[2542] | 1 | !============================================================================== |
---|
| 2 | |
---|
| 3 | subroutine photolysis_online(nlayer, alt, press, temp, |
---|
| 4 | $ zmmean, rm, |
---|
| 5 | $ tau, sza, dist_sol, v_phot, e_phot, ig, ngrid, |
---|
[2553] | 6 | $ nreact) |
---|
[2542] | 7 | |
---|
| 8 | !*********************************************************************** |
---|
| 9 | ! |
---|
| 10 | ! subject: |
---|
| 11 | ! -------- |
---|
| 12 | ! |
---|
| 13 | ! photolysis online |
---|
| 14 | ! |
---|
| 15 | ! VERSION: Extracted from LMDZ.MARS work of Franck Lefevre (Yassin Jaziri) |
---|
| 16 | ! April 2019 - Yassin Jaziri add updates generic input (Yassin Jaziri) |
---|
| 17 | ! |
---|
| 18 | !*********************************************************************** |
---|
| 19 | |
---|
| 20 | use photolysis_mod |
---|
| 21 | use tracer_h |
---|
| 22 | use chimiedata_h, only: indexchim |
---|
[2553] | 23 | use types_asis, only: nb_phot_hv_max, nb_phot_max, jlabel, |
---|
| 24 | $ reactions |
---|
[2542] | 25 | |
---|
| 26 | implicit none |
---|
| 27 | |
---|
| 28 | ! input |
---|
| 29 | |
---|
| 30 | integer, intent(in) :: nlayer ! number of atmospheric layers |
---|
| 31 | integer, intent(in) :: ngrid ! number of atmospheric columns |
---|
| 32 | |
---|
| 33 | real, intent(in), dimension(nlayer) :: press, temp, zmmean ! pressure (hpa)/temperature (k)/mean molecular mass (g.mol-1) |
---|
| 34 | real, intent(in), dimension(nlayer) :: alt ! altitude (km) |
---|
| 35 | real, intent(in), dimension(nlayer,nesp) :: rm ! mixing ratios |
---|
| 36 | real, intent(in) :: tau ! integrated aerosol optical depth at the surface |
---|
| 37 | real, intent(in) :: sza ! solar zenith angle (degrees) |
---|
| 38 | real, intent(in) :: dist_sol ! solar distance (au) |
---|
| 39 | integer, intent(in) :: ig ! grid point index |
---|
| 40 | integer, intent(in) :: nreact ! number of reactions in reactions files |
---|
| 41 | |
---|
| 42 | ! output |
---|
| 43 | |
---|
| 44 | real (kind = 8), dimension(nlayer,nb_phot_max) :: v_phot ! photolysis rates (s-1) |
---|
| 45 | real (kind = 8), dimension(nlayer,nb_phot_max) :: e_phot ! photolysis rates by energie (J.mol-1.s-1) |
---|
| 46 | |
---|
| 47 | ! solar flux at mars |
---|
| 48 | |
---|
| 49 | real, dimension(nw) :: fmars ! solar flux (w.m-2.nm-1) |
---|
| 50 | real :: factor |
---|
| 51 | |
---|
| 52 | ! atmosphere |
---|
| 53 | |
---|
| 54 | real, dimension(nw) :: albedo_chim ! Surface albedo calculated on chemistry wavelenght grid |
---|
| 55 | real, dimension(nlayer) :: colinc ! air column increment (molecule.cm-2) |
---|
| 56 | real, dimension(nlayer) :: airlev ! air density at each specified altitude (molec/cc) |
---|
| 57 | real, dimension(nlayer) :: edir, edn, eup ! normalised irradiances |
---|
| 58 | real, dimension(nlayer) :: fdir, fdn, fup ! normalised actinic fluxes |
---|
| 59 | real, dimension(nlayer) :: saflux ! total actinic flux |
---|
| 60 | real, dimension(nlayer,nw) :: dtrl ! rayleigh optical depth |
---|
| 61 | real, dimension(nlayer,nw) :: dtaer ! aerosol optical depth |
---|
| 62 | real, dimension(nlayer,nw) :: omaer ! aerosol single scattering albedo |
---|
| 63 | real, dimension(nlayer,nw) :: gaer ! aerosol asymmetry parameter |
---|
| 64 | real, dimension(nlayer,nw) :: dtcld ! cloud optical depth |
---|
| 65 | real, dimension(nlayer,nw) :: omcld ! cloud single scattering albedo |
---|
| 66 | real, dimension(nlayer,nw) :: gcld ! cloud asymmetry parameter |
---|
| 67 | real, dimension(nlayer,nw) :: dagas ! total gas optical depth |
---|
| 68 | real, dimension(nlayer,nw,nabs) :: dtgas ! optical depth for each gas |
---|
| 69 | |
---|
| 70 | integer, dimension(0:nlayer) :: nid |
---|
| 71 | real, dimension(0:nlayer,nlayer) :: dsdh |
---|
| 72 | |
---|
[2553] | 73 | integer :: i, ilay, iw, ialt, iphot, ispe, ij, igas, ireact |
---|
[2542] | 74 | real :: deltaj |
---|
| 75 | |
---|
| 76 | !==== air column increments and rayleigh optical depth |
---|
| 77 | |
---|
| 78 | call setair(nlayer, nw, wl, wc, press, temp, zmmean, colinc, dtrl, |
---|
| 79 | $ airlev) |
---|
| 80 | |
---|
| 81 | !==== set surface albedo |
---|
| 82 | |
---|
| 83 | call setalb(nw,wl,ig,ngrid,albedo_chim) |
---|
| 84 | |
---|
| 85 | !==== set temperature-dependent cross-sections and optical depths |
---|
| 86 | |
---|
[2553] | 87 | iphot = 0 |
---|
| 88 | ij = 0 |
---|
| 89 | igas = 0 |
---|
| 90 | ireact = 0 |
---|
[2542] | 91 | |
---|
| 92 | do while(iphot<nb_phot_hv_max) |
---|
[2553] | 93 | ij = ij + 1 |
---|
| 94 | iphot = iphot + 1 |
---|
| 95 | ireact = ireact + 1 |
---|
[2542] | 96 | |
---|
| 97 | if (tdim(ij).eq.1) then |
---|
| 98 | ! Avoid to calculate several times dtgas for a same specie |
---|
| 99 | if (jlabelbis(iphot)) then |
---|
| 100 | ispe = indexchim(trim(jlabel(iphot,2))) |
---|
| 101 | do iw = 1,nw-1 |
---|
| 102 | do ilay = 1,nlayer |
---|
| 103 | dtgas(ilay,iw,ij-igas) = colinc(ilay)*rm(ilay,ispe) |
---|
| 104 | $ *xs(1,iw,ij) |
---|
| 105 | end do |
---|
| 106 | end do |
---|
| 107 | else |
---|
| 108 | igas = igas + 1 |
---|
| 109 | end if |
---|
[2553] | 110 | do while(reactions(ireact)%rtype/=0) |
---|
| 111 | ireact = ireact + 1 |
---|
| 112 | end do |
---|
| 113 | if (reactions(ireact)%three_prod) iphot = iphot + 1 |
---|
[2542] | 114 | else |
---|
| 115 | call setsj(nb_phot_hv_max,nlayer,nw,temp,tdim(ij), |
---|
| 116 | $ xs(:tdim(ij),:,ij), |
---|
| 117 | $ xs_temp(:,ij),sj(:,:,iphot)) |
---|
| 118 | |
---|
| 119 | ! Avoid to calculate several times dtgas for a same specie |
---|
| 120 | if (jlabelbis(iphot)) then |
---|
| 121 | ispe = indexchim(trim(jlabel(iphot,2))) |
---|
| 122 | do iw = 1,nw-1 |
---|
| 123 | do ilay = 1,nlayer |
---|
| 124 | dtgas(ilay,iw,ij-igas) = colinc(ilay)*rm(ilay,ispe) |
---|
| 125 | $ *sj(ilay,iw,iphot) |
---|
| 126 | end do |
---|
| 127 | end do |
---|
| 128 | else |
---|
| 129 | igas = igas + 1 |
---|
| 130 | end if |
---|
| 131 | |
---|
| 132 | do iw = 1,nw-1 |
---|
| 133 | do ilay = 1,nlayer |
---|
| 134 | sj(ilay,iw,iphot) = sj(ilay,iw,iphot)*qy(iw,ij) |
---|
| 135 | end do |
---|
| 136 | end do |
---|
| 137 | |
---|
[2553] | 138 | do while(reactions(ireact)%rtype/=0) |
---|
| 139 | ireact = ireact + 1 |
---|
| 140 | end do |
---|
| 141 | if (reactions(ireact)%three_prod) then |
---|
[2542] | 142 | iphot = iphot + 1 |
---|
| 143 | do iw = 1,nw-1 |
---|
| 144 | do ilay = 1,nlayer |
---|
| 145 | sj(ilay,iw,iphot) = sj(ilay,iw,iphot-1) |
---|
| 146 | end do |
---|
| 147 | end do |
---|
| 148 | end if |
---|
| 149 | |
---|
| 150 | endif ! end if tdim .eq. 1 |
---|
| 151 | |
---|
| 152 | end do ! end while |
---|
