source: trunk/LMDZ.GENERIC/deftank/run.def.earthslab.64x48x30 @ 3565

Last change on this file since 3565 was 3100, checked in by bhatnags, 15 months ago

Generic-PCM

This commit updates the slab ocean module to a parallelisable dynamic slab ocean module. This is particularly relevant if you want to be able to use oceanic heat transport in parallel mode.

It has the following features:

(a) Computes sea ice creation and evolution.
(b) Snow has thermodynamic properties.
(c) Computes oceanic horizontal transport (diffusion & surface-wind driven Ekman transport).
(d) Can be used in parallel mode.

Required callphys.def flags:
The slab ocean and its dependencies can be activated with the following flags (already added to deftank):
## Ocean options
## ~
# Model slab-ocean (Main flag for slab ocean)
ok_slab_ocean = .true.
# The following flags can only be set to true if ok_slab_ocean is true
# Ekman transport
slab_ekman = .true.
# Ekman zonal advection
slab_ekman_zonadv = .true.
# Horizontal diffusion (default coef_hdiff=25000., can be changed)
slab_hdiff = .true.
# Slab-ocean timestep (in physics timesteps)
cpl_pas = 1
# Gent-McWilliams? Scheme (can only be true if slab_ekman is true)
slab_gm = .true.

Notes:
In the current state, the model crashes if moistadjustment = .true. Unsure whether this is due to the slab or is an inherent issue with moistadj (under investigation).

SB and EM

File size: 2.8 KB
RevLine 
[3100]1#
2#-----------------------------------------------------------------------
3#run control parameters:                                         
4#------------------------------                                         
5
6# planet type
7planet_type = generic
8
9# Number of days to run model for
10     nday=1
11
12# ndynstep (overrides nday): number of dynamical steps to run for
13#     ndynstep=30
14
15# Number of dynamical steps per day (must be a multiple of iperiod) (originally, 900 or 960)
16 day_step = 960
17
18# Apply a Matsuno step every iperiod dynamical step
19  iperiod=5
20
21# Control output information in the dynamics every iconser dynamical steps
22  iconser=120
23
24# Apply dissipation every idissip dynamical steps (originally, idissip=5)
25  idissip=5
26#  dissip_period=1
27
28# dissipation operator to use (star or non-star)
29 lstardis=.true.
30
31# use hybrid vertical coordinate (else will use sigma levels)
32 hybrid=.true.
33
34# iterate lateral dissipation operator gradiv nitergdiv times
35nitergdiv=1
36
37# iterate lateral dissipation operator nxgradrot nitergrot times
38nitergrot=2
39
40# iterate lateral dissipation operator divgrad niterh times
41   niterh=2
42
43# time scale (s) for shortest wavelengths for u,v (gradiv)
44 tetagdiv=4000.
45
46# time scale (s) for shortest wavelengths for u,v (nxgradrot)
47 tetagrot=5000.
48
49# time scale (s) for shortest wavelengths for h (divgrad)
50 tetatemp=5000.
51
52# coefficient for gamdissip                                           
53  coefdis=0.
54
55# time marching scheme (Matsuno if purmats is true, else Matsuno-Leapfrog)
56  purmats=.false.
57
58# run with (true) or without (false) physics
59   physic=.true.
60
61# call physics every iphysiq dynamical steps (originally, iphysiq=5)
62  iphysiq=10
63
64# Use a regular grid
65  grireg=.true.
66
67# Output in diagfi file every ecritphy dynamical steps
68  ecritphy=9600
69# ecritphy=1
70
71# longitude (degrees) of zoom center
72   clon=0.
73
74# latitude (degrees) of zoom center
75   clat=0.
76
77# enhancement factor of zoom, along longitudes
78  grossismx=1.
79
80# enhancement factor of zoom, along latitudes
81 grossismy=1.
82
83#  Use an hyperbolic function f(y) if .true., else use a sine
84  fxyhypb=.false.
85
86# extention along longitudes of zoom region (fraction of global domain)
87   dzoomx= 0.
88
89# extention along latitudes of zoom region (fraction of global domain)
90   dzoomy=0.
91
92# zoom stiffness along longitudes
93    taux=2.
94
95# zoom stiffness along latitudes
96    tauy=2.
97
98#  Function  f(y) as y = Sin(latitude) if = .true. ,  else  y = latitude
99  ysinus= .false.
100
101# Use a sponge layer
102  callsponge  = .true.
103 
104# Sponge layer extends over topmost nsponge layers
105  nsponge = 3
106
107# Sponge:  relaxed towards teta=teta_ave
108#        and mode0(u=v=0), mode1(u=u_ave,v=0), mode2(u=u_ave,v=v_ave)
109  mode_sponge= 2
110
111# Sponge layer time scale (s):  tetasponge
112  tetasponge = 10000
113
114# some definitions for the physics, in file 'callphys.def'
115INCLUDEDEF=callphys.def
Note: See TracBrowser for help on using the repository browser.