(1) = fdn0 - cdn(i) |
---|
1042 | |
---|
1043 | row=1 |
---|
1044 | |
---|
1045 | * set up odd rows 3 thru (MROWS - 1): |
---|
1046 | |
---|
1047 | i = 0 |
---|
1048 | DO 20, row = 3, mrows - 1, 2 |
---|
1049 | i = i + 1 |
---|
1050 | a(row) = e2(i)*e3(i) - e4(i)*e1(i) |
---|
1051 | b(row) = e1(i)*e1(i + 1) - e3(i)*e3(i + 1) |
---|
1052 | d(row) = e3(i)*e4(i + 1) - e1(i)*e2(i + 1) |
---|
1053 | e(row) = e3(i)*(cup(i + 1) - cuptn(i)) + |
---|
1054 | $ e1(i)*(cdntn(i) - cdn(i + 1)) |
---|
1055 | 20 CONTINUE |
---|
1056 | |
---|
1057 | * set up even rows 2 thru (MROWS - 2): |
---|
1058 | |
---|
1059 | i = 0 |
---|
1060 | DO 30, row = 2, mrows - 2, 2 |
---|
1061 | i = i + 1 |
---|
1062 | a(row) = e2(i + 1)*e1(i) - e3(i)*e4(i + 1) |
---|
1063 | b(row) = e2(i)*e2(i + 1) - e4(i)*e4(i + 1) |
---|
1064 | d(row) = e1(i + 1)*e4(i + 1) - e2(i + 1)*e3(i + 1) |
---|
1065 | e(row) = (cup(i + 1) - cuptn(i))*e2(i + 1) - |
---|
1066 | $ (cdn(i + 1) - cdntn(i))*e4(i + 1) |
---|
1067 | 30 CONTINUE |
---|
1068 | |
---|
1069 | * set up last row of matrix at MROWS: |
---|
1070 | |
---|
1071 | row = mrows |
---|
1072 | i = nlayer |
---|
1073 | |
---|
1074 | a(row) = e1(i) - rsfc*e3(i) |
---|
1075 | b(row) = e2(i) - rsfc*e4(i) |
---|
1076 | d(row) = 0. |
---|
1077 | e(row) = ssfc - cuptn(i) + rsfc*cdntn(i) |
---|
1078 | |
---|
1079 | * solve tri-diagonal matrix: |
---|
1080 | |
---|
1081 | CALL tridiag(a, b, d, e, y, mrows) |
---|
1082 | |
---|
1083 | **** unfold solution of matrix, compute output fluxes: |
---|
1084 | |
---|
1085 | row = 1 |
---|
1086 | lev = 1 |
---|
1087 | j = 1 |
---|
1088 | |
---|
1089 | * the following equations are from pg 16,291 equations 31 & 32 |
---|
1090 | |
---|
1091 | fdr(lev) = EXP( -tausla(0) ) |
---|
1092 | edr(lev) = mu * fdr(lev) |
---|
1093 | edn(lev) = fdn0 |
---|
1094 | eup(lev) = y(row)*e3(j) - y(row + 1)*e4(j) + cup(j) |
---|
1095 | fdn(lev) = edn(lev)/mu1(lev) |
---|
1096 | fup(lev) = eup(lev)/mu1(lev) |
---|
1097 | |
---|
1098 | DO 60, lev = 2, nlayer + 1 |
---|
1099 | fdr(lev) = EXP(-tausla(lev-1)) |
---|
1100 | edr(lev) = mu *fdr(lev) |
---|
1101 | edn(lev) = y(row)*e3(j) + y(row + 1)*e4(j) + cdntn(j) |
---|
1102 | eup(lev) = y(row)*e1(j) + y(row + 1)*e2(j) + cuptn(j) |
---|
1103 | fdn(lev) = edn(lev)/mu1(j) |
---|
1104 | fup(lev) = eup(lev)/mu1(j) |
---|
1105 | |
---|
1106 | row = row + 2 |
---|
1107 | j = j + 1 |
---|
1108 | 60 CONTINUE |
---|
1109 | |
---|
1110 | end subroutine ps2str |
---|
1111 | |
---|
1112 | *=============================================================================* |
---|
1113 | |
---|
1114 | subroutine tridiag(a,b,c,r,u,n) |
---|
1115 | |
---|
1116 | !_______________________________________________________________________ |
---|
1117 | ! solves tridiagonal system. From Numerical Recipies, p. 40 |
---|
1118 | !_______________________________________________________________________ |
---|
1119 | |
---|
1120 | IMPLICIT NONE |
---|
1121 | |
---|
1122 | ! input: |
---|
1123 | |
---|
1124 | INTEGER n |
---|
1125 | REAL a, b, c, r |
---|
1126 | DIMENSION a(n),b(n),c(n),r(n) |
---|