| 153 | |
---|
| 154 | ! total gas optical depth |
---|
| 155 | |
---|
| 156 | dagas(:,:) = 0. |
---|
| 157 | |
---|
| 158 | do i = 1,nabs |
---|
| 159 | do iw = 1,nw-1 |
---|
| 160 | do ilay = 1,nlayer |
---|
| 161 | dagas(ilay,iw) = dagas(ilay,iw) + dtgas(ilay,iw,i) |
---|
| 162 | end do |
---|
| 163 | end do |
---|
| 164 | end do |
---|
| 165 | |
---|
| 166 | !==== set aerosol properties and optical depth |
---|
| 167 | |
---|
| 168 | call setaer(nlayer,alt,tau,nw,dtaer,omaer,gaer) |
---|
| 169 | |
---|
| 170 | !==== set cloud properties and optical depth |
---|
| 171 | |
---|
| 172 | call setcld(nlayer,nw,dtcld,omcld,gcld) |
---|
| 173 | |
---|
| 174 | !==== slant path lengths in spherical geometry |
---|
| 175 | |
---|
| 176 | call sphers(nlayer,alt,sza,dsdh,nid) |
---|
| 177 | |
---|
| 178 | !==== solar flux at mars |
---|
| 179 | |
---|
| 180 | factor = (1./dist_sol)**2. |
---|
| 181 | do iw = 1,nw-1 |
---|
| 182 | fmars(iw) = f(iw)*factor |
---|
| 183 | end do |
---|
| 184 | |
---|
| 185 | !==== initialise photolysis rates |
---|
| 186 | |
---|
| 187 | v_phot(:,1:nb_phot_hv_max) = 0. |
---|
| 188 | e_phot(:,1:nb_phot_hv_max) = 0. |
---|
| 189 | |
---|
| 190 | !==== start of wavelength lopp |
---|
| 191 | |
---|
| 192 | do iw = 1,nw-1 |
---|
| 193 | |
---|
| 194 | ! monochromatic radiative transfer. outputs are: |
---|
| 195 | ! normalized irradiances edir(nlayer), edn(nlayer), eup(nlayer) |
---|
| 196 | ! normalized actinic fluxes fdir(nlayer), fdn(nlayer), fup(nlayer) |
---|
| 197 | ! where |
---|
| 198 | ! dir = direct beam, dn = down-welling diffuse, up = up-welling diffuse |
---|
| 199 | |
---|
| 200 | call rtlink(nlayer, nw, iw, albedo_chim(iw), |
---|
| 201 | $ sza, dsdh, nid, dtrl, |
---|
| 202 | $ dagas, dtcld, omcld, gcld, dtaer, omaer, gaer, |
---|
| 203 | $ edir, edn, eup, fdir, fdn, fup) |
---|
| 204 | |
---|
| 205 | |
---|
| 206 | ! spherical actinic flux |
---|
| 207 | |
---|
| 208 | do ilay = 1,nlayer |
---|
| 209 | saflux(ilay) = fmars(iw)*(fdir(ilay) + fdn(ilay) + fup(ilay)) |
---|
| 210 | end do |
---|
| 211 | |
---|
| 212 | ! photolysis rate integration |
---|
| 213 | ! (0.12/(wc(iw)*1e-9)) E(wc) en J.mol-1 |
---|
| 214 | |
---|
| 215 | do i = 1,nb_phot_hv_max |
---|
| 216 | do ilay = 1,nlayer |
---|
| 217 | deltaj = saflux(ilay)*sj(ilay,iw,i) |
---|
| 218 | v_phot(ilay,i) = v_phot(ilay,i) + deltaj*(wu(iw)-wl(iw)) |
---|
| 219 | if (wc(iw).le.photoheat_lmax) then |
---|
| 220 | e_phot(ilay,i) = e_phot(ilay,i) |
---|
| 221 | $ + deltaj*(wu(iw)-wl(iw))*(0.12/(wc(iw)*1e-9)) |
---|
| 222 | end if |
---|
| 223 | end do |
---|
| 224 | end do |
---|
| 225 | |
---|
| 226 | ! eliminate small values |
---|
| 227 | |
---|
| 228 | where (v_phot(:,1:nb_phot_hv_max) < 1.e-30) |
---|
| 229 | v_phot(:,1:nb_phot_hv_max) = 0. |
---|
| 230 | end where |
---|
| 231 | where (e_phot(:,1:nb_phot_hv_max) < 1.e-30) |
---|
| 232 | e_phot(:,1:nb_phot_hv_max) = 0. |
---|
| 233 | end where |
---|
| 234 | |
---|
| 235 | end do ! iw |
---|
| 236 | |
---|
| 237 | contains |
---|
| 238 | |
---|
| 239 | !============================================================================== |
---|
| 240 | |
---|
| 241 | subroutine setair(nlev, nw, wl, wc, press, temp, zmmean, |
---|
| 242 | $ colinc, dtrl, airlev) |
---|
| 243 | |
---|
| 244 | *-----------------------------------------------------------------------------* |
---|
| 245 | *= PURPOSE: =* |
---|
| 246 | *= computes air column increments and rayleigh optical depth =* |
---|
| 247 | *-----------------------------------------------------------------------------* |
---|
| 248 | |
---|
| 249 | use comcstfi_mod, only: g, avocado |
---|
| 250 | |
---|
| 251 | implicit none |
---|
| 252 | |
---|
| 253 | ! input: |
---|
| 254 | |
---|
| 255 | integer :: nlev, nw |
---|
| 256 | |
---|
| 257 | real, dimension(nw) :: wl, wc ! lower and central wavelength grid (nm) |
---|
| 258 | real, dimension(nlev) :: press, temp, zmmean ! pressure (hpa), temperature (k), molecular mass (g.mol-1) |
---|
| 259 | |
---|
| 260 | ! output: |
---|
| 261 | |
---|
| 262 | real, dimension(nlev) :: colinc ! air column increments (molecule.cm-2) |
---|
| 263 | real, dimension(nlev) :: airlev ! air density at each specified altitude (molec/cc) |
---|
| 264 | real, dimension(nlev,nw) :: dtrl ! rayleigh optical depth |
---|
| 265 | |
---|
| 266 | ! local: |
---|
| 267 | |
---|
| 268 | real :: dp, nu |
---|
| 269 | real, dimension(nw) :: srayl |
---|
| 270 | integer :: ilev, iw |
---|
| 271 | |
---|
| 272 | ! compute column increments |
---|
| 273 | |
---|
| 274 | do ilev = 1, nlev-1 |
---|
| 275 | dp = (press(ilev) - press(ilev+1))*100. |
---|
| 276 | colinc(ilev) = avocado*0.1*dp/(zmmean(ilev)*g) |
---|
| 277 | end do |
---|
| 278 | colinc(nlev) = avocado*0.1*press(nlev)*100./(zmmean(nlev)*g) |
---|
| 279 | |
---|
| 280 | do iw = 1, nw - 1 |
---|
| 281 | |
---|
| 282 | ! co2 rayleigh cross-section |
---|
| 283 | ! ityaksov et al., chem. phys. lett., 462, 31-34, 2008 |
---|
| 284 | |
---|
| 285 | ! nu = 1./(wc(iw)*1.e-7) |
---|
| 286 | ! srayl(iw) = 1.78e-26*nu**(4. + 0.625) |
---|
| 287 | ! srayl(iw) = srayl(iw)*1.e-20 ! cm2 |
---|
| 288 | |
---|
| 289 | ! calcul Ityaksov et al., 2008 pour N2 |
---|
| 290 | |
---|
| 291 | nu = 1./(wc(iw)*1.e-7) ! cm-1 |
---|
| 292 | srayl(iw) = 1.8e-26*nu**(4. + 0.534) |
---|
| 293 | srayl(iw) = srayl(iw)*1.e-20 |
---|
| 294 | |
---|
| 295 | do ilev = 1, nlev |
---|
| 296 | dtrl(ilev,iw) = colinc(ilev)*srayl(iw) ! cm2 |
---|
| 297 | end do |
---|
| 298 | end do |
---|
| 299 | |
---|
| 300 | ! compute density |
---|
| 301 | |
---|
| 302 | do ilev = 1, nlev |
---|
| 303 | airlev(ilev) = press(ilev)/(1.38e-19*temp(ilev)) |
---|
| 304 | end do |
---|
| 305 | |
---|
| 306 | end subroutine setair |
---|
| 307 | |
---|
| 308 | !============================================================================== |
---|
| 309 | |
---|
| 310 | subroutine setaer(nlayer,alt,tau,nw,dtaer,omaer,gaer) |
---|
| 311 | |
---|
| 312 | !-----------------------------------------------------------------------------* |
---|
| 313 | != PURPOSE: =* |
---|
| 314 | != Set aerosol properties for each specified altitude layer. Properties =* |
---|
| 315 | != may be wavelength dependent. =* |
---|
| 316 | !-----------------------------------------------------------------------------* |
---|
| 317 | |
---|
| 318 | implicit none |
---|
| 319 | |
---|
| 320 | ! input |
---|
| 321 | |
---|
| 322 | integer :: nlayer ! number of vertical layers |
---|
| 323 | integer :: nw ! number of wavelength grid points |
---|
| 324 | real, dimension(nlayer) :: alt ! altitude (km) |
---|
| 325 | real :: tau ! integrated aerosol optical depth at the surface |
---|
| 326 | |
---|
| 327 | ! output |
---|
| 328 | |
---|
| 329 | real, dimension(nlayer,nw) :: dtaer ! aerosol optical depth |
---|
| 330 | real, dimension(nlayer,nw) :: omaer ! aerosol single scattering albedo |
---|
| 331 | real, dimension(nlayer,nw) :: gaer ! aerosol asymmetry parameter |
---|
| 332 | |
---|
| 333 | ! local |
---|
| 334 | |
---|
| 335 | integer :: ilay, iw |
---|
| 336 | real, dimension(nlayer) :: aer ! dust extinction |
---|
| 337 | real :: omega, g, scaleh, gamma |
---|
| 338 | real :: dz, tautot, q0 |
---|
| 339 | |
---|
| 340 | omega = 0.622 ! single scattering albedo : wolff et al.(2010) at 258 nm |
---|
| 341 | g = 0.88 ! asymmetry factor : mateshvili et al. (2007) at 210 nm |
---|
| 342 | scaleh = 10. ! scale height (km) |
---|
| 343 | gamma = 0.03 ! conrath parameter |
---|
| 344 | |
---|
| 345 | dtaer(:,:) = 0. |
---|
| 346 | omaer(:,:) = 0. |
---|
| 347 | gaer(:,:) = 0. |
---|
| 348 | |
---|
| 349 | ! optical depth profile: |
---|
| 350 | |
---|
| 351 | tautot = 0. |
---|
| 352 | do ilay = 1, nlayer-1 |
---|
| 353 | dz = alt(ilay+1) - alt(ilay) |
---|
| 354 | tautot = tautot + exp(gamma*(1. - exp(alt(ilay)/scaleh)))*dz |
---|
| 355 | end do |
---|
| 356 | |
---|
| 357 | q0 = tau/tautot |
---|
| 358 | do ilay = 1, nlayer-1 |
---|
| 359 | dz = alt(ilay+1) - alt(ilay) |
---|
| 360 | dtaer(ilay,:) = q0*exp(gamma*(1. - exp(alt(ilay)/scaleh)))*dz |
---|
| 361 | omaer(ilay,:) = omega |
---|
| 362 | gaer(ilay,:) = g |
---|
| 363 | end do |
---|
| 364 | |
---|
| 365 | end subroutine setaer |
---|
| 366 | |
---|
| 367 | !============================================================================== |
---|
| 368 | |
---|
| 369 | subroutine setcld(nlayer,nw,dtcld,omcld,gcld) |
---|
| 370 | |
---|
| 371 | !-----------------------------------------------------------------------------* |
---|
| 372 | != PURPOSE: =* |
---|
| 373 | != Set cloud properties for each specified altitude layer. Properties =* |
---|
| 374 | != may be wavelength dependent. =* |
---|
| 375 | !-----------------------------------------------------------------------------* |
---|
| 376 | |
---|
| 377 | implicit none |
---|
| 378 | |
---|
| 379 | ! input |
---|
| 380 | |
---|
| 381 | integer :: nlayer ! number of vertical layers |
---|
| 382 | integer :: nw ! number of wavelength grid points |
---|
| 383 | |
---|
| 384 | ! output |
---|
| 385 | |
---|
| 386 | real, dimension(nlayer,nw) :: dtcld ! cloud optical depth |
---|
| 387 | real, dimension(nlayer,nw) :: omcld ! cloud single scattering albedo |
---|
| 388 | real, dimension(nlayer,nw) :: gcld ! cloud asymmetry parameter |
---|
| 389 | |
---|
| 390 | ! local |
---|
| 391 | |
---|
| 392 | integer :: ilay, iw |
---|
| 393 | |
---|
| 394 | ! dtcld : optical depth |
---|
| 395 | ! omcld : single scattering albedo |
---|
| 396 | ! gcld : asymmetry factor |
---|
| 397 | |
---|
| 398 | do ilay = 1, nlayer - 1 |
---|
| 399 | do iw = 1, nw - 1 |
---|
| 400 | dtcld(ilay,iw) = 0. ! no clouds for the moment |
---|
| 401 | omcld(ilay,iw) = 0.99 |
---|
| 402 | gcld(ilay,iw) = 0.85 |
---|
| 403 | end do |
---|
| 404 | end do |
---|
| 405 | |
---|
| 406 | end subroutine setcld |
---|
| 407 | |
---|
| 408 | !============================================================================== |
---|
| 409 | |
---|
| 410 | subroutine sphers(nlev, z, zen, dsdh, nid) |
---|
| 411 | |
---|
| 412 | !-----------------------------------------------------------------------------* |
---|
| 413 | != PURPOSE: =* |
---|
| 414 | != Calculate slant path over vertical depth ds/dh in spherical geometry. =* |
---|
| 415 | != Calculation is based on: A.Dahlback, and K.Stamnes, A new spheric model =* |
---|
| 416 | != for computing the radiation field available for photolysis and heating =* |
---|
| 417 | != at twilight, Planet.Space Sci., v39, n5, pp. 671-683, 1991 (Appendix B) =* |
---|
| 418 | !-----------------------------------------------------------------------------* |
---|
| 419 | != PARAMETERS: =* |
---|
| 420 | != NZ - INTEGER, number of specified altitude levels in the working (I)=* |
---|
| 421 | != grid =* |
---|
| 422 | != Z - REAL, specified altitude working grid (km) (I)=* |
---|
| 423 | != ZEN - REAL, solar zenith angle (degrees) (I)=* |
---|
| 424 | != DSDH - REAL, slant path of direct beam through each layer crossed (O)=* |
---|
| 425 | != when travelling from the top of the atmosphere to layer i; =* |
---|
| 426 | != DSDH(i,j), i = 0..NZ-1, j = 1..NZ-1 =* |
---|
| 427 | != NID - INTEGER, number of layers crossed by the direct beam when (O)=* |
---|
| 428 | != travelling from the top of the atmosphere to layer i; =* |
---|
| 429 | != NID(i), i = 0..NZ-1 =* |
---|
| 430 | !-----------------------------------------------------------------------------* |
---|
| 431 | |
---|
| 432 | use comcstfi_mod, only: rad, pi |
---|
| 433 | |
---|
| 434 | implicit none |
---|
| 435 | |
---|
| 436 | ! input |
---|
| 437 | |
---|
| 438 | integer, intent(in) :: nlev |
---|
| 439 | real, dimension(nlev), intent(in) :: z |
---|
| 440 | real, intent(in) :: zen |
---|
| 441 | |
---|
| 442 | ! output |
---|
| 443 | |
---|
| 444 | INTEGER nid(0:nlev) |
---|
| 445 | REAL dsdh(0:nlev,nlev) |
---|
| 446 | |
---|
| 447 | ! more program constants |
---|
| 448 | |
---|
| 449 | REAL re, ze(nlev) |
---|
| 450 | REAL dr |
---|
| 451 | real radius ! km |
---|
| 452 | |
---|
| 453 | ! local |
---|
| 454 | |
---|
| 455 | real :: zenrad, rpsinz, rj, rjp1, dsj, dhj, ga, gb, sm |
---|
| 456 | integer :: i, j, k, id, nlay |
---|
| 457 | |
---|
| 458 | REAL zd(0:nlev-1) |
---|
| 459 | |
---|
| 460 | !----------------------------------------------------------------------------- |
---|
| 461 | |
---|
| 462 | radius = rad*1.e-3 ! rad [m] -> radius [km] |
---|
| 463 | dr = pi/180. |
---|
| 464 | zenrad = zen*dr |
---|
| 465 | |
---|
| 466 | ! number of layers: |
---|
| 467 | |
---|
| 468 | nlay = nlev - 1 |
---|
| 469 | |
---|
| 470 | ! include the elevation above sea level to the radius of Mars: |
---|
| 471 | |
---|
| 472 | re = radius + z(1) |
---|
| 473 | |
---|
| 474 | ! correspondingly z changed to the elevation above Mars surface: |
---|
| 475 | |
---|
| 476 | DO k = 1, nlev |
---|
| 477 | ze(k) = z(k) - z(1) |
---|
| 478 | END DO |
---|
| 479 | |
---|
| 480 | ! inverse coordinate of z |
---|
| 481 | |
---|
| 482 | zd(0) = ze(nlev) |
---|
| 483 | DO k = 1, nlay |
---|
| 484 | zd(k) = ze(nlev - k) |
---|
| 485 | END DO |
---|
| 486 | |
---|
| 487 | ! initialise dsdh(i,j), nid(i) |
---|
| 488 | |
---|
| 489 | nid(:) = 0. |
---|
| 490 | dsdh(:,:) = 0. |
---|
| 491 | |
---|
| 492 | ! calculate ds/dh of every layer |
---|