1127 | |
---|
1128 | ! output: |
---|
1129 | |
---|
1130 | REAL u |
---|
1131 | DIMENSION u(n) |
---|
1132 | |
---|
1133 | ! local: |
---|
1134 | |
---|
1135 | INTEGER j |
---|
1136 | |
---|
1137 | REAL bet, gam |
---|
1138 | DIMENSION gam(n) |
---|
1139 | !_______________________________________________________________________ |
---|
1140 | |
---|
1141 | IF (b(1) .EQ. 0.) STOP 1001 |
---|
1142 | bet = b(1) |
---|
1143 | u(1) = r(1)/bet |
---|
1144 | DO 11, j = 2, n |
---|
1145 | gam(j) = c(j - 1)/bet |
---|
1146 | bet = b(j) - a(j)*gam(j) |
---|
1147 | IF (bet .EQ. 0.) STOP 2002 |
---|
1148 | u(j) = (r(j) - a(j)*u(j - 1))/bet |
---|
1149 | 11 CONTINUE |
---|
1150 | DO 12, j = n - 1, 1, -1 |
---|
1151 | u(j) = u(j) - gam(j + 1)*u(j + 1) |
---|
1152 | 12 CONTINUE |
---|
1153 | !_______________________________________________________________________ |
---|
1154 | |
---|
1155 | end subroutine tridiag |
---|
1156 | |
---|
1157 | !============================================================================== |
---|
1158 | |
---|
1159 | subroutine setalb(nw,wl,ig,ngrid,albedo_chim) |
---|
1160 | |
---|
1161 | !-----------------------------------------------------------------------------* |
---|
1162 | != PURPOSE: =* |
---|
1163 | != Set the albedo of the surface. The albedo is assumed to be Lambertian, =* |
---|
1164 | != i.e., the reflected light is isotropic, and idependt of the direction =* |
---|
1165 | != of incidence of light. Albedo can be chosen to be wavelength dependent. =* |
---|
1166 | !-----------------------------------------------------------------------------* |
---|
1167 | != PARAMETERS: =* |
---|
1168 | != NW - INTEGER, number of specified intervals + 1 in working (I)=* |
---|
1169 | != wavelength grid =* |
---|
1170 | != WL - REAL, vector of lower limits of wavelength intervals in (I)=* |
---|
1171 | != working wavelength grid =* |
---|
1172 | != ALBEDO - REAL, surface albedo at each specified wavelength (O)=* |
---|
1173 | !-----------------------------------------------------------------------------* |
---|
1174 | |
---|
1175 | use chimiedata_h, only: albedo_snow_chim, albedo_co2_ice_chim |
---|
1176 | ! use slab_ice_h, only: h_alb_ice, alb_ice_min, alb_ice_max |
---|
1177 | use ocean_slab_mod, only: h_alb_ice,alb_ice_min, snow_min |
---|
1178 | use tracer_h, only: igcm_h2o_ice, igcm_co2_ice |
---|
1179 | use callkeys_mod, only: ok_slab_ocean, co2cond, alb_ocean, |
---|
1180 | & hydrology |
---|
1181 | use phys_state_var_mod, only: albedo_bareground, |
---|
1182 | & rnat, qsurf, sea_ice, |
---|
1183 | & pctsrf_sic, tsurf, capcal |
---|
1184 | use watercommon_h, only: T_h2O_ice_liq, RLFTT, rhowater |
---|
1185 | |
---|
1186 | implicit none |
---|
1187 | |
---|
1188 | ! input: (wavelength working grid data) |
---|
1189 | |
---|
1190 | integer, intent(in) :: ngrid ! number of atmospheric columns |
---|
1191 | INTEGER nw |
---|
1192 | INTEGER ig ! grid point index |
---|
1193 | REAL wl(nw) |
---|
1194 | |
---|
1195 | ! output: |
---|
1196 | |
---|
1197 | REAL albedo_chim(nw) |
---|
1198 | |
---|
1199 | ! local: |
---|