| 493 | |
---|
| 494 | do i = 0,nlay |
---|
| 495 | rpsinz = (re + zd(i))*sin(zenrad) |
---|
| 496 | |
---|
| 497 | IF ( (zen .GT. 90.0) .AND. (rpsinz .LT. re) ) THEN |
---|
| 498 | nid(i) = -1 |
---|
| 499 | ELSE |
---|
| 500 | |
---|
| 501 | ! Find index of layer in which the screening height lies |
---|
| 502 | |
---|
| 503 | id = i |
---|
| 504 | if (zen > 90.) then |
---|
| 505 | do j = 1,nlay |
---|
| 506 | IF( (rpsinz .LT. ( zd(j-1) + re ) ) .AND. |
---|
| 507 | $ (rpsinz .GE. ( zd(j) + re )) ) id = j |
---|
| 508 | end do |
---|
| 509 | end if |
---|
| 510 | |
---|
| 511 | do j = 1,id |
---|
| 512 | sm = 1.0 |
---|
| 513 | IF (j .EQ. id .AND. id .EQ. i .AND. zen .GT. 90.0) |
---|
| 514 | $ sm = -1.0 |
---|
| 515 | |
---|
| 516 | rj = re + zd(j-1) |
---|
| 517 | rjp1 = re + zd(j) |
---|
| 518 | |
---|
| 519 | dhj = zd(j-1) - zd(j) |
---|
| 520 | |
---|
| 521 | ga = rj*rj - rpsinz*rpsinz |
---|
| 522 | gb = rjp1*rjp1 - rpsinz*rpsinz |
---|
| 523 | |
---|
| 524 | ga = max(ga, 0.) |
---|
| 525 | gb = max(gb, 0.) |
---|
| 526 | |
---|
| 527 | IF (id.GT.i .AND. j.EQ.id) THEN |
---|
| 528 | dsj = sqrt(ga) |
---|
| 529 | ELSE |
---|
| 530 | dsj = sqrt(ga) - sm*sqrt(gb) |
---|
| 531 | END IF |
---|
| 532 | dsdh(i,j) = dsj/dhj |
---|
| 533 | end do |
---|
| 534 | nid(i) = id |
---|
| 535 | end if |
---|
| 536 | end do ! i = 0,nlay |
---|
| 537 | |
---|
| 538 | end subroutine sphers |
---|
| 539 | |
---|
| 540 | !============================================================================== |
---|
| 541 | |
---|
| 542 | SUBROUTINE rtlink(nlev, nw, iw, ag, zen, dsdh, nid, dtrl, |
---|
| 543 | $ dagas, dtcld, omcld, gcld, dtaer, omaer, gaer, |
---|
| 544 | $ edir, edn, eup, fdir, fdn, fup) |
---|
| 545 | |
---|
| 546 | implicit none |
---|
| 547 | |
---|
| 548 | ! input |
---|
| 549 | |
---|
| 550 | integer, intent(in) :: nlev, nw, iw ! number of wavelength grid points |
---|
| 551 | REAL ag |
---|
| 552 | REAL zen |
---|
| 553 | REAL dsdh(0:nlev,nlev) |
---|
| 554 | INTEGER nid(0:nlev) |
---|
| 555 | |
---|
| 556 | REAL dtrl(nlev,nw) |
---|
| 557 | REAL dagas(nlev,nw) |
---|
| 558 | REAL dtcld(nlev,nw), omcld(nlev,nw), gcld(nlev,nw) |
---|
| 559 | REAL dtaer(nlev,nw), omaer(nlev,nw), gaer(nlev,nw) |
---|
| 560 | |
---|
| 561 | ! output |
---|
| 562 | |
---|
| 563 | REAL edir(nlev), edn(nlev), eup(nlev) |
---|
| 564 | REAL fdir(nlev), fdn(nlev), fup(nlev) |
---|
| 565 | |
---|
| 566 | ! local: |
---|
| 567 | |
---|
| 568 | REAL dt(nlev), om(nlev), g(nlev) |
---|
| 569 | REAL dtabs,dtsct,dscld,dsaer,dacld,daaer |
---|
| 570 | INTEGER i, ii |
---|
| 571 | real, parameter :: largest = 1.e+36 |
---|
| 572 | |
---|
| 573 | ! specific two ps2str |
---|
| 574 | |
---|
| 575 | REAL ediri(nlev), edni(nlev), eupi(nlev) |
---|
| 576 | REAL fdiri(nlev), fdni(nlev), fupi(nlev) |
---|
| 577 | |
---|
| 578 | logical, save :: delta = .true. |
---|
| 579 | |
---|
| 580 | !_______________________________________________________________________ |
---|
| 581 | |
---|
| 582 | ! initialize: |
---|
| 583 | |
---|
| 584 | do i = 1, nlev |
---|
| 585 | fdir(i) = 0. |
---|
| 586 | fup(i) = 0. |
---|
| 587 | fdn(i) = 0. |
---|
| 588 | edir(i) = 0. |
---|
| 589 | eup(i) = 0. |
---|
| 590 | edn(i) = 0. |
---|
| 591 | end do |
---|
| 592 | |
---|
| 593 | do i = 1, nlev - 1 |
---|
| 594 | dscld = dtcld(i,iw)*omcld(i,iw) |
---|
| 595 | dacld = dtcld(i,iw)*(1.-omcld(i,iw)) |
---|
| 596 | |
---|
| 597 | dsaer = dtaer(i,iw)*omaer(i,iw) |
---|
| 598 | daaer = dtaer(i,iw)*(1.-omaer(i,iw)) |
---|
| 599 | |
---|
| 600 | dtsct = dtrl(i,iw) + dscld + dsaer |
---|
| 601 | dtabs = dagas(i,iw) + dacld + daaer |
---|
| 602 | |
---|
| 603 | dtabs = amax1(dtabs,1./largest) |
---|
| 604 | dtsct = amax1(dtsct,1./largest) |
---|
| 605 | |
---|
| 606 | ! invert z-coordinate: |
---|
| 607 | |
---|
| 608 | ii = nlev - i |
---|
| 609 | dt(ii) = dtsct + dtabs |
---|
| 610 | om(ii) = dtsct/(dtsct + dtabs) |
---|
| 611 | IF(dtsct .EQ. 1./largest) om(ii) = 1./largest |
---|
| 612 | g(ii) = (gcld(i,iw)*dscld + |
---|
| 613 | $ gaer(i,iw)*dsaer)/dtsct |
---|
| 614 | end do |
---|
| 615 | |
---|
| 616 | ! call rt routine: |
---|
| 617 | |
---|
| 618 | call ps2str(nlev, zen, ag, dt, om, g, |
---|
| 619 | $ dsdh, nid, delta, |
---|
| 620 | $ fdiri, fupi, fdni, ediri, eupi, edni) |
---|
| 621 | |
---|
| 622 | ! output (invert z-coordinate) |
---|
| 623 | |
---|
| 624 | do i = 1, nlev |
---|
| 625 | ii = nlev - i + 1 |
---|
| 626 | fdir(i) = fdiri(ii) |
---|
| 627 | fup(i) = fupi(ii) |
---|
| 628 | fdn(i) = fdni(ii) |
---|
| 629 | edir(i) = ediri(ii) |
---|
| 630 | eup(i) = eupi(ii) |
---|
| 631 | edn(i) = edni(ii) |
---|
| 632 | end do |
---|
| 633 | |
---|
| 634 | end subroutine rtlink |
---|
| 635 | |
---|
| 636 | *=============================================================================* |
---|
| 637 | |
---|
| 638 | subroutine ps2str(nlev,zen,rsfc,tauu,omu,gu, |
---|
| 639 | $ dsdh, nid, delta, |
---|
| 640 | $ fdr, fup, fdn, edr, eup, edn) |
---|
| 641 | |
---|
| 642 | !-----------------------------------------------------------------------------* |
---|
| 643 | != PURPOSE: =* |
---|
| 644 | != Solve two-stream equations for multiple layers. The subroutine is based =* |
---|
| 645 | != on equations from: Toon et al., J.Geophys.Res., v94 (D13), Nov 20, 1989.=* |
---|
| 646 | != It contains 9 two-stream methods to choose from. A pseudo-spherical =* |
---|
| 647 | != correction has also been added. =* |
---|
| 648 | !-----------------------------------------------------------------------------* |
---|
| 649 | != PARAMETERS: =* |
---|
| 650 | != NLEVEL - INTEGER, number of specified altitude levels in the working (I)=* |
---|
| 651 | != grid =* |
---|
| 652 | != ZEN - REAL, solar zenith angle (degrees) (I)=* |
---|
| 653 | != RSFC - REAL, surface albedo at current wavelength (I)=* |
---|
| 654 | != TAUU - REAL, unscaled optical depth of each layer (I)=* |
---|
| 655 | != OMU - REAL, unscaled single scattering albedo of each layer (I)=* |
---|
| 656 | != GU - REAL, unscaled asymmetry parameter of each layer (I)=* |
---|
| 657 | != DSDH - REAL, slant path of direct beam through each layer crossed (I)=* |
---|
| 658 | != when travelling from the top of the atmosphere to layer i; =* |
---|
| 659 | != DSDH(i,j), i = 0..NZ-1, j = 1..NZ-1 =* |
---|
| 660 | != NID - INTEGER, number of layers crossed by the direct beam when (I)=* |
---|
| 661 | != travelling from the top of the atmosphere to layer i; =* |
---|
| 662 | != NID(i), i = 0..NZ-1 =* |
---|
| 663 | != DELTA - LOGICAL, switch to use delta-scaling (I)=* |
---|
| 664 | != .TRUE. -> apply delta-scaling =* |
---|
| 665 | != .FALSE.-> do not apply delta-scaling =* |
---|
| 666 | != FDR - REAL, contribution of the direct component to the total (O)=* |
---|
| 667 | != actinic flux at each altitude level =* |
---|
| 668 | != FUP - REAL, contribution of the diffuse upwelling component to (O)=* |
---|
| 669 | != the total actinic flux at each altitude level =* |
---|
| 670 | != FDN - REAL, contribution of the diffuse downwelling component to (O)=* |
---|
| 671 | != the total actinic flux at each altitude level =* |
---|
| 672 | != EDR - REAL, contribution of the direct component to the total (O)=* |
---|
| 673 | != spectral irradiance at each altitude level =* |
---|
| 674 | != EUP - REAL, contribution of the diffuse upwelling component to (O)=* |
---|
| 675 | != the total spectral irradiance at each altitude level =* |
---|
| 676 | != EDN - REAL, contribution of the diffuse downwelling component to (O)=* |
---|
| 677 | *= the total spectral irradiance at each altitude level =* |
---|
| 678 | !-----------------------------------------------------------------------------* |
---|
| 679 | |
---|
| 680 | implicit none |
---|
| 681 | |
---|
| 682 | ! input: |
---|
| 683 | |
---|
| 684 | INTEGER nlev |
---|
| 685 | REAL zen, rsfc |
---|
| 686 | REAL tauu(nlev), omu(nlev), gu(nlev) |
---|
| 687 | REAL dsdh(0:nlev,nlev) |
---|
| 688 | INTEGER nid(0:nlev) |
---|
| 689 | LOGICAL delta |
---|
| 690 | |
---|
| 691 | ! output: |
---|
| 692 | |
---|
| 693 | REAL fup(nlev),fdn(nlev),fdr(nlev) |
---|
| 694 | REAL eup(nlev),edn(nlev),edr(nlev) |
---|
| 695 | |
---|
| 696 | ! local: |
---|
| 697 | |
---|
| 698 | REAL tausla(0:nlev), tauc(0:nlev) |
---|
| 699 | REAL mu2(0:nlev), mu, sum |
---|
| 700 | |
---|
| 701 | ! internal coefficients and matrix |
---|
| 702 | |
---|
| 703 | REAL lam(nlev),taun(nlev),bgam(nlev) |
---|
| 704 | REAL e1(nlev),e2(nlev),e3(nlev),e4(nlev) |
---|
| 705 | REAL cup(nlev),cdn(nlev),cuptn(nlev),cdntn(nlev) |
---|
| 706 | REAL mu1(nlev) |
---|
| 707 | INTEGER row |
---|
| 708 | REAL a(2*nlev),b(2*nlev),d(2*nlev),e(2*nlev),y(2*nlev) |
---|
| 709 | |
---|
| 710 | ! other: |
---|
| 711 | |
---|
| 712 | REAL pifs, fdn0 |
---|
| 713 | REAL gi(nlev), omi(nlev), tempg |
---|
| 714 | REAL f, g, om |
---|
| 715 | REAL gam1, gam2, gam3, gam4 |
---|
| 716 | real, parameter :: largest = 1.e+36 |
---|
| 717 | real, parameter :: precis = 1.e-7 |
---|
| 718 | |
---|
| 719 | ! For calculations of Associated Legendre Polynomials for GAMA1,2,3,4 |
---|
| 720 | ! in delta-function, modified quadrature, hemispheric constant, |
---|
| 721 | ! Hybrid modified Eddington-delta function metods, p633,Table1. |
---|
| 722 | ! W.E.Meador and W.R.Weaver, GAS,1980,v37,p.630 |
---|
| 723 | ! W.J.Wiscombe and G.W. Grams, GAS,1976,v33,p2440, |
---|
| 724 | ! uncomment the following two lines and the appropriate statements further |
---|
| 725 | ! down. |
---|
| 726 | ! REAL YLM0, YLM2, YLM4, YLM6, YLM8, YLM10, YLM12, YLMS, BETA0, |
---|
| 727 | ! > BETA1, BETAn, amu1, subd |
---|
| 728 | |
---|
| 729 | REAL expon, expon0, expon1, divisr, temp, up, dn |
---|
| 730 | REAL ssfc |
---|
| 731 | INTEGER nlayer, mrows, lev |
---|
| 732 | |
---|
| 733 | INTEGER i, j |
---|
| 734 | |
---|
| 735 | ! Some additional program constants: |
---|
| 736 | |
---|
| 737 | real pi, dr |
---|
| 738 | REAL eps |
---|
| 739 | PARAMETER (eps = 1.E-3) |
---|
| 740 | !_______________________________________________________________________ |
---|
| 741 | |
---|
| 742 | ! MU = cosine of solar zenith angle |
---|
| 743 | ! RSFC = surface albedo |
---|
| 744 | ! TAUU = unscaled optical depth of each layer |
---|
| 745 | ! OMU = unscaled single scattering albedo |
---|
| 746 | ! GU = unscaled asymmetry factor |
---|
| 747 | ! KLEV = max dimension of number of layers in atmosphere |
---|
| 748 | ! NLAYER = number of layers in the atmosphere |
---|
| 749 | ! NLEVEL = nlayer + 1 = number of levels |
---|
| 750 | |
---|
| 751 | ! initial conditions: pi*solar flux = 1; diffuse incidence = 0 |
---|
| 752 | |
---|
| 753 | pifs = 1. |
---|
| 754 | fdn0 = 0. |
---|
| 755 | |
---|
| 756 | nlayer = nlev - 1 |
---|
| 757 | |
---|
| 758 | pi = acos(-1.) |
---|
| 759 | dr = pi/180. |
---|
| 760 | mu = COS(zen*dr) |
---|
| 761 | |
---|
| 762 | !************* compute coefficients for each layer: |
---|
| 763 | ! GAM1 - GAM4 = 2-stream coefficients, different for different approximations |
---|
| 764 | ! EXPON0 = calculation of e when TAU is zero |
---|
| 765 | ! EXPON1 = calculation of e when TAU is TAUN |
---|
| 766 | ! CUP and CDN = calculation when TAU is zero |
---|
| 767 | ! CUPTN and CDNTN = calc. when TAU is TAUN |
---|
| 768 | ! DIVISR = prevents division by zero |
---|
| 769 | |
---|
| 770 | do j = 0, nlev |
---|
| 771 | tauc(j) = 0. |
---|
| 772 | tausla(j) = 0. |
---|
| 773 | mu2(j) = 1./SQRT(largest) |
---|
| 774 | end do |
---|
| 775 | |
---|
| 776 | IF (.NOT. delta) THEN |
---|
| 777 | DO i = 1, nlayer |
---|
| 778 | gi(i) = gu(i) |
---|
| 779 | omi(i) = omu(i) |
---|
| 780 | taun(i) = tauu(i) |
---|
| 781 | END DO |
---|
| 782 | ELSE |
---|
| 783 | |
---|
| 784 | ! delta-scaling. Have to be done for delta-Eddington approximation, |
---|
| 785 | ! delta discrete ordinate, Practical Improved Flux Method, delta function, |
---|
| 786 | ! and Hybrid modified Eddington-delta function methods approximations |
---|
| 787 | |
---|
| 788 | DO i = 1, nlayer |
---|
| 789 | f = gu(i)*gu(i) |
---|
| 790 | gi(i) = (gu(i) - f)/(1 - f) |
---|
| 791 | omi(i) = (1 - f)*omu(i)/(1 - omu(i)*f) |
---|
| 792 | taun(i) = (1 - omu(i)*f)*tauu(i) |
---|
| 793 | END DO |
---|
| 794 | END IF |
---|
| 795 | |
---|
| 796 | ! calculate slant optical depth at the top of the atmosphere when zen>90. |
---|
| 797 | ! in this case, higher altitude of the top layer is recommended. |
---|
| 798 | |
---|
| 799 | IF (zen .GT. 90.0) THEN |
---|
| 800 | IF (nid(0) .LT. 0) THEN |
---|
| 801 | tausla(0) = largest |
---|
| 802 | ELSE |
---|
| 803 | sum = 0.0 |
---|
| 804 | DO j = 1, nid(0) |
---|
| 805 | sum = sum + 2.*taun(j)*dsdh(0,j) |
---|
| 806 | END DO |
---|
| 807 | tausla(0) = sum |
---|
| 808 | END IF |
---|
| 809 | END IF |
---|
| 810 | |
---|
| 811 | DO 11, i = 1, nlayer |
---|
| 812 | g = gi(i) |
---|
| 813 | om = omi(i) |
---|
| 814 | tauc(i) = tauc(i-1) + taun(i) |
---|
| 815 | |
---|
| 816 | ! stay away from 1 by precision. For g, also stay away from -1 |
---|
| 817 | |
---|
| 818 | tempg = AMIN1(abs(g),1. - precis) |
---|
| 819 | g = SIGN(tempg,g) |
---|
| 820 | om = AMIN1(om,1.-precis) |
---|
| 821 | |
---|
| 822 | ! calculate slant optical depth |
---|
| 823 | |
---|
| 824 | IF (nid(i) .LT. 0) THEN |
---|
| 825 | tausla(i) = largest |
---|
| 826 | ELSE |