1200 | |
---|
1201 | INTEGER iw |
---|
1202 | ! REAL alb |
---|
1203 | real zfra, alb_ice, twater, hice |
---|
1204 | real snowlayer |
---|
1205 | parameter (snowlayer=33.0) ! 33 kg/m^2 of snow, equal to a layer of 3.3 cm |
---|
1206 | |
---|
1207 | ! 0.015: mean value from clancy et al., icarus, 49-63, 1999. |
---|
1208 | |
---|
1209 | ! alb = 0.015 |
---|
1210 | ! alb = albedo_phys |
---|
1211 | |
---|
1212 | ! do iw = 1, nw - 1 |
---|
1213 | ! albedo_chim(iw) = alb |
---|
1214 | ! end do |
---|
1215 | |
---|
1216 | ! See hydrol.F90 for taking into account new tendencies |
---|
1217 | |
---|
1218 | if(hydrology)then |
---|
1219 | |
---|
1220 | if(nint(rnat(ig)).eq.0)then |
---|
1221 | |
---|
1222 | if(ok_slab_ocean) then |
---|
1223 | |
---|
1224 | zfra = MAX(0.0,MIN(1.0,qsurf(ig,igcm_h2o_ice)/snow_min)) ! Critical snow height (in kg/m2) from ocean_slab_ice routine. |
---|
1225 | ! Standard value should be 15kg/m2 (i.e. about 5 cm). Note that in the previous ocean param. (from BC2014), this value was 45kg/m2 (i.e. about 15cm). |
---|
1226 | |
---|
1227 | ! Albedo final calculation : |
---|
1228 | do iw=1,nw - 1 |
---|
1229 | alb_ice=albedo_snow_chim(iw) |
---|
1230 | & -(albedo_snow_chim(iw)-alb_ice_min) |
---|
1231 | & *exp(-sea_ice(ig)/h_alb_ice) ! this replaces the formulation from BC2014 |
---|
1232 | ! More details on the parameterization of sea ice albedo vs thickness is provided in the wiki : |
---|
1233 | ! https://lmdz-forge.lmd.jussieu.fr/mediawiki/Planets/index.php/Slab_ocean_model |
---|
1234 | ! sea_ice is the ice thickness (calculated in ocean_slab routine) in kg/m2 ; h_alb_ice is fixed to 275.1kg/m2 i.e. 30cm based on comparisons with Brandt et al. 2005 |
---|
1235 | albedo_chim(iw) = pctsrf_sic(ig)* |
---|
1236 | & (albedo_snow_chim(iw)*zfra |
---|
1237 | & + alb_ice*(1.0-zfra)) |
---|
1238 | & + (1.-pctsrf_sic(ig))*alb_ocean |
---|
1239 | enddo |
---|
1240 | |
---|
1241 | else !ok_slab_ocean |
---|
1242 | |
---|
1243 | |
---|
1244 | ! calculate oceanic ice height including the latent heat of ice formation |
---|
1245 | ! hice is the height of oceanic ice with a maximum of maxicethick. |
---|
1246 | hice = qsurf(ig,igcm_h2o_ice)/rhowater ! update hice to include recent snowfall |
---|
1247 | twater = tsurf(ig) - hice*RLFTT*rhowater/capcal(ig) |
---|
1248 | ! this is temperature water would have if we melted entire ocean ice layer |
---|
1249 | |
---|
1250 | if(twater .lt. T_h2O_ice_liq)then |
---|
1251 | |
---|
1252 | do iw=1,nw - 1 |
---|
1253 | albedo_chim(iw) = albedo_snow_chim(iw) ! Albedo of ice has been replaced by albedo of snow here. MT2015. |
---|
1254 | enddo |
---|
1255 | |
---|
1256 | else |
---|
1257 | |
---|
1258 | DO iw=1,nw - 1 |
---|
1259 | albedo_chim(iw) = alb_ocean |
---|
1260 | if(ngrid.eq.1) then |
---|
1261 | albedo_chim(iw) = albedo_bareground(ig) |
---|
1262 | endif |
---|
1263 | ENDDO |
---|
1264 | |
---|
1265 | endif |
---|
1266 | |
---|
1267 | endif!(ok_slab_ocean) |
---|
1268 | |
---|
1269 | |
---|
1270 | ! Continent |
---|
1271 | ! --------- |
---|
1272 | elseif (nint(rnat(ig)).eq.1) then |