---|
| 827 | sum = 0.0 |
---|
| 828 | DO j = 1, MIN(nid(i),i) |
---|
| 829 | sum = sum + taun(j)*dsdh(i,j) |
---|
| 830 | END DO |
---|
| 831 | DO j = MIN(nid(i),i)+1,nid(i) |
---|
| 832 | sum = sum + 2.*taun(j)*dsdh(i,j) |
---|
| 833 | END DO |
---|
| 834 | tausla(i) = sum |
---|
| 835 | IF (tausla(i) .EQ. tausla(i-1)) THEN |
---|
| 836 | mu2(i) = SQRT(largest) |
---|
| 837 | ELSE |
---|
| 838 | mu2(i) = (tauc(i)-tauc(i-1))/(tausla(i)-tausla(i-1)) |
---|
| 839 | mu2(i) = SIGN( AMAX1(ABS(mu2(i)),1./SQRT(largest)), |
---|
| 840 | $ mu2(i) ) |
---|
| 841 | END IF |
---|
| 842 | END IF |
---|
| 843 | |
---|
| 844 | !** the following gamma equations are from pg 16,289, Table 1 |
---|
| 845 | !** save mu1 for each approx. for use in converting irradiance to actinic flux |
---|
| 846 | |
---|
| 847 | ! Eddington approximation(Joseph et al., 1976, JAS, 33, 2452): |
---|
| 848 | |
---|
| 849 | c gam1 = (7. - om*(4. + 3.*g))/4. |
---|
| 850 | c gam2 = -(1. - om*(4. - 3.*g))/4. |
---|
| 851 | c gam3 = (2. - 3.*g*mu)/4. |
---|
| 852 | c gam4 = 1. - gam3 |
---|
| 853 | c mu1(i) = 0.5 |
---|
| 854 | |
---|
| 855 | * quadrature (Liou, 1973, JAS, 30, 1303-1326; 1974, JAS, 31, 1473-1475): |
---|
| 856 | |
---|
| 857 | c gam1 = 1.7320508*(2. - om*(1. + g))/2. |
---|
| 858 | c gam2 = 1.7320508*om*(1. - g)/2. |
---|
| 859 | c gam3 = (1. - 1.7320508*g*mu)/2. |
---|
| 860 | c gam4 = 1. - gam3 |
---|
| 861 | c mu1(i) = 1./sqrt(3.) |
---|
| 862 | |
---|
| 863 | * hemispheric mean (Toon et al., 1089, JGR, 94, 16287): |
---|
| 864 | |
---|
| 865 | gam1 = 2. - om*(1. + g) |
---|
| 866 | gam2 = om*(1. - g) |
---|
| 867 | gam3 = (2. - g*mu)/4. |
---|
| 868 | gam4 = 1. - gam3 |
---|
| 869 | mu1(i) = 0.5 |
---|
| 870 | |
---|
| 871 | * PIFM (Zdunkovski et al.,1980, Conrib.Atmos.Phys., 53, 147-166): |
---|
| 872 | c GAM1 = 0.25*(8. - OM*(5. + 3.*G)) |
---|
| 873 | c GAM2 = 0.75*OM*(1.-G) |
---|
| 874 | c GAM3 = 0.25*(2.-3.*G*MU) |
---|
| 875 | c GAM4 = 1. - GAM3 |
---|
| 876 | c mu1(i) = 0.5 |
---|
| 877 | |
---|
| 878 | * delta discrete ordinates (Schaller, 1979, Contrib.Atmos.Phys, 52, 17-26): |
---|
| 879 | c GAM1 = 0.5*1.7320508*(2. - OM*(1. + G)) |
---|
| 880 | c GAM2 = 0.5*1.7320508*OM*(1.-G) |
---|
| 881 | c GAM3 = 0.5*(1.-1.7320508*G*MU) |
---|
| 882 | c GAM4 = 1. - GAM3 |
---|
| 883 | c mu1(i) = 1./sqrt(3.) |
---|
| 884 | |
---|
| 885 | * Calculations of Associated Legendre Polynomials for GAMA1,2,3,4 |
---|
| 886 | * in delta-function, modified quadrature, hemispheric constant, |
---|
| 887 | * Hybrid modified Eddington-delta function metods, p633,Table1. |
---|
| 888 | * W.E.Meador and W.R.Weaver, GAS,1980,v37,p.630 |
---|
| 889 | * W.J.Wiscombe and G.W. Grams, GAS,1976,v33,p2440 |
---|
| 890 | c YLM0 = 2. |
---|
| 891 | c YLM2 = -3.*G*MU |
---|
| 892 | c YLM4 = 0.875*G**3*MU*(5.*MU**2-3.) |
---|
| 893 | c YLM6=-0.171875*G**5*MU*(15.-70.*MU**2+63.*MU**4) |
---|
| 894 | c YLM8=+0.073242*G**7*MU*(-35.+315.*MU**2-693.*MU**4 |
---|
| 895 | c *+429.*MU**6) |
---|
| 896 | c YLM10=-0.008118*G**9*MU*(315.-4620.*MU**2+18018.*MU**4 |
---|
| 897 | c *-25740.*MU**6+12155.*MU**8) |
---|
| 898 | c YLM12=0.003685*G**11*MU*(-693.+15015.*MU**2-90090.*MU**4 |
---|
| 899 | c *+218790.*MU**6-230945.*MU**8+88179.*MU**10) |
---|
| 900 | c YLMS=YLM0+YLM2+YLM4+YLM6+YLM8+YLM10+YLM12 |
---|
| 901 | c YLMS=0.25*YLMS |
---|
| 902 | c BETA0 = YLMS |
---|
| 903 | c |
---|
| 904 | c amu1=1./1.7320508 |
---|
| 905 | c YLM0 = 2. |
---|
| 906 | c YLM2 = -3.*G*amu1 |
---|
| 907 | c YLM4 = 0.875*G**3*amu1*(5.*amu1**2-3.) |
---|
| 908 | c YLM6=-0.171875*G**5*amu1*(15.-70.*amu1**2+63.*amu1**4) |
---|
| 909 | c YLM8=+0.073242*G**7*amu1*(-35.+315.*amu1**2-693.*amu1**4 |
---|
| 910 | c *+429.*amu1**6) |
---|
| 911 | c YLM10=-0.008118*G**9*amu1*(315.-4620.*amu1**2+18018.*amu1**4 |
---|
| 912 | c *-25740.*amu1**6+12155.*amu1**8) |
---|
| 913 | c YLM12=0.003685*G**11*amu1*(-693.+15015.*amu1**2-90090.*amu1**4 |
---|
| 914 | c *+218790.*amu1**6-230945.*amu1**8+88179.*amu1**10) |
---|
| 915 | c YLMS=YLM0+YLM2+YLM4+YLM6+YLM8+YLM10+YLM12 |
---|
| 916 | c YLMS=0.25*YLMS |
---|
| 917 | c BETA1 = YLMS |
---|
| 918 | c |
---|
| 919 | c BETAn = 0.25*(2. - 1.5*G-0.21875*G**3-0.085938*G**5 |
---|
| 920 | c *-0.045776*G**7) |
---|
| 921 | |
---|
| 922 | |
---|
| 923 | * Hybrid modified Eddington-delta function(Meador and Weaver,1980,JAS,37,630): |
---|
| 924 | c subd=4.*(1.-G*G*(1.-MU)) |
---|
| 925 | c GAM1 = (7.-3.*G*G-OM*(4.+3.*G)+OM*G*G*(4.*BETA0+3.*G))/subd |
---|
| 926 | c GAM2 =-(1.-G*G-OM*(4.-3.*G)-OM*G*G*(4.*BETA0+3.*G-4.))/subd |
---|
| 927 | c GAM3 = BETA0 |
---|
| 928 | c GAM4 = 1. - GAM3 |
---|
| 929 | c mu1(i) = (1. - g*g*(1.- mu) )/(2. - g*g) |
---|
| 930 | |
---|
| 931 | ***** |
---|
| 932 | * delta function (Meador, and Weaver, 1980, JAS, 37, 630): |
---|
| 933 | c GAM1 = (1. - OM*(1. - beta0))/MU |
---|
| 934 | c GAM2 = OM*BETA0/MU |
---|
| 935 | c GAM3 = BETA0 |
---|
| 936 | c GAM4 = 1. - GAM3 |
---|
| 937 | c mu1(i) = mu |
---|
| 938 | ***** |
---|
| 939 | * modified quadrature (Meador, and Weaver, 1980, JAS, 37, 630): |
---|
| 940 | c GAM1 = 1.7320508*(1. - OM*(1. - beta1)) |
---|
| 941 | c GAM2 = 1.7320508*OM*beta1 |
---|
| 942 | c GAM3 = BETA0 |
---|
| 943 | c GAM4 = 1. - GAM3 |
---|
| 944 | c mu1(i) = 1./sqrt(3.) |
---|
| 945 | |
---|
| 946 | * hemispheric constant (Toon et al., 1989, JGR, 94, 16287): |
---|
| 947 | c GAM1 = 2.*(1. - OM*(1. - betan)) |
---|
| 948 | c GAM2 = 2.*OM*BETAn |
---|
| 949 | c GAM3 = BETA0 |
---|
| 950 | c GAM4 = 1. - GAM3 |
---|
| 951 | c mu1(i) = 0.5 |
---|
| 952 | |
---|
| 953 | ***** |
---|
| 954 | |
---|
| 955 | * lambda = pg 16,290 equation 21 |
---|
| 956 | * big gamma = pg 16,290 equation 22 |
---|
| 957 | * if gam2 = 0., then bgam = 0. |
---|
| 958 | |
---|
| 959 | lam(i) = sqrt(gam1*gam1 - gam2*gam2) |
---|
| 960 | |
---|
| 961 | IF (gam2 .NE. 0.) THEN |
---|
| 962 | bgam(i) = (gam1 - lam(i))/gam2 |
---|
| 963 | ELSE |
---|
| 964 | bgam(i) = 0. |
---|
| 965 | END IF |
---|
| 966 | |
---|
| 967 | expon = EXP(-lam(i)*taun(i)) |
---|
| 968 | |
---|
| 969 | * e1 - e4 = pg 16,292 equation 44 |
---|
| 970 | |
---|
| 971 | e1(i) = 1. + bgam(i)*expon |
---|
| 972 | e2(i) = 1. - bgam(i)*expon |
---|
| 973 | e3(i) = bgam(i) + expon |
---|
| 974 | e4(i) = bgam(i) - expon |
---|
| 975 | |
---|
| 976 | * the following sets up for the C equations 23, and 24 |
---|
| 977 | * found on page 16,290 |
---|
| 978 | * prevent division by zero (if LAMBDA=1/MU, shift 1/MU^2 by EPS = 1.E-3 |
---|
| 979 | * which is approx equiv to shifting MU by 0.5*EPS* (MU)**3 |
---|
| 980 | |
---|
| 981 | expon0 = EXP(-tausla(i-1)) |
---|
| 982 | expon1 = EXP(-tausla(i)) |
---|
| 983 | |
---|
| 984 | divisr = lam(i)*lam(i) - 1./(mu2(i)*mu2(i)) |
---|
| 985 | temp = AMAX1(eps,abs(divisr)) |
---|
| 986 | divisr = SIGN(temp,divisr) |
---|
| 987 | |
---|
| 988 | up = om*pifs*((gam1 - 1./mu2(i))*gam3 + gam4*gam2)/divisr |
---|
| 989 | dn = om*pifs*((gam1 + 1./mu2(i))*gam4 + gam2*gam3)/divisr |
---|
| 990 | |
---|
| 991 | * cup and cdn are when tau is equal to zero |
---|
| 992 | * cuptn and cdntn are when tau is equal to taun |
---|
| 993 | |
---|
| 994 | cup(i) = up*expon0 |
---|
| 995 | cdn(i) = dn*expon0 |
---|
| 996 | cuptn(i) = up*expon1 |
---|
| 997 | cdntn(i) = dn*expon1 |
---|
| 998 | |
---|
| 999 | 11 CONTINUE |
---|
| 1000 | |
---|
| 1001 | ***************** set up matrix ****** |
---|
| 1002 | * ssfc = pg 16,292 equation 37 where pi Fs is one (unity). |
---|
| 1003 | |
---|
| 1004 | ssfc = rsfc*mu*EXP(-tausla(nlayer))*pifs |
---|
| 1005 | |
---|
| 1006 | * MROWS = the number of rows in the matrix |
---|
| 1007 | |
---|
| 1008 | mrows = 2*nlayer |
---|
| 1009 | |
---|
| 1010 | * the following are from pg 16,292 equations 39 - 43. |
---|
| 1011 | * set up first row of matrix: |
---|
| 1012 | |
---|
| 1013 | i = 1 |
---|
| 1014 | a(1) = 0. |
---|
| 1015 | b(1) = e1(i) |
---|
| 1016 | d(1) = -e2(i) |
---|
| 1017 | e(1) = fdn0 - cdn(i) |
---|
| 1018 | |
---|
| 1019 | row=1 |
---|
| 1020 | |
---|
| 1021 | * set up odd rows 3 thru (MROWS - 1): |
---|
| 1022 | |
---|
| 1023 | i = 0 |
---|
| 1024 | DO 20, row = 3, mrows - 1, 2 |
---|
| 1025 | i = i + 1 |
---|
| 1026 | a(row) = e2(i)*e3(i) - e4(i)*e1(i) |
---|
| 1027 | b(row) = e1(i)*e1(i + 1) - e3(i)*e3(i + 1) |
---|
| 1028 | d(row) = e3(i)*e4(i + 1) - e1(i)*e2(i + 1) |
---|
| 1029 | e(row) = e3(i)*(cup(i + 1) - cuptn(i)) + |
---|
| 1030 | $ e1(i)*(cdntn(i) - cdn(i + 1)) |
---|
| 1031 | 20 CONTINUE |
---|
| 1032 | |
---|
| 1033 | * set up even rows 2 thru (MROWS - 2): |
---|
| 1034 | |
---|
| 1035 | i = 0 |
---|
| 1036 | DO 30, row = 2, mrows - 2, 2 |
---|
| 1037 | i = i + 1 |
---|
| 1038 | a(row) = e2(i + 1)*e1(i) - e3(i)*e4(i + 1) |
---|
| 1039 | b(row) = e2(i)*e2(i + 1) - e4(i)*e4(i + 1) |
---|
| 1040 | d(row) = e1(i + 1)*e4(i + 1) - e2(i + 1)*e3(i + 1) |
---|
| 1041 | e(row) = (cup(i + 1) - cuptn(i))*e2(i + 1) - |
---|
| 1042 | $ (cdn(i + 1) - cdntn(i))*e4(i + 1) |
---|
| 1043 | 30 CONTINUE |
---|
| 1044 | |
---|
| 1045 | * set up last row of matrix at MROWS: |
---|
| 1046 | |
---|
| 1047 | row = mrows |
---|
| 1048 | i = nlayer |
---|
| 1049 | |
---|
| 1050 | a(row) = e1(i) - rsfc*e3(i) |
---|
| 1051 | b(row) = e2(i) - rsfc*e4(i) |
---|
| 1052 | d(row) = 0. |
---|
| 1053 | e(row) = ssfc - cuptn(i) + rsfc*cdntn(i) |
---|
| 1054 | |
---|
| 1055 | * solve tri-diagonal matrix: |
---|
| 1056 | |
---|
| 1057 | CALL tridiag(a, b, d, e, y, mrows) |
---|
| 1058 | |
---|
| 1059 | **** unfold solution of matrix, compute output fluxes: |
---|
| 1060 | |
---|
| 1061 | row = 1 |
---|
| 1062 | lev = 1 |
---|
| 1063 | j = 1 |
---|
| 1064 | |
---|
| 1065 | * the following equations are from pg 16,291 equations 31 & 32 |
---|
| 1066 | |
---|
| 1067 | fdr(lev) = EXP( -tausla(0) ) |
---|
| 1068 | edr(lev) = mu * fdr(lev) |
---|
| 1069 | edn(lev) = fdn0 |
---|
| 1070 | eup(lev) = y(row)*e3(j) - y(row + 1)*e4(j) + cup(j) |
---|
| 1071 | fdn(lev) = edn(lev)/mu1(lev) |
---|
| 1072 | fup(lev) = eup(lev)/mu1(lev) |
---|
| 1073 | |
---|
| 1074 | DO 60, lev = 2, nlayer + 1 |
---|
| 1075 | fdr(lev) = EXP(-tausla(lev-1)) |
---|
| 1076 | edr(lev) = mu *fdr(lev) |
---|
| 1077 | edn(lev) = y(row)*e3(j) + y(row + 1)*e4(j) + cdntn(j) |
---|
| 1078 | eup(lev) = y(row)*e1(j) + y(row + 1)*e2(j) + cuptn(j) |
---|
| 1079 | fdn(lev) = edn(lev)/mu1(j) |
---|
| 1080 | fup(lev) = eup(lev)/mu1(j) |
---|
| 1081 | |
---|
| 1082 | row = row + 2 |
---|
| 1083 | j = j + 1 |
---|
| 1084 | 60 CONTINUE |
---|
| 1085 | |
---|
| 1086 | end subroutine ps2str |
---|
| 1087 | |
---|
| 1088 | *=============================================================================* |
---|
| 1089 | |
---|
| 1090 | subroutine tridiag(a,b,c,r,u,n) |
---|
| 1091 | |
---|
| 1092 | !_______________________________________________________________________ |
---|
| 1093 | ! solves tridiagonal system. From Numerical Recipies, p. 40 |
---|
| 1094 | !_______________________________________________________________________ |
---|
| 1095 | |
---|
| 1096 | IMPLICIT NONE |
---|
| 1097 | |
---|
| 1098 | ! input: |
---|
| 1099 | |
---|
| 1100 | INTEGER n |
---|
| 1101 | REAL a, b, c, r |
---|
| 1102 | DIMENSION a(n),b(n),c(n),r(n) |
---|
| 1103 | |
---|
| 1104 | ! output: |
---|
| 1105 | |
---|
| 1106 | REAL u |
---|
| 1107 | DIMENSION u(n) |
---|
| 1108 | |
---|
| 1109 | ! local: |
---|
| 1110 | |
---|
| 1111 | INTEGER j |
---|
| 1112 | |
---|
| 1113 | REAL bet, gam |
---|
| 1114 | DIMENSION gam(n) |
---|
| 1115 | !_______________________________________________________________________ |
---|
| 1116 | |
---|
| 1117 | IF (b(1) .EQ. 0.) STOP 1001 |
---|
| 1118 | bet = b(1) |
---|
| 1119 | u(1) = r(1)/bet |
---|
| 1120 | DO 11, j = 2, n |
---|
| 1121 | gam(j) = c(j - 1)/bet |
---|
| 1122 | bet = b(j) - a(j)*gam(j) |
---|
| 1123 | IF (bet .EQ. 0.) STOP 2002 |
---|
| 1124 | u(j) = (r(j) - a(j)*u(j - 1))/bet |
---|
| 1125 | 11 CONTINUE |
---|
| 1126 | DO 12, j = n - 1, 1, -1 |
---|
| 1127 | u(j) = u(j) - gam(j + 1)*u(j + 1) |
---|
| 1128 | 12 CONTINUE |
---|
| 1129 | !_______________________________________________________________________ |
---|
| 1130 | |
---|
| 1131 | end subroutine tridiag |
---|
| 1132 | |
---|
| 1133 | !============================================================================== |
---|
| 1134 | |
---|
| 1135 | subroutine setalb(nw,wl,ig,ngrid,albedo_chim) |
---|
| 1136 | |
---|
| 1137 | !-----------------------------------------------------------------------------* |
---|
| 1138 | != PURPOSE: =* |
---|
| 1139 | != Set the albedo of the surface. The albedo is assumed to be Lambertian, =* |
---|
| 1140 | != i.e., the reflected light is isotropic, and idependt of the direction =* |
---|
| 1141 | != of incidence of light. Albedo can be chosen to be wavelength dependent. =* |
---|
| 1142 | !-----------------------------------------------------------------------------* |
---|
| 1143 | != PARAMETERS: =* |
---|
| 1144 | != NW - INTEGER, number of specified intervals + 1 in working (I)=* |
---|
| 1145 | != wavelength grid =* |
---|
| 1146 | != WL - REAL, vector of lower limits of wavelength intervals in (I)=* |
---|
| 1147 | != working wavelength grid =* |
---|
| 1148 | != ALBEDO - REAL, surface albedo at each specified wavelength (O)=* |
---|
| 1149 | !-----------------------------------------------------------------------------* |