---|
1273 | |
---|
1274 | ! re-calculate continental albedo |
---|
1275 | if (qsurf(ig,igcm_h2o_ice).ge.snowlayer) then |
---|
1276 | DO iw=1,nw - 1 |
---|
1277 | albedo_chim(iw) = albedo_snow_chim(iw) |
---|
1278 | ENDDO |
---|
1279 | else |
---|
1280 | DO iw=1,nw - 1 |
---|
1281 | albedo_chim(iw) = albedo_bareground(ig) |
---|
1282 | & + (albedo_snow_chim(iw) |
---|
1283 | & - albedo_bareground(ig)) |
---|
1284 | & *qsurf(ig,igcm_h2o_ice)/snowlayer |
---|
1285 | ENDDO |
---|
1286 | endif |
---|
1287 | |
---|
1288 | else |
---|
1289 | |
---|
1290 | print*,'Surface type not recognised in photolysis_online.F!' |
---|
1291 | print*,'Exiting...' |
---|
1292 | call abort |
---|
1293 | |
---|
1294 | endif |
---|
1295 | else |
---|
1296 | albedo_chim(:) = albedo_bareground(ig) |
---|
1297 | endif ! end if hydrology |
---|
1298 | |
---|
1299 | ! Re-add the albedo effects of CO2 ice if necessary |
---|
1300 | ! ------------------------------------------------- |
---|
1301 | if(co2cond)then |
---|
1302 | |
---|
1303 | if (qsurf(ig,igcm_co2_ice).gt.1.) then ! Condition changed - Need now ~1 mm CO2 ice coverage. MT2015 |
---|
1304 | DO iw=1,nw - 1 |
---|
1305 | albedo_chim(iw) = albedo_co2_ice_chim(iw) |
---|
1306 | ENDDO |
---|
1307 | endif |
---|
1308 | |
---|
1309 | endif ! co2cond |
---|
1310 | |
---|
1311 | end subroutine setalb |
---|
1312 | |
---|
1313 | !============================================================================== |
---|
1314 | |
---|
1315 | subroutine setsj(nd,nlayer,nw,tlay,tdiml,xsl,xs_templ,sjl) |
---|
1316 | |
---|
1317 | |
---|
1318 | implicit none |
---|
1319 | |
---|
1320 | ! input: (wavelength working grid data) |
---|
1321 | |
---|
1322 | integer :: nd ! number of photolysis rates |
---|
1323 | integer :: nlayer ! number of vertical layers |
---|
1324 | integer :: nw ! number of wavelength grid points |
---|
1325 | integer :: tdiml ! number of different temperature cross section file |
---|
1326 | real :: xsl(tdiml,nw) ! cross section (cm2) from reading files |
---|
1327 | real :: xs_templ(tdiml) ! temperature of the cross section (cm2) |
---|
1328 | real :: tlay(nlayer) ! temperature (K) |
---|
1329 | |
---|
1330 | ! output: |
---|
1331 | |
---|
1332 | real :: sjl(nlayer,nw) ! output cross section (cm2) |
---|
1333 | |
---|
1334 | |
---|
1335 | ! local: |
---|
1336 | |
---|
1337 | INTEGER ilay,iw,tpos |
---|
1338 | |
---|
1339 | do iw = 1,nw-1 |
---|
1340 | do ilay = 1,nlayer |
---|
1341 | tpos = 1 |
---|
1342 | do while(tlay(ilay)>xs_templ(tpos) .and. tpos<tdiml) |
---|
1343 | tpos = tpos + 1 |
---|
1344 | end do |
---|
1345 | if (tpos.eq.1 .or. tpos.eq.tdiml) then |
---|
1346 | sjl(ilay,iw) = xsl(tpos,iw) |
---|
1347 | else |
---|
1348 | sjl(ilay,iw) = ( (xsl(tpos,iw)-xsl(tpos-1,iw))* |
---|
1349 | $ (tlay(ilay)-xs_templ(tpos-1)) |
---|
1350 | $ /(xs_templ(tpos)-xs_templ(tpos-1)) |
---|
1351 | $ + xsl(tpos-1,iw) ) |
---|
1352 | end if |
---|
1353 | end do |
---|
1354 | end do |
---|
1355 | |
---|
1356 | end subroutine setsj |
---|
1357 | |
---|
1358 | end subroutine photolysis_online |
---|