---|
| 1150 | |
---|
| 1151 | use chimiedata_h, only: albedo_snow_chim, albedo_co2_ice_chim |
---|
| 1152 | use slab_ice_h, only: h_alb_ice, alb_ice_min, alb_ice_max |
---|
| 1153 | use tracer_h, only: igcm_h2o_ice, igcm_co2_ice |
---|
| 1154 | use callkeys_mod, only: ok_slab_ocean, co2cond, alb_ocean |
---|
| 1155 | use phys_state_var_mod, only: albedo_bareground, |
---|
| 1156 | & rnat, qsurf, sea_ice, |
---|
| 1157 | & pctsrf_sic, tsurf, capcal |
---|
| 1158 | use watercommon_h, only: T_h2O_ice_liq, RLFTT, rhowater |
---|
| 1159 | |
---|
| 1160 | implicit none |
---|
| 1161 | |
---|
| 1162 | ! input: (wavelength working grid data) |
---|
| 1163 | |
---|
| 1164 | integer, intent(in) :: ngrid ! number of atmospheric columns |
---|
| 1165 | INTEGER nw |
---|
| 1166 | INTEGER ig ! grid point index |
---|
| 1167 | REAL wl(nw) |
---|
| 1168 | |
---|
| 1169 | ! output: |
---|
| 1170 | |
---|
| 1171 | REAL albedo_chim(nw) |
---|
| 1172 | |
---|
| 1173 | ! local: |
---|
| 1174 | |
---|
| 1175 | INTEGER iw |
---|
| 1176 | ! REAL alb |
---|
| 1177 | real zfra, alb_ice, twater, hice |
---|
| 1178 | real snowlayer |
---|
| 1179 | parameter (snowlayer=33.0) ! 33 kg/m^2 of snow, equal to a layer of 3.3 cm |
---|
| 1180 | |
---|
| 1181 | ! 0.015: mean value from clancy et al., icarus, 49-63, 1999. |
---|
| 1182 | |
---|
| 1183 | ! alb = 0.015 |
---|
| 1184 | ! alb = albedo_phys |
---|
| 1185 | |
---|
| 1186 | ! do iw = 1, nw - 1 |
---|
| 1187 | ! albedo_chim(iw) = alb |
---|
| 1188 | ! end do |
---|
| 1189 | |
---|
| 1190 | ! See hydrol.F90 for taking into account new tendencies |
---|
| 1191 | |
---|
| 1192 | if(nint(rnat(ig)).eq.0)then |
---|
| 1193 | |
---|
| 1194 | if(ok_slab_ocean) then |
---|
| 1195 | |
---|
| 1196 | zfra = MAX(0.0,MIN(1.0,qsurf(ig,igcm_h2o_ice)/45.0)) ! Snow Fraction (Critical height 45kg/m2~15cm) |
---|
| 1197 | alb_ice=alb_ice_max-(alb_ice_max-alb_ice_min) ! Ice Albedo |
---|
| 1198 | & *exp(-sea_ice(ig)/h_alb_ice) |
---|
| 1199 | ! Albedo final calculation : |
---|
| 1200 | do iw=1,nw - 1 |
---|
| 1201 | albedo_chim(iw) = pctsrf_sic(ig)* |
---|
| 1202 | & (albedo_snow_chim(iw)*zfra |
---|
| 1203 | & + alb_ice*(1.0-zfra)) |
---|
| 1204 | & + (1.-pctsrf_sic(ig))*alb_ocean |
---|
| 1205 | enddo |
---|
| 1206 | |
---|
| 1207 | else !ok_slab_ocean |
---|
| 1208 | |
---|
| 1209 | |
---|
| 1210 | ! calculate oceanic ice height including the latent heat of ice formation |
---|
| 1211 | ! hice is the height of oceanic ice with a maximum of maxicethick. |
---|
| 1212 | hice = qsurf(ig,igcm_h2o_ice)/rhowater ! update hice to include recent snowfall |
---|
| 1213 | twater = tsurf(ig) - hice*RLFTT*rhowater/capcal(ig) |
---|
| 1214 | ! this is temperature water would have if we melted entire ocean ice layer |
---|
| 1215 | |
---|
| 1216 | if(twater .lt. T_h2O_ice_liq)then |
---|
| 1217 | |
---|
| 1218 | do iw=1,nw - 1 |
---|
| 1219 | albedo_chim(iw) = albedo_snow_chim(iw) ! Albedo of ice has been replaced by albedo of snow here. MT2015. |
---|
| 1220 | enddo |
---|
| 1221 | |
---|
| 1222 | else |
---|
| 1223 | |
---|
| 1224 | DO iw=1,nw - 1 |
---|
| 1225 | albedo_chim(iw) = alb_ocean |
---|
| 1226 | if(ngrid.eq.1) then |
---|
| 1227 | albedo_chim(iw) = albedo_bareground(ig) |
---|
| 1228 | endif |
---|
| 1229 | ENDDO |
---|
| 1230 | |
---|
| 1231 | endif |
---|
| 1232 | |
---|
| 1233 | endif!(ok_slab_ocean) |
---|
| 1234 | |
---|
| 1235 | |
---|
| 1236 | ! Continent |
---|
| 1237 | ! --------- |
---|
| 1238 | elseif (nint(rnat(ig)).eq.1) then |
---|
| 1239 | |
---|
| 1240 | ! re-calculate continental albedo |
---|
| 1241 | if (qsurf(ig,igcm_h2o_ice).ge.snowlayer) then |
---|
| 1242 | DO iw=1,nw - 1 |
---|
| 1243 | albedo_chim(iw) = albedo_snow_chim(iw) |
---|
| 1244 | ENDDO |
---|
| 1245 | else |
---|
| 1246 | DO iw=1,nw - 1 |
---|
| 1247 | albedo_chim(iw) = albedo_bareground(ig) |
---|
| 1248 | & + (albedo_snow_chim(iw) |
---|
| 1249 | & - albedo_bareground(ig)) |
---|
| 1250 | & *qsurf(ig,igcm_h2o_ice)/snowlayer |
---|
| 1251 | ENDDO |
---|
| 1252 | endif |
---|
| 1253 | |
---|
| 1254 | else |
---|
| 1255 | |
---|
| 1256 | print*,'Surface type not recognised in photolysis_online.F!' |
---|
| 1257 | print*,'Exiting...' |
---|
| 1258 | call abort |
---|
| 1259 | |
---|
| 1260 | endif |
---|
| 1261 | |
---|
| 1262 | ! Re-add the albedo effects of CO2 ice if necessary |
---|
| 1263 | ! ------------------------------------------------- |
---|
| 1264 | if(co2cond)then |
---|
| 1265 | |
---|
| 1266 | if (qsurf(ig,igcm_co2_ice).gt.1.) then ! Condition changed - Need now ~1 mm CO2 ice coverage. MT2015 |
---|
| 1267 | DO iw=1,nw - 1 |
---|
| 1268 | albedo_chim(iw) = albedo_co2_ice_chim(iw) |
---|
| 1269 | ENDDO |
---|
| 1270 | endif |
---|
| 1271 | |
---|
| 1272 | endif ! co2cond |
---|
| 1273 | |
---|
| 1274 | end subroutine setalb |
---|
| 1275 | |
---|
| 1276 | !============================================================================== |
---|
| 1277 | |
---|
| 1278 | subroutine setsj(nd,nlayer,nw,tlay,tdiml,xsl,xs_templ,sjl) |
---|
| 1279 | |
---|
| 1280 | |
---|
| 1281 | implicit none |
---|
| 1282 | |
---|
| 1283 | ! input: (wavelength working grid data) |
---|
| 1284 | |
---|
| 1285 | integer :: nd ! number of photolysis rates |
---|
| 1286 | integer :: nlayer ! number of vertical layers |
---|
| 1287 | integer :: nw ! number of wavelength grid points |
---|
| 1288 | integer :: tdiml ! number of different temperature cross section file |
---|
| 1289 | real :: xsl(tdiml,nw) ! cross section (cm2) from reading files |
---|
| 1290 | real :: xs_templ(tdiml) ! temperature of the cross section (cm2) |
---|
| 1291 | real :: tlay(nlayer) ! temperature (K) |
---|
| 1292 | |
---|
| 1293 | ! output: |
---|
| 1294 | |
---|
| 1295 | real :: sjl(nlayer,nw) ! output cross section (cm2) |
---|
| 1296 | |
---|
| 1297 | |
---|
| 1298 | ! local: |
---|
| 1299 | |
---|
| 1300 | INTEGER ilay,iw,tpos |
---|
| 1301 | |
---|
| 1302 | do iw = 1,nw-1 |
---|
| 1303 | do ilay = 1,nlayer |
---|
| 1304 | tpos = 1 |
---|
| 1305 | do while(tlay(ilay)>xs_templ(tpos) .and. tpos<tdiml) |
---|
| 1306 | tpos = tpos + 1 |
---|
| 1307 | end do |
---|
| 1308 | if (tpos.eq.1 .or. tpos.eq.tdiml) then |
---|
| 1309 | sjl(ilay,iw) = xsl(tpos,iw) |
---|
| 1310 | else |
---|
| 1311 | sjl(ilay,iw) = ( (xsl(tpos,iw)-xsl(tpos-1,iw))* |
---|
| 1312 | $ (tlay(ilay)-xs_templ(tpos-1)) |
---|
| 1313 | $ /(xs_templ(tpos)-xs_templ(tpos-1)) |
---|
| 1314 | $ + xsl(tpos-1,iw) ) |
---|
| 1315 | end if |
---|
| 1316 | end do |
---|
| 1317 | end do |
---|
| 1318 | |
---|
| 1319 | end subroutine setsj |
---|
| 1320 | |
---|
| 1321 | end subroutine photolysis_online |
---